JPS63227784A - Method for providing electroless plating catalyst - Google Patents

Method for providing electroless plating catalyst

Info

Publication number
JPS63227784A
JPS63227784A JP6227587A JP6227587A JPS63227784A JP S63227784 A JPS63227784 A JP S63227784A JP 6227587 A JP6227587 A JP 6227587A JP 6227587 A JP6227587 A JP 6227587A JP S63227784 A JPS63227784 A JP S63227784A
Authority
JP
Japan
Prior art keywords
base material
acid
coupling agent
transition metal
silane coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6227587A
Other languages
Japanese (ja)
Inventor
Tatsu Yoneda
龍 米田
Kenichi Yokota
健市 横田
Hideo Miyake
英男 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP6227587A priority Critical patent/JPS63227784A/en
Publication of JPS63227784A publication Critical patent/JPS63227784A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1862Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by radiant energy
    • C23C18/1865Heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1875Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment only one step pretreatment
    • C23C18/1882Use of organic or inorganic compounds other than metals, e.g. activation, sensitisation with polymers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1893Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Abstract

PURPOSE:To provide a catalytic metal to the surface of an insulating base material with high adhesive strength by coating the surface of the base material with a soln. of a complex or chelate consisting of a transition metal ion and a silane coupling agent and by successively carrying out heat treatment and treatment with a reducing agent. CONSTITUTION:The surface of an insulating base material is coated with a soln. contg. a complex and/or chelate consisting of a silane coupling agent and a transition metal ion, and heat treatment and reduction treatment are successively carried out to provide a catalyst to the surface of the base material. The base material is desirably glass or ceramics. One or more kinds of compds. represented by the formula [where X is halogen atom. or 1-6C alkoxy group, (n) is a number of >=1 and Y is a functional group capable of forming a chelate with a transition metal or a group capable of performing coordinate bond to the metal] are preferably used as the silane coupling agent. The reduction treatment is desirably carried out with one or more kinds of compds. selected among hydridoboric acid, hydridoborates, hydridoboric acid derivs., alkylboric acids, alkylborates, alkylboric acid derivs., hypophosphorous acid, hypophosphites and hypophosphorous acid derivs.

Description

【発明の詳細な説明】 (mi上の利用分野) 本発明は、セラミック、ガラス等の電気的に絶縁性の基
材表面に無電解めっきを施すときの、無電解めっき触媒
の付与方法に閃する。
Detailed Description of the Invention (Field of application on mi) The present invention is an innovative method for applying an electroless plating catalyst when electroless plating is applied to the surface of an electrically insulating substrate such as ceramic or glass. do.

(従来の技術) 現在用いられている無電解めっきのための触媒付与方法
は、もともとプラスチック等のを機基材に対して口)1
発されたものであり、その付与n構についてもこれら基
材の表面性質に対応して考えられたものであった。すな
わち、本来疎水性である基材表面を予め界面活性剤処理
で収水性にし、さらに用いた界面活性剤の極性を利用し
て対極性をもつ触媒物質を静電的引力で基材表面に吸打
させるというものである。界面活性剤として、末端アミ
7基を持つカチオン系界面活性剤で表面処理した後に負
に帯電したパラジウム系コロイド触媒液させる方法は、
今日最も一般的な方法として知られている(米国特許f
ll’!4,187,198号公報、米国特許第3.a
ei、109号公報など)。
(Prior art) The currently used catalyst application method for electroless plating was originally applied to a base material such as plastic (1).
The structure in which it is applied was also considered in accordance with the surface properties of these base materials. In other words, the surface of the base material, which is originally hydrophobic, is treated with a surfactant in advance to make it water-absorbing, and then the polarity of the surfactant used is used to absorb a catalyst substance with an opposite polarity onto the surface of the base material using electrostatic attraction. It's about having them hit. The method of treating the surface with a cationic surfactant having 7 terminal amino groups as a surfactant and then using a negatively charged palladium-based colloidal catalyst solution is as follows:
It is known as the most common method today (U.S. Patent f
ll'! No. 4,187,198, U.S. Patent No. 3. a
ei, Publication No. 109, etc.).

シラン系カップリング剤は、無機物、特に酸化物表面を
被覆し、その表面に末端官能基的性質を付与するために
用いられてきた。
Silane coupling agents have been used to coat inorganic, especially oxide, surfaces and impart terminal functional properties to the surfaces.

特公昭59−52701号公報では、予め末端にパラジ
ウムに配置し易い官能基を有する7ラン系カツプリング
剤で表面処理した後にパラジウムを含仔する市販コロイ
ド系触媒液で処理することにより表面平滑なガラスにさ
え容易に¥Meの良い無電解めっき皮膜を生成可能であ
ることがのべられている。
In Japanese Patent Publication No. 59-52701, a glass with a smooth surface is prepared by first treating the surface with a 7-ran coupling agent having a functional group that can be easily attached to palladium at the end, and then treating it with a commercially available colloidal catalyst solution containing palladium. It is stated that it is possible to easily produce an electroless plating film with good ¥Me.

特開昭00−38669号公報では、末端にアミ7基、
イミノ基をイi L 、かつ、分子ta造中に2価のパ
ラジウム等を金属パラジウム等に還元する基を存するシ
ランを用いる方法が示されている。
In JP-A No. 00-38669, 7 amino groups at the terminal,
A method using a silane having an imino group i L and a group capable of reducing divalent palladium or the like to metal palladium or the like during the formation of the molecule is disclosed.

(発明が解決しようとする問題点) これらの方法をセラミックスやガラス基材に適用しよう
とすれば、米国特許第4,187,108号公報、米国
特許第3,961,109号公報に記αの方法では、本
来セラミックスやガラス基材表面は親水性であるため界
面活性剤処理は貞味を成さず、却って後工程に用いるコ
ロイド触媒液の凝集や沈殿生成をひきおこす。また、こ
れらの方法では、基材表面に触媒金屑を固定化させてい
る力は、単に静電的引力のみであり後処理液に含まれる
対電荷イオンの種や濃度、p■■の変化により吸着力を
失い、表面から脱離してしまい、酷い場合には無電解め
っき浴中を漂い浴の安定性を低下させてしまう原因とな
る。
(Problems to be Solved by the Invention) If these methods are to be applied to ceramic or glass substrates, the problems described in U.S. Pat. No. 4,187,108 and U.S. Pat. No. 3,961,109 are In this method, since the surface of the ceramic or glass substrate is originally hydrophilic, the surfactant treatment is not effective, and instead causes aggregation and precipitation of the colloidal catalyst liquid used in the subsequent process. In addition, in these methods, the force that immobilizes the catalyst gold scraps on the surface of the substrate is simply electrostatic attraction, and changes in the species, concentration, and p■■ of countercharged ions contained in the post-treatment liquid As a result, the adsorbent loses its adsorption power and detaches from the surface, and in severe cases, it floats in the electroless plating bath, causing a decrease in the stability of the bath.

特公昭59−52701号公報に示された方法では基材
をシラン系カップリング剤水溶液に浸漬後、直ちに水洗
を行いコロイド触媒液に導入する方法がとられている。
In the method disclosed in Japanese Patent Publication No. 59-52701, a substrate is immersed in an aqueous solution of a silane coupling agent, immediately washed with water, and then introduced into a colloidal catalyst solution.

シラン系カップリング剤と酸化物表面の水酸基との反応
は加熱処理なしでは進行せず、この場合水洗時にほとん
どのシラン系カップリング剤は洗い流され、本質的には
界面活性剤処理を行っていることと差異はない可能性が
ある。また、基材表面を被覆するシラン系カップリング
材とコロイド触媒液により生成する金属パラジウムとの
間には、量的な関係はなく、むしろ過剰量の金属パラジ
ウムの吸行をまねく可能性さえある。
The reaction between the silane coupling agent and the hydroxyl groups on the oxide surface does not proceed without heat treatment, and in this case, most of the silane coupling agent is washed away during water washing, essentially performing a surfactant treatment. There may be no difference. Furthermore, there is no quantitative relationship between the silane-based coupling material that coats the surface of the substrate and the metal palladium produced by the colloidal catalyst liquid, and there is a possibility that an excessive amount of metal palladium may be absorbed. .

(問題点を解決するための手段) 本発明者らは、このような従来技術の問題を解決するた
めに説な研究を重ねた結果、シラン系カップリング剤と
遷移金属イオンとの錯体またはキレート溶液を用いてセ
ラミックスおよびガラス表面に、遷移金属イオンのシラ
ン系カップリング剤鋳体またはキレートを導入した後、
熱処理を行い、さらに還元剤処理を行うことにより解決
されることを見出した。
(Means for Solving the Problems) As a result of extensive research in order to solve the problems of the prior art, the present inventors have developed a complex or chelate between a silane coupling agent and a transition metal ion. After introducing silane-based coupling agent castings or chelates of transition metal ions onto ceramic and glass surfaces using a solution,
It has been found that the problem can be solved by heat treatment and further treatment with a reducing agent.

すなわち本発明は、シラン系カップリング剤と遷移金属
イオンとのSN体および/またはキレートを含む溶液を
、絶縁性の基材表面に付与し、熱処理を行い、さらに還
元処理を施すことにより、絶縁性の基材表面に触媒を付
与することを特徴とする、無電解めっき触媒の付与方法
である。
That is, the present invention provides insulation by applying a solution containing an SN form and/or chelate of a silane coupling agent and a transition metal ion to the surface of an insulating base material, heat treatment, and further reduction treatment. This is a method for applying a catalyst for electroless plating, which is characterized by applying a catalyst to the surface of a solid base material.

本発明における絶縁性基材は、ガラス、セラミック、無
機の電気絶縁体、有機の電気絶縁体等であるが、本発明
の好ましい適用は、ガラス、またはセラミックの基材に
対してなされる。
Insulating substrates in the present invention include glass, ceramics, inorganic electrical insulators, organic electrical insulators, etc., but the present invention is preferably applied to glass or ceramic substrates.

本発明におけるシラン系カップリング剤は従来公知のシ
ランカブプリング剤のうち、遷移金属とキレートを形成
しうる官能基、または遷移金属に対しての配位子を分子
内に仔するシラン系カップリング剤であればよいが、好
ましくは、一般式X、Si  (CH,)nY  −−
−(S)〔ただし、X:ハロゲン元素またはCI〜C6
で表わされる炭素数が1から6個までのアルコキシu、
nはn≧1で示される数。Yは、′ei索原子を1個以
上含む直鎖または環状の配位子またはキレートを形成し
得る官能基、硫黄原子を1個以上含む直鎖または環状の
配位子またはキレートを形成し得る官能基、酸素原子を
1個以上含む直鎖または環状の配位子並びにキレートを
形成し得る官能基、燐原子を1個以上含む直鎖または環
状の配位子並びにキレートを形成し得る官能基、および
これらの特徴を併せ持つ直鎖または環状の配位子または
キレートを形成し得る官能基。を表わす〕で表されるシ
ラン系カップリング剤である。
The silane coupling agent in the present invention is a silane coupling agent that has a functional group capable of forming a chelate with a transition metal or a ligand for a transition metal in the molecule, among conventionally known silane coupling agents. Preferably, the general formula X, Si (CH,)nY --
-(S) [However, X: halogen element or CI to C6
Alkoxy u having 1 to 6 carbon atoms, represented by
n is a number represented by n≧1. Y is a functional group capable of forming a linear or cyclic ligand or chelate containing one or more ``ei group atoms, or a linear or cyclic ligand containing one or more sulfur atoms or capable of forming a chelate. A functional group, a linear or cyclic ligand containing one or more oxygen atoms, and a functional group capable of forming a chelate, a linear or cyclic ligand containing one or more phosphorus atoms, and a functional group capable of forming a chelate. , and functional groups that can form linear or cyclic ligands or chelates that have these characteristics. This is a silane coupling agent represented by

本発明に用いる遷位金届とは、ln族元素、第5周期と
第6周期の8族元素およびコバルト、二フケルをいう。
The transition metal notification used in the present invention refers to ln group elements, 8th group elements in the 5th and 6th periods, cobalt, and difluoride.

塩としては、その塩酸塩、硫酸塩、硝酸塩、過塩素酸塩
などやさらに錯化合物などがある。
Examples of salts include hydrochlorides, sulfates, nitrates, perchlorates, and complex compounds.

本発明の還元処理とは、液相、気相、同相あるいはこれ
らより成る多相系において本発明のシラン系カブプリン
グ剤を配位子とする遷移金ry41it体またはキレー
トの還元可能な処理をいい、具体的には液相系における
還元剤処理、光還元反応あるいは、気体による還元など
をいう。
The reduction treatment of the present invention refers to a reducible treatment of a transition gold ry41it body or chelate using the silane-based coupling agent of the present invention as a ligand in a liquid phase, a gas phase, the same phase, or a multiphase system consisting of these, Specifically, it refers to treatment with a reducing agent in a liquid phase system, photoreduction reaction, or reduction by gas.

本発明の還元処理において、ヒドリドホウ酸、ヒドリド
ホウ酸塩、ヒドリドホウ酸誘導体、アルキルホウ酸、ア
ルキルホウ酸塩、アルキルホウ酸誘導体、次亜リン酸、
次亜リン酸塩、次亜リン酸誘導体の化合物群から選ばれ
た1!lまたは2種以上によって、なされる還元処理が
好ましい。
In the reduction treatment of the present invention, hydridoboric acid, hydridoboric acid salts, hydridoboric acid derivatives, alkylboric acids, alkylborates, alkylboric acid derivatives, hypophosphorous acid,
1 selected from the compound group of hypophosphite and hypophosphorous acid derivatives! Preferably, the reduction treatment is performed using one or more of the following.

本発明のセラミックスとしては、酸化物系、非酸化物系
であるかを問わない。代表例を挙げれば、アルミナ、珪
酸塩、ベリリア、チタン酸塩、ジルコニア、マグネシア
、カルシア、炭化珪素、窒化アルミニウムあるいはこれ
らの混合物などである。シラン系カップリング剤の末端
シラン基の珪素との間にシリルエーテル結合を生成させ
るためには、表面酸化届が吸行酸索の単ぶ子府ですら可
能であり、本方法は鉄系、アルミニウム系などの金属、
さらには有機物層を最外層にもつ基材にも適用可能であ
る。
The ceramics of the present invention may be oxide-based or non-oxide-based. Typical examples include alumina, silicates, beryllia, titanates, zirconia, magnesia, calcia, silicon carbide, aluminum nitride, or mixtures thereof. In order to generate a silyl ether bond between the terminal silane group of the silane coupling agent and the silicon, surface oxidation is possible even with a single base of the suction acid cable, and this method is suitable for iron-based, Metals such as aluminum,
Furthermore, it is also applicable to base materials having an organic layer as the outermost layer.

本発明のガラスとしては、硅素、燐、硼素、ゲルマニウ
ム、砒素、アンチモン、ビスマス、/<ナジウムなどの
イオンを網目主成分として、アルカリ金属イオン、アル
カリ土類金属イオン、亜鉛、カドミウム、鉛、アルミニ
ウムなどを修飾イオンとするものを挙げることができる
The glass of the present invention includes ions such as silicon, phosphorus, boron, germanium, arsenic, antimony, bismuth, and/or sodium as the main component of the network, and alkali metal ions, alkaline earth metal ions, zinc, cadmium, lead, and aluminum. Examples include those with modified ions such as

本発明をさらに詳細に説明するために以下に実施例をあ
げるが、本発明はこれら実施例に何ら限定されるもので
はない。
Examples will be given below to explain the present invention in more detail, but the present invention is not limited to these Examples in any way.

〔実施例1〕 触媒化液(^)および還元処理液(1)として下記の組
成のものを調整した。
[Example 1] A catalytic solution (^) and a reduction treatment solution (1) having the following compositions were prepared.

触媒化液(A):1 x 10−’ MPd” 、2x
 10−’MN−(2−アミノエチル)−3−アミノプ
ロピルトリメトキシシランおよび0 、1 M I−I
 C(。
Catalyzed liquid (A): 1 x 10-'MPd'', 2x
10-'MN-(2-aminoethyl)-3-aminopropyltrimethoxysilane and 0,1M I-I
C(.

還元処理液(B):1重量%テトラヒドリドホウ酸ナト
リウムおよび0.5 mm%水酸化ナトリウム。
Reduction treatment solution (B): 1% by weight sodium tetrahydroborate and 0.5 mm% sodium hydroxide.

アルミナを96%含存する白色セラミック基板を10f
ffR%水准化ナトリウム水溶液中で5分間超音波洗浄
し、水洗後さらに20容量%の硫酸中に5分間浸漬し、
水洗後風屯した。この基板にドライ書フィルム法により
、腺間腺幅500μmのストリップ0ライ/のレジスト
膜(ネガ・パターン)を形成した。このバターニングを
行った基板を0.1M塩酸水溶液に5分間浸漬した後、
上記触媒化液(^)に1分間浸漬、風屹し、次いで12
0℃で10分間の熱処理を行った。さらに上記還元処理
液(II)に2分間浸漬した。次にレジスト膜を5iI
t量%の水酸化ナトリウム水溶液で!II !!1後水
洗いし無電解銅めっき浴に浸漬した。無電解銅めっき浴
は、0.04M−CuSO,,0,08M・EDTA・
2Na10.00M−11CIIOおよび0 、01 
M −K 4  (F e (CN )o )から成る
もので、91112.5、液温28℃にて約0.6μm
の皮膜を得た。形成された銅皮膜のパターンについて目
視観察をおこなった。結果を表1に示す。
10f white ceramic substrate containing 96% alumina
Ultrasonic cleaning for 5 minutes in ffR% sodium hydrate aqueous solution, and after washing with water, immersion in 20% by volume sulfuric acid for 5 minutes,
After washing with water, it was air conditioned. A resist film (negative pattern) with a strip width of 500 .mu.m and a strip size of 0 lines/gland was formed on this substrate by a dry writing film method. After immersing the patterned substrate in a 0.1M hydrochloric acid aqueous solution for 5 minutes,
Immerse in the above catalytic solution (^) for 1 minute, air dry, and then
Heat treatment was performed at 0° C. for 10 minutes. Furthermore, it was immersed in the above-mentioned reduction treatment solution (II) for 2 minutes. Next, apply a resist film of 5iI.
With t% sodium hydroxide aqueous solution! II! ! After that, it was washed with water and immersed in an electroless copper plating bath. The electroless copper plating bath was 0.04M-CuSO, 0.08M・EDTA・
2Na10.00M-11CIIO and 0,01
It is composed of M-K 4 (F e (CN) o ), 91112.5, approximately 0.6 μm at a liquid temperature of 28°C.
A film was obtained. The pattern of the formed copper film was visually observed. The results are shown in Table 1.

〔実施例2〕 触媒化液(C)として下記の組成のものを調整した。[Example 2] A catalytic liquid (C) having the following composition was prepared.

触媒化液(C): I X 1 (I’ MP d”お
よび4X10’−’M3−アミノプロピルトリエトキシ
シランおよび0.1MICに。
Catalyzing Fluid (C): IX1 (I'MP d'' and 4X10'-'M3-aminopropyltriethoxysilane and to 0.1 MIC.

実施例1と同じ手順に従って洗浄、バター/二/グ、酸
処理を行った基板を触媒化液(C)と還元処理m(B)
(前出)を用いて実施例1と同じ手順に従って触媒付与
を行い、レジスト剥離後、実施例1に記αの無電解銅め
っき浴に浸漬した。無電解銅めっきは、実施例1!2α
の条件で行い、形成された銅皮膜のパターンについて目
視観察をおこなった。結果を表1に示す。
Following the same procedure as in Example 1, the substrate was washed, buttered, treated with acid, and then treated with a catalytic solution (C) and reduced (B).
Catalyst application was carried out according to the same procedure as in Example 1 using (mentioned above), and after the resist was removed, it was immersed in the electroless copper plating bath α described in Example 1. Electroless copper plating is Example 1!2α
The pattern of the formed copper film was visually observed. The results are shown in Table 1.

〔実施例3〕 還元処理液(D)として下記の組成のものをff1a!
!した。
[Example 3] A reduction treatment liquid (D) having the following composition was used as ff1a!
! did.

還元処理液(D): 0 、I MN a P I−1
,0,および0 、 f M CHs COON a−
実施例1と同手順に従って洗浄、バターニング、酸処理
を行った基板を触媒化液(^)と還元処理、&(D)を
用いて実施例1と同じ手順に従って触媒付与を行い、レ
ジスト?す離後、実施例1に記αの無電解銅めっき浴に
浸漬した。無電解銅めっきは、実施例1記αの条件で行
い、形成された銅皮膜のパターンについて目視観察をお
こなった。結果を表1に示す。
Reduction treatment liquid (D): 0, I MN a PI-1
, 0, and 0, f M CHs COON a-
A substrate that had been cleaned, buttered, and acid-treated according to the same procedure as in Example 1 was subjected to reduction treatment with a catalytic solution (^), and a catalyst was applied using & (D) according to the same procedure as in Example 1, and resist? After separation, it was immersed in the electroless copper plating bath α described in Example 1. Electroless copper plating was performed under the conditions α in Example 1, and the pattern of the formed copper film was visually observed. The results are shown in Table 1.

〔実施例4〕 表面粗度の非常に小さいガラス製プレパラート(Ra=
0.005、Natsunami glass Cor
p、製1Sllll)を水洗後、実施例1と同じ手順に
従ってバターニング、酸処理を行ない、触媒化液(八)
と還元処理液(B)を用いて実施例1と同じ手順に従っ
て触媒付与を行い、レジスト?す離後、実施例1に記載
の無電解銅めっき浴に浸漬した。無電解銅めっきは、実
施例1記αの条件で行い、形成された銅皮膜のパターン
について目視観察をおこなった。結果を表1に示す。
[Example 4] Glass preparation with very small surface roughness (Ra=
0.005, Natsunami glass Cor
After washing with water, buttering and acid treatment were carried out according to the same procedure as in Example 1, and catalytic liquid (8) was obtained.
Catalyst application was carried out according to the same procedure as in Example 1 using the reduction treatment liquid (B) and the resist? After separation, it was immersed in the electroless copper plating bath described in Example 1. Electroless copper plating was performed under the conditions α in Example 1, and the pattern of the formed copper film was visually observed. The results are shown in Table 1.

〔比較例1〕 実施例1と同じセラミック基板を用いて、実施例1と同
一の手順に従って洗浄、バターニングを行った。この基
板を市販の無電解めっき用の触媒化薬品を用いて増感処
理し、レジスト?り離後、ホウ弗化水素酸系の活性化処
理を行い実施例1に記載の無電解銅めっき浴に浸漬した
。市販の無1[を解鍍金用の触媒化薬品として、〔日立
化成工業■〕製のコンディショナー:C0ND−201
、増感剤:llS−101Bおよび密行促進剤:ADr
’−201を用い、カタログ記αの条件で前処理を行っ
た。無電解銅めっきは、実施例1に記αの条件で行い、
形成された銅皮膜のパターンについて目視観察をおこな
った。結果を表1に示す。
[Comparative Example 1] Using the same ceramic substrate as in Example 1, cleaning and buttering were performed according to the same procedure as in Example 1. This substrate is sensitized using a commercially available catalytic chemical for electroless plating, and resist is formed. After separation, it was subjected to a borofluoric acid-based activation treatment and immersed in the electroless copper plating bath described in Example 1. Conditioner manufactured by Hitachi Chemical Co., Ltd.: C0ND-201 was used as a catalytic agent for deplating.
, sensitizer: llS-101B and secretion promoter: ADr
Pretreatment was performed using '-201 under the conditions listed in the catalog α. Electroless copper plating was performed under the conditions α described in Example 1,
The pattern of the formed copper film was visually observed. The results are shown in Table 1.

〔比較例2〕 実施例4と同じガラス製プレパラートを水洗後バターニ
ングを行った。比較例1に記αしたと同じ手順で触媒化
を行い、実施例1記載の無電解銅めっき浴に浸漬した。
[Comparative Example 2] The same glass preparation as in Example 4 was washed with water and then buttered. Catalyticization was performed in the same procedure as described in Comparative Example 1, and the sample was immersed in the electroless copper plating bath described in Example 1.

無電解銅めっきは、実施例1に記載の条件で行い、形成
された銅皮膜の/fターフについて目視観察をおこなっ
た。結果を表1に示す。
Electroless copper plating was performed under the conditions described in Example 1, and the /f turf of the formed copper film was visually observed. The results are shown in Table 1.

〔比較例3〕 実施例1と同じセラミック基板を用いて、実施例1と同
一の手順に従って洗浄、バターニングを行なった。この
バターニングを行った基板を、実施例1と同一の手順に
従って0.1Mm酸水溶液に5分間浸漬した後、上記触
媒化液(^)に1分間浸漬、風位し、次いで150℃で
10分間の熱処理を行った。水洗後、実施例1に記αの
無電解銅めっき浴に浸漬した。無電解めっきは、実施例
1に記αの条件で行い、形成された銅皮膜のパターンに
ついて目視t!察をおこなった。結果を表1に示す。
[Comparative Example 3] Using the same ceramic substrate as in Example 1, cleaning and buttering were performed according to the same procedure as in Example 1. The substrate subjected to this buttering was immersed in a 0.1 Mm acid aqueous solution for 5 minutes according to the same procedure as in Example 1, then immersed in the above catalytic solution (^) for 1 minute, air-cooled, and then heated at 150°C for 10 minutes. Heat treatment was performed for 1 minute. After washing with water, it was immersed in the electroless copper plating bath α described in Example 1. Electroless plating was performed under the conditions α described in Example 1, and the pattern of the formed copper film was visually observed at t! I conducted an investigation. The results are shown in Table 1.

以  下  余  白 表    1 ネ) 腺太り 基板にドライフィルム法により形成したレジスト・バタ
ー7の線幅に対して、最終的に無電解銅皮膜より成るパ
ターンの線幅を比較した。
Table 1 (Table 1) The line width of the final pattern made of electroless copper film was compared with the line width of Resist Butter 7, which was formed on a thick substrate by the dry film method.

銅ふり バター7部に付与された触媒が、後処理や無電解めっき
初期に周辺部へ移行した結果として不規則な形状で粗く
薄い銅皮痕がパターン周辺部に拡がるIA象を観察した
As a result of the catalyst applied to 7 parts of copper sprinkle butter being transferred to the periphery during post-processing and the initial stage of electroless plating, an IA phenomenon was observed in which irregularly shaped, coarse and thin copper skin traces spread around the pattern periphery.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によりセラミックスおよびガラス等の基材
表面に高接社力で触媒金属を付与することが可能となっ
た。本発明の方法は、例えば、セラミック・プリント配
線板、湿式めっき法による磁気ディスク、磁気ヘッド、
半導体デバイスや表示デバイスへの電極形成など多様な
用途に応用することができる。
By the method of the present invention, it has become possible to apply catalytic metals to the surfaces of substrates such as ceramics and glass with high contact force. The method of the present invention can be applied to, for example, ceramic printed wiring boards, magnetic disks by wet plating, magnetic heads,
It can be applied to a variety of applications such as forming electrodes in semiconductor devices and display devices.

Claims (4)

【特許請求の範囲】[Claims] (1)シラン系カップリング剤と遷移金属イオンとの錯
体および/またはキレートを含む溶液を、絶縁性の基材
表面に付与し、熱処理を行い、さらに還元処理を施すこ
とにより、絶縁性の基材表面に触媒を付与することを特
徴とする、無電解めっき触媒の付与方法。
(1) A solution containing a complex and/or chelate of a silane coupling agent and a transition metal ion is applied to the surface of an insulating base material, heat-treated, and further reduced to form an insulating base material. A method for applying an electroless plating catalyst, which is characterized by applying a catalyst to the surface of a material.
(2)絶縁性基材がガラスまたはセラミックである特許
請求の範囲第1項記載の無電解めっき触媒の付与方法。
(2) The method for applying an electroless plating catalyst according to claim 1, wherein the insulating base material is glass or ceramic.
(3)シラン系カップリング剤が下記一般式〔S〕で示
される化合物の1種または2種以上である特許請求の範
囲第1項記載の無電解めっき触媒の付与方法。 一般式 X_3Si(CH_2)_nY−−−−−〔S〕 〔ただし、X:ハロゲン元素またはC_1〜C_6のア
ルコキシ基。nはn≧1で示される数。Yは、遷移金属
とキレートを形成しうる官能基、または、遷移金属に配
位結合をしうる機能を有する基。を表す。〕
(3) The method for applying an electroless plating catalyst according to claim 1, wherein the silane coupling agent is one or more compounds represented by the following general formula [S]. General formula X_3Si(CH_2)_nY---[S] [However, X: a halogen element or an alkoxy group of C_1 to C_6. n is a number represented by n≧1. Y is a functional group capable of forming a chelate with a transition metal, or a group having a function capable of forming a coordinate bond with a transition metal. represents. ]
(4)還元処理が下記化合物群〔D〕から選ばれた1種
または2種以上によってなされる特許請求の範囲第1項
記載の無電解めっき触媒の付与方法。 化合物群 (ヒドリドホウ酸、ヒドリドホウ酸塩、ヒドリドホウ酸
誘導体、アルキルホウ酸、アルキルホウ酸塩、アルキル
ホウ酸誘導体、次亜リン酸、次亜リン酸塩次亜リン酸誘
導体。)−−−〔D〕
(4) The method for applying an electroless plating catalyst according to claim 1, wherein the reduction treatment is performed using one or more selected from the following compound group [D]. Compound group (hydridoboric acid, hydridoboric acid salt, hydridoboric acid derivative, alkylboric acid, alkylborate, alkylboric acid derivative, hypophosphorous acid, hypophosphite hypophosphorous acid derivative)---[D]
JP6227587A 1987-03-16 1987-03-16 Method for providing electroless plating catalyst Pending JPS63227784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6227587A JPS63227784A (en) 1987-03-16 1987-03-16 Method for providing electroless plating catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6227587A JPS63227784A (en) 1987-03-16 1987-03-16 Method for providing electroless plating catalyst

Publications (1)

Publication Number Publication Date
JPS63227784A true JPS63227784A (en) 1988-09-22

Family

ID=13195429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6227587A Pending JPS63227784A (en) 1987-03-16 1987-03-16 Method for providing electroless plating catalyst

Country Status (1)

Country Link
JP (1) JPS63227784A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616230A (en) * 1993-05-24 1997-04-01 Okuno Chemical Industries Co., Ltd. Method for direct-electroplating an electrically nonconductive substrate
WO1998011273A1 (en) * 1996-09-09 1998-03-19 Robert Bosch Gmbh Substrates seeded with precious metal salts, process for producing the same and their use
WO2001049898A1 (en) * 2000-01-07 2001-07-12 Nikko Materials Co., Ltd. Method for metal plating, pre-treating agent, and semiconductor wafer and semiconductor device using the same
WO2001081652A1 (en) * 2000-04-25 2001-11-01 Nikko Materials Co., Ltd. Pretreating agent for metal plating
JP2002047573A (en) * 2000-08-01 2002-02-15 Nikko Materials Co Ltd Pretreatment agent for silver plating and silver plating method
WO2004108986A1 (en) * 2003-06-09 2004-12-16 Nikko Materials Co., Ltd. Method for electroless plating and metal-plated article
US7045461B2 (en) 2000-01-07 2006-05-16 Nikkon Materials Co., Ltd. Metal plating method, pretreatment agent, and semiconductor wafer and semiconductor device obtained using these
JPWO2008032839A1 (en) * 2006-09-15 2010-01-28 宇部日東化成株式会社 Metal layer-coated substrate and method for producing the same
JPWO2010029635A1 (en) * 2008-09-11 2012-02-02 パイオニア株式会社 Method for forming metal wiring and electronic component provided with metal wiring

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616230A (en) * 1993-05-24 1997-04-01 Okuno Chemical Industries Co., Ltd. Method for direct-electroplating an electrically nonconductive substrate
WO1998011273A1 (en) * 1996-09-09 1998-03-19 Robert Bosch Gmbh Substrates seeded with precious metal salts, process for producing the same and their use
US6274241B1 (en) 1996-09-09 2001-08-14 Robert Bosch Gmbh Substrates seeded with precious metal salts, process for producing the same and their use
WO2001049898A1 (en) * 2000-01-07 2001-07-12 Nikko Materials Co., Ltd. Method for metal plating, pre-treating agent, and semiconductor wafer and semiconductor device using the same
US7045461B2 (en) 2000-01-07 2006-05-16 Nikkon Materials Co., Ltd. Metal plating method, pretreatment agent, and semiconductor wafer and semiconductor device obtained using these
WO2001081652A1 (en) * 2000-04-25 2001-11-01 Nikko Materials Co., Ltd. Pretreating agent for metal plating
US6780467B2 (en) 2000-04-25 2004-08-24 Nikko Materials Co., Ltd. Plating pretreatment agent and metal plating method using the same
JP2002047573A (en) * 2000-08-01 2002-02-15 Nikko Materials Co Ltd Pretreatment agent for silver plating and silver plating method
WO2004108986A1 (en) * 2003-06-09 2004-12-16 Nikko Materials Co., Ltd. Method for electroless plating and metal-plated article
US8182873B2 (en) 2003-06-09 2012-05-22 Nippon Mining & Metals Co., Ltd. Method for electroless plating and metal-plated article
JPWO2008032839A1 (en) * 2006-09-15 2010-01-28 宇部日東化成株式会社 Metal layer-coated substrate and method for producing the same
JPWO2010029635A1 (en) * 2008-09-11 2012-02-02 パイオニア株式会社 Method for forming metal wiring and electronic component provided with metal wiring

Similar Documents

Publication Publication Date Title
US4259409A (en) Electroless plating process for glass or ceramic bodies and product
US4478883A (en) Conditioning of a substrate for electroless direct bond plating in holes and on surfaces of a substrate
US6780467B2 (en) Plating pretreatment agent and metal plating method using the same
KR20090073091A (en) Base material covered with metal layer and process for producing the same
JPS63227784A (en) Method for providing electroless plating catalyst
KR102440121B1 (en) Method for manufacturing a printed wiring board
CN1910305B (en) Pretreating agent for electroless plating, method of electroless plating using the same and product of electroless plating
WO2004024984A1 (en) Method for metal plating and pre-treating agent
KR20120081080A (en) Solution and method for activating the oxidized surface of a semiconductor substrate
JPH05140756A (en) Hydroprimer for metal treatment of surface of base material
JPH0213898B2 (en)
JP3389858B2 (en) Metal-coated powder and method for producing the same
JP2013129855A (en) Pretreatment agent for use in electroless plating, and pretreatment method for use in electroless plating employing the same
JPH04235285A (en) Novel method for seeding and plating polyimide
US4812202A (en) Process for metal-plating ceramic surfaces
JPH01500913A (en) Method for metallization of non-conductive substrates
JP2001295058A (en) Method for manufacturing metallized substrate
KR101507155B1 (en) Method of Preparing Ag Seed Layer for copper electroless ow Resistance Metal Line
JP4012968B2 (en) Electroless plating method and product on smooth substrate
JP4955878B2 (en) Method for selectively coating a ceramic surface area
JP3627796B2 (en) Method for producing polymer-coated powder
JP2000319541A (en) Production of metal-coated powder
JP3829903B2 (en) Method for producing conductive silica
JPS63217693A (en) Ceramic printed wiring board and manufacture of the same
RU2141931C1 (en) Method of applying metal coat on ceramic backings