JPS63227215A - Semiconductor switch circuit - Google Patents

Semiconductor switch circuit

Info

Publication number
JPS63227215A
JPS63227215A JP62061964A JP6196487A JPS63227215A JP S63227215 A JPS63227215 A JP S63227215A JP 62061964 A JP62061964 A JP 62061964A JP 6196487 A JP6196487 A JP 6196487A JP S63227215 A JPS63227215 A JP S63227215A
Authority
JP
Japan
Prior art keywords
voltage
current
resistor
switch circuit
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62061964A
Other languages
Japanese (ja)
Other versions
JPH0563051B2 (en
Inventor
Kuniaki Goto
後藤 邦章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62061964A priority Critical patent/JPS63227215A/en
Publication of JPS63227215A publication Critical patent/JPS63227215A/en
Publication of JPH0563051B2 publication Critical patent/JPH0563051B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To shorten the switching time of a switch circuit, by using a first MOSFET conduction-controlled by a voltage applied on a control terminal, and the same conductive type second and third MOSFETs conduction-controlled respectively by the voltage generated by a voltage generating means. CONSTITUTION:When a control voltage exceeding the threshold voltage of a FET21 is applied between the control terminals 13 and 14, the FET21 is turned ON, and a current mirror circuit 20 goes to an operating state. As a result, a current flows from the terminal of positive power potential Vcc to a resistor 24, and the voltage is generated between both ends of the resistor 24. The current which flows in the resistor 24 is a constant current by the current mirror circuit 20, and the current value can be set arbitrarily. Consequently, it is possible to turn ON FETs 22 and 23 even by setting the resistor 24 at a small resistance value. In such a way, it is possible to discharge electric charge in the gate capacitors of the FETs 22 and 23 comparatively faster than ever, and to shorten the switching time from ON to OFF of the switch circuit.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、通信機器や汎用電子機器等に使用される半
導体スイッチ回路に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor switch circuit used in communication equipment, general-purpose electronic equipment, and the like.

(従来の技術) 近年、通信機器や汎用電子機器等にはメカニカルリレー
スイッチに代って、半導体スイッチ回路が多く用いられ
ている。この半導体スイッチ回路としては、SCR(サ
イリスタ)や MOSFET等を利用したものがその代表として掲げら
れる。
(Prior Art) In recent years, semiconductor switch circuits have been increasingly used in communications equipment, general-purpose electronic equipment, and the like instead of mechanical relay switches. Representative semiconductor switch circuits include those using SCRs (thyristors), MOSFETs, and the like.

第4図にMOSFETを用いた半導体スイッチ回路の一
例を示す。このスイッチ回路には、スイッチ端子11.
12に接続される外部回路と、このスイッチ回路のスイ
ッチ制御端子13.14に接続される制御回路との間の
絶縁のために、ホトカプラ15が設けられている。
FIG. 4 shows an example of a semiconductor switch circuit using MOSFETs. This switch circuit includes switch terminals 11.
A photocoupler 15 is provided for insulation between an external circuit connected to 12 and a control circuit connected to switch control terminals 13, 14 of this switch circuit.

このスイッチ回路では、制御端子13.14に接続され
る制御回路により発光ダイオード15aに電流■1が注
入されると、受光ダイオード15bの光起電力によって
電流■2が発生され、これによって抵抗16の両端間に
電圧が発生する。この電圧がN型MO8FET17.1
8の各しきい値電圧を越えると、FET17.18がそ
れぞれオン状態となり、スイッチ端子11とスイッチ端
子12が短絡される。これがこのスイッチ回路のオン状
態となる。
In this switch circuit, when current ■1 is injected into the light emitting diode 15a by the control circuit connected to the control terminals 13 and 14, current ■2 is generated by the photovoltaic force of the light receiving diode 15b, and this causes A voltage is generated between both ends. This voltage is N-type MO8FET17.1
When each threshold voltage of 8 is exceeded, FETs 17 and 18 are respectively turned on, and switch terminal 11 and switch terminal 12 are short-circuited. This turns the switch circuit on.

しかしながら、発光ダイオード15aから受光ダイオー
ド15bへの変換効率はかなり低いので、FET17.
18をそれぞれオンさせるためには抵抗16の抵抗値を
充分に大きくしなければならない。
However, since the conversion efficiency from the light emitting diode 15a to the light receiving diode 15b is quite low, the FET 17.
In order to turn on each of the resistors 18, the resistance value of the resistor 16 must be made sufficiently large.

ところが、このように抵抗16の抵抗値を大きく設定す
ると、FET17.18のゲート容量にチャージされた
電荷が放電されにくくなり、スイッチ回路のオンからオ
フへの切替え時間が長くかかかり、スイッチング特性が
悪くなる欠点がある。
However, when the resistance value of the resistor 16 is set to a large value in this way, it becomes difficult to discharge the electric charge charged in the gate capacitance of the FET 17, 18, and it takes a long time to switch the switch circuit from on to off, which deteriorates the switching characteristics. There are drawbacks that make it worse.

また、ホトカプラ15を使用した構造のため、スイッチ
回路全体を1チツプ上に形成することができず、コスト
アップの原因につながっていた。
Further, since the structure uses the photocoupler 15, the entire switch circuit cannot be formed on one chip, leading to an increase in cost.

(発明が解決しようとする問題点) この発明は上記のような点に鑑みなされたち・ので、従
来の半導体スイッチ回路ではオンからオフへの切替え時
間が長くかかりスイッチング特性が悪い点、またスイッ
チ回路の1チツプ化が不可能である点を改善し、高速ス
イッチングが可能で、しかも1チツプにて形成すること
ができる半導体スイッチ回路を提供することを目的とす
る。
(Problems to be Solved by the Invention) This invention has been made in view of the above-mentioned points.Therefore, in the conventional semiconductor switch circuit, it takes a long time to switch from on to off, resulting in poor switching characteristics. It is an object of the present invention to provide a semiconductor switch circuit which is capable of high-speed switching and which can be formed on a single chip.

(問題点を解決するための手段と作用)この発明による
半導体スイッチ回路にあっては、制御端子に印加される
電圧によって導通制御される第1のMOSFETと、こ
の第1のMOSFETの導通状態に基づいて電流供給状
態が111111されるカレントミラー回路と、このカ
レントミラー回路の電流に応じた電圧を発生する電圧発
生手段と、スイッチ端子間に各ドレイン・ソース間の電
流通路が直列接続され、前記電圧発生手段によって発生
される電圧によってそれぞれ導通IIIIlされる互い
に同一導電型の第2および第3のMOSFETとを具備
したものである。
(Means and effects for solving the problem) The semiconductor switch circuit according to the present invention includes a first MOSFET whose conduction is controlled by a voltage applied to a control terminal, and a conduction state of the first MOSFET. A current mirror circuit whose current supply state is set to 111111 based on the current, a voltage generating means that generates a voltage according to the current of the current mirror circuit, and a current path between each drain and source are connected in series between the switch terminals. The MOSFET is provided with second and third MOSFETs of the same conductivity type, each of which is rendered conductive by the voltage generated by the voltage generating means.

上記構成の半導体スイッチ回路にあっては、前記カレン
トミラー回路の電流値に応じた電圧が電圧発生手段で発
生されるので、そのカレントミラー回路の電流値を、大
きく設定することにより、前記電圧発生手段の抵抗値を
小さくしても前記第2および第3のMOSFETを充分
にオンさせることができる。
In the semiconductor switch circuit having the above configuration, since the voltage generation means generates a voltage according to the current value of the current mirror circuit, the voltage can be generated by setting the current value of the current mirror circuit to a large value. Even if the resistance value of the means is made small, the second and third MOSFETs can be turned on sufficiently.

したがって、前記第2および第3の MOSFETの各ゲート容量にチャージされた電荷は従
来に比し放電され易くなり、高速スイッチングが可能と
なる。
Therefore, the charges charged in the gate capacitances of the second and third MOSFETs are more easily discharged than in the past, and high-speed switching becomes possible.

(実施例) 以下、図面を参照してこの発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図にこの発明の一実施例に係わる半導体スイッチ回
路を示す。このスイッチ回路は、第4図の従来の回路で
用いられていたホトカプラの代わりに、カレントミラー
回路20と、制御端子13.14間に供給される制御電
圧に基づいてこのカレントミラー回路20の通電を制御
するN1MO8FET21とを設けたものである。
FIG. 1 shows a semiconductor switch circuit according to an embodiment of the present invention. This switch circuit energizes the current mirror circuit 20 based on the control voltage supplied between the current mirror circuit 20 and the control terminals 13 and 14 instead of the photocoupler used in the conventional circuit of FIG. A N1MO8FET21 is provided to control the .

カレントミラー回路20はP型MO8FET20aとP
型MO8FET20bとから構成されるものであり、こ
れらのF E T 20aおよび20bの各ソースは正
電源電位ycc端子に共通接続され、それらの各ベース
は相互接続されている。また、FET20aのドレイン
とゲートは相互接続されており、その接続点にはN型M
O8FET21のドレインが接続されている。
The current mirror circuit 20 consists of a P-type MO8FET 20a and a P-type MO8FET 20a.
The sources of these FETs 20a and 20b are commonly connected to the positive power supply potential ycc terminal, and their bases are interconnected. In addition, the drain and gate of the FET 20a are interconnected, and the connection point has an N-type M
The drain of O8FET21 is connected.

外部回路の通電状態を制御するためのスイッチ端子11
と12との闇には、N型MO8FET22.23の各電
流通路が直列接続されている。これらのFET22およ
び23の各ゲートは、カレントミラー回路20の電流出
力端となるFET20bのドレインに共通接続されてお
り、またそれらの各ソース・ゲート間には電圧発生用の
抵抗24が共通に接続されている。
Switch terminal 11 for controlling the energization state of the external circuit
The current paths of N-type MO8FETs 22 and 23 are connected in series between and 12. The gates of these FETs 22 and 23 are commonly connected to the drain of FET 20b, which is the current output end of the current mirror circuit 20, and a voltage generating resistor 24 is commonly connected between their respective sources and gates. has been done.

このような構成の半導体スイッチ回路にあっては、1i
IIIl端子13.1411k: F E T21のし
きい値電圧以上の制御電圧が印加されるとFET21が
オンとなり、カレントミラー回路20が動作状態となる
In a semiconductor switch circuit having such a configuration, 1i
IIIl terminal 13.1411k: When a control voltage equal to or higher than the threshold voltage of FET21 is applied, FET21 is turned on, and current mirror circuit 20 is brought into operation.

この結果、正電源電位Vcc端子から抵抗24に、電流
が流入されて、抵抗24の両端間に電圧が発生する。
As a result, a current flows into the resistor 24 from the positive power supply potential Vcc terminal, and a voltage is generated across the resistor 24.

この抵抗24の両端間に発生する電圧値が、N型MO8
FET22.23のしきい値電圧以上であれば、FET
22.23が共にオンとなり、スイッチ端子11と12
間が導通されてスイッチ回路がオン状態となる。
The voltage value generated across this resistor 24 is
If it is above the threshold voltage of FET22.23, the FET
22 and 23 are both turned on, and switch terminals 11 and 12
The switch circuit is turned on.

この場合、抵抗24に流入される電流はカレントミラー
回路20による定電流であり、その電流値は任意に設定
することができる。したがって、抵抗24の抵抗値を小
さく設定しても、FET22.23を充分にオンさせる
ことが可能となる。
In this case, the current flowing into the resistor 24 is a constant current generated by the current mirror circuit 20, and the current value can be set arbitrarily. Therefore, even if the resistance value of the resistor 24 is set to a small value, it is possible to sufficiently turn on the FETs 22 and 23.

このように抵抗24の抵抗値を小さく設定でき′ること
によって、FET22.23のゲート容量にチャージさ
れた電荷を従来に比し速く放電させることができ、スイ
ッチ回路のオンからオフへの切替え時間を短縮すること
ができる。
By setting the resistance value of the resistor 24 to a small value in this way, the charge charged in the gate capacitance of the FETs 22 and 23 can be discharged faster than before, and the switching time from on to off of the switch circuit can be reduced. can be shortened.

また、このスイッチ回路にあっては、従来のようにホト
カプラを使用せずM’OS F’E Tだけでスイッチ
回路を構成しているため、このスイッチ回路全体を1チ
ツプ上に形成することができ、製造コストの低減化が可
能となる。
In addition, this switch circuit does not use photocouplers as in the past, but instead consists of only M'OS F'ETs, making it possible to form the entire switch circuit on one chip. This makes it possible to reduce manufacturing costs.

また、このようにスイッチ回路全体を1チツプで形成し
た場合にも、スイッチ端子11.12側と、制御端子1
3.14側との絶縁は、カレントミラー回路によって確
保され、スイッチ端子11.12の高圧が制御端子13
.14に直接影響することはない。
Also, even when the entire switch circuit is formed on one chip, the switch terminals 11 and 12 and the control terminal 1
Insulation from the 3.14 side is ensured by a current mirror circuit, and the high voltage at the switch terminals 11.12 is connected to the control terminal 13.
.. 14 will not be directly affected.

第2図にこの発明の第2の実施例に係わる半導体スイッ
チ回路を示す。このスイッチ回路は、第1図の回路で用
いた各MO8FETの導電型をそれぞれ入替えて構成し
たものである。
FIG. 2 shows a semiconductor switch circuit according to a second embodiment of the invention. This switch circuit is constructed by replacing the conductivity types of the MO8FETs used in the circuit of FIG. 1, respectively.

すなわち、カレントミラー回路20′ は、それぞれの
ソースに負電源電位c−vcc)が供給されるN型MO
8F E T20a ’ と20b’ニJ:りで構成す
れ、このカレントミラー回路の通電制御はP型MO8F
ET21’ により行われる。また、スイッチ端子11
と12との間には、P型MO8FET22’および23
′の各電流通路が直列接続されており、これらのF E
 T22’ 、23’は、それぞれのソース・ゲート閤
に共通接続された抵抗24の両端間に発生する電圧によ
って導通制御される。
In other words, the current mirror circuit 20' is an N-type MO whose respective sources are supplied with a negative power supply potential (c-vcc).
It is composed of 8F E T20a' and 20b' NiJ:, and the power supply control of this current mirror circuit is performed by P-type MO8F.
This is done by ET21'. In addition, the switch terminal 11
and 12 are P-type MO8FETs 22' and 23
' are connected in series, and these F E
The conduction of T22' and T23' is controlled by a voltage generated across a resistor 24 commonly connected to the respective source and gate terminals.

このような構成の半導体スイッチ回路においても、抵抗
24の抵抗値を小さく設定できるので、第1図の回路と
同様の効果を得ることができる。
Also in the semiconductor switch circuit having such a configuration, the resistance value of the resistor 24 can be set to a small value, so that the same effect as the circuit shown in FIG. 1 can be obtained.

第3図にこの発明の第3の実施例に係わる半導体スイッ
チ回路を示す。このスイッチ回路は、第1図の回路にお
いてP型MO8FET20a 、 20bにより構成さ
れていたカレントミラー回路20の代わりに、PNPバ
イポーラトランジスタ25a125bにより構成される
カレントミラー回路25を備えたものである。このよう
な構成にしても、抵抗24に流入する電流値を増加する
ことができ、第1図の回路と同様の効果を得ることがで
きる。
FIG. 3 shows a semiconductor switch circuit according to a third embodiment of the invention. This switch circuit includes a current mirror circuit 25 made up of PNP bipolar transistors 25a125b in place of the current mirror circuit 20 made up of P-type MO8FETs 20a and 20b in the circuit of FIG. Even with such a configuration, the value of the current flowing into the resistor 24 can be increased, and the same effect as the circuit shown in FIG. 1 can be obtained.

[発明の効果] 以上のようにこの発明によれば、スイッチ回路のオンか
らオフへの切替え時間を従来よりも短くできるため、高
速スイッチングが可能になると共に、スイッチ回路全体
を1チツプ上に形成できるようになり、その製造コスト
の低減が可能となる。
[Effects of the Invention] As described above, according to the present invention, the switching time from on to off of the switch circuit can be shortened compared to the conventional method, so high-speed switching is possible, and the entire switch circuit can be formed on one chip. This makes it possible to reduce manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係わる半導体スイッチ回
路を説明する回路図、第2図および第3図はそれぞれこ
の発明の他の実施例に係わる半導体スイッチ回路を説明
する回路図、第4図は従来の半導体スイッチ回路を説明
する回路図である。 11、12・・・スイッチ端子、13.14・・・制御
端子、20・・・カレントミラー回路、20a 、 2
0b・・・P型MO8F E T、 21.22.23
・N型MO8FET。 24・・・抵抗。
FIG. 1 is a circuit diagram illustrating a semiconductor switch circuit according to one embodiment of the present invention, FIGS. 2 and 3 are circuit diagrams illustrating a semiconductor switch circuit according to another embodiment of the present invention, and FIG. The figure is a circuit diagram illustrating a conventional semiconductor switch circuit. 11, 12...Switch terminal, 13.14...Control terminal, 20...Current mirror circuit, 20a, 2
0b...P type MO8F ET, 21.22.23
・N-type MO8FET. 24...Resistance.

Claims (1)

【特許請求の範囲】 制御端子に印加される電圧によって導通制御される第1
のMOSFETと、 この第1のMOSFETの導通状態に基づいて電流供給
状態が制御されるカレントミラー回路と、 このカレントミラー回路の電流に応じた電圧を発生する
電圧発生手段と、 スイッチ端子間に各ドレイン・ソース間の電流通路が直
列接続され、前記電圧発生手段によって発生される電圧
によってそれぞれ導通制御される互いに同一導電型の第
2および第3のMOSFETとを具備することを特徴と
する半導体スイッチ回路。
[Claims] The first conduction is controlled by the voltage applied to the control terminal.
MOSFET, a current mirror circuit whose current supply state is controlled based on the conduction state of this first MOSFET, voltage generating means that generates a voltage according to the current of this current mirror circuit, and each switch terminal between the switch terminals. A semiconductor switch comprising second and third MOSFETs of the same conductivity type, each of which has a drain-source current path connected in series and whose conduction is controlled by a voltage generated by the voltage generating means. circuit.
JP62061964A 1987-03-17 1987-03-17 Semiconductor switch circuit Granted JPS63227215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62061964A JPS63227215A (en) 1987-03-17 1987-03-17 Semiconductor switch circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62061964A JPS63227215A (en) 1987-03-17 1987-03-17 Semiconductor switch circuit

Publications (2)

Publication Number Publication Date
JPS63227215A true JPS63227215A (en) 1988-09-21
JPH0563051B2 JPH0563051B2 (en) 1993-09-09

Family

ID=13186372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62061964A Granted JPS63227215A (en) 1987-03-17 1987-03-17 Semiconductor switch circuit

Country Status (1)

Country Link
JP (1) JPS63227215A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10129353C1 (en) * 2001-06-19 2002-10-10 Siemens Ag Circuit topology for bi-directional energy transfer has error amplifier that provides control signal for MOSFET gate connections, compares output voltage actual values with desired value
JP2008131305A (en) * 2006-11-20 2008-06-05 Matsushita Electric Ind Co Ltd Semiconductor switch circuit
DE102004001175B4 (en) * 2003-03-06 2014-05-08 General Electric Co. Integrated high-voltage circuit for arrangements of ultrasonic transducers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010146U (en) * 1973-05-23 1975-02-01
JPS5211480U (en) * 1975-07-10 1977-01-26
JPS6014536U (en) * 1983-07-08 1985-01-31 横河電機株式会社 switch circuit
JPS61149429U (en) * 1985-03-06 1986-09-16
JPS61212916A (en) * 1985-03-18 1986-09-20 Nec Corp Current control circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL180895C (en) * 1978-11-30 1987-05-04 Philips Nv ANALOGUE DIGITAL CONVERTER.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010146U (en) * 1973-05-23 1975-02-01
JPS5211480U (en) * 1975-07-10 1977-01-26
JPS6014536U (en) * 1983-07-08 1985-01-31 横河電機株式会社 switch circuit
JPS61149429U (en) * 1985-03-06 1986-09-16
JPS61212916A (en) * 1985-03-18 1986-09-20 Nec Corp Current control circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10129353C1 (en) * 2001-06-19 2002-10-10 Siemens Ag Circuit topology for bi-directional energy transfer has error amplifier that provides control signal for MOSFET gate connections, compares output voltage actual values with desired value
DE102004001175B4 (en) * 2003-03-06 2014-05-08 General Electric Co. Integrated high-voltage circuit for arrangements of ultrasonic transducers
JP2008131305A (en) * 2006-11-20 2008-06-05 Matsushita Electric Ind Co Ltd Semiconductor switch circuit
US7741895B2 (en) 2006-11-20 2010-06-22 Panasonic Corporation Semiconductor switch circuit having MOS transistors with low current consumption
US7961031B2 (en) 2006-11-20 2011-06-14 Panasonic Corporation Semiconductor switch circuit

Also Published As

Publication number Publication date
JPH0563051B2 (en) 1993-09-09

Similar Documents

Publication Publication Date Title
US4745311A (en) Solid-state relay
US4858055A (en) Input protecting device for a semiconductor circuit device
US4885486A (en) Darlington amplifier with high speed turnoff
WO1984002622A1 (en) Comparator circuit having reduced input bias current
JPH0322487A (en) Transfer type solid-state relay
US5172290A (en) Gate-source protective circuit for a power mosfet
JP2917222B2 (en) TTL compatible CMOS input circuit
US5134323A (en) Three terminal noninverting transistor switch
US5952870A (en) Circuit with hysteresis and method using same
JP3036423B2 (en) Semiconductor device
JPH07111448A (en) Interface circuit and voltage virtical circuit therewith
US5214322A (en) High voltage cmos power driver
JPS63227215A (en) Semiconductor switch circuit
US3989962A (en) Negative-resistance semiconductor device
JP3258050B2 (en) Circuit device with inductive load MOSFET
JPH11145810A (en) Drive circuit
JP3172261B2 (en) Switching circuit using power MOSFET
JPH06181431A (en) Solid-state relay
JPH0317471Y2 (en)
CN117613826A (en) Insulated gate bipolar transistor protection circuit, module and air conditioner
JP2694808B2 (en) Solid state relay
KR20000073710A (en) Reference voltage generation circuit
JPS5940293B2 (en) semiconductor equipment
JPS6319913A (en) Solid-state relay
JPS617665A (en) Semiconductor device