JPS63225532A - Titanium oxide fine article - Google Patents

Titanium oxide fine article

Info

Publication number
JPS63225532A
JPS63225532A JP62058258A JP5825887A JPS63225532A JP S63225532 A JPS63225532 A JP S63225532A JP 62058258 A JP62058258 A JP 62058258A JP 5825887 A JP5825887 A JP 5825887A JP S63225532 A JPS63225532 A JP S63225532A
Authority
JP
Japan
Prior art keywords
titanium oxide
fine particles
particle size
oxide fine
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62058258A
Other languages
Japanese (ja)
Other versions
JP2534492B2 (en
Inventor
Junji Kawashima
川嶋 淳史
Katsuyoshi Takeshita
克義 竹下
Takao Mogami
最上 隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62058258A priority Critical patent/JP2534492B2/en
Publication of JPS63225532A publication Critical patent/JPS63225532A/en
Application granted granted Critical
Publication of JP2534492B2 publication Critical patent/JP2534492B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PURPOSE:To increase abrassion resistance, shielding capacity for ultraviolet ray and light resistance, by allowing a specified metallic atom of a specified amt. to contain in a fine crystal of titanium oxide which is made fine particle having specified particle size. CONSTITUTION:The titled fine particles of titanium oxide are composed the titanium oxide fine particles contg. 1-10,000ppm metallic atom selected among Co, V, Cr, Mn, Cu, Sb, W, Pt, Hg, Pb and Bi to one Ti atom in the fine particle of titanium oxide having 1-50mmu particle size. In the application of the fine particles of titanium oxide, for instance, an abrassion resistance and a shielding effect for ultraviolet ray are insufficiently obtained by using said titanium oxide having <=one mmu particle size, and then the paint film is cloudy and the light resistance simultaneously decreases in the case of using the fine particle of titanium oxide having >=50mmu particle size. Furthermore, no effect is obtained by adding >=1ppm amt. of the above-mentioned metallic atom to be added and the addition of >=1,000ppm amt. of said atom is technically difficult and hurts the characteristics of titanium oxide.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐候性(耐光性)、耐薬品性、耐摩耗性のす
ぐれた塗料の成分として有用な新規な酸化チタン微粒子
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to novel titanium oxide fine particles useful as a component of paints having excellent weather resistance (light resistance), chemical resistance, and abrasion resistance.

〔発明の概要〕[Summary of the invention]

本発明は、塗料添加物として有用な酸化チタン化合物に
おいて、微粒子化した酸化チタン微結晶中に1特定の金
属原子を含有させることにより、酸化チタンの光活性を
抑え、耐候性を向上させたものである〇 〔従来の技術〕 酸化チタンは、紫外線吸収能に優れ、また、微粒子を用
いた塗料は、赤外線の反射膜としても可能性が大きく、
種々の検討がなされている。
The present invention relates to a titanium oxide compound useful as a paint additive, which suppresses the photoactivity of titanium oxide and improves its weather resistance by containing one specific metal atom in finely divided titanium oxide microcrystals. 〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇 〇〇〇 〇〇〇  Traditional Technology Titanium oxide has excellent ability to absorb ultraviolet rays, and paints using fine particles have great potential as infrared reflective films.
Various studies have been made.

また、実用的には、白色顔料や紫外線遮蔽用の塗料混入
用として用いられている。
Practically speaking, it is also used as a mixture of white pigments and UV-shielding paints.

また、酸化チタンは光に対して活性であるが化学的に安
定である。この性質を透明な塗膜に応用することも検討
されている0この例としては、米国特許第427511
8号が挙げられる◎これらの例では、酸化チタンによる
耐光性低下をおさえるために、酸化チタン粒子表面を光
学的に安定な二酸化ケイ素で被覆する1あるいは・シリ
コン系カップリング剤およびコロイダルシリカをバ、イ
ンダとして用い、特性向上をはかつている0〔発明が解
決しようとする問題点〕 しかし、これらの従来技術のうち、酸化チタン粒子表面
を二酸化ケイ素で被覆する方法では、酸化チタン粒子径
が数百ミクロン以上のものについては効果的であるが・
本発明で述べる微粒子の場合、表面積が大きく1粒子表
面を充分被覆出来ないという問題点を有する0 また、後者の例では、シリコン系カップリング剤の一部
の劣化、および、基材が合成樹脂の場合1基材との界面
が光によシ劣化し、塗膜剥れが発生するという開運を有
する0 そこで本発明は、このような問題点を解決するもので、
その目的とするところは、耐摩耗性1紫外線遮蔽、耐薬
品性を有し、且つ、耐候性あるいは耐光性に優れた酸化
チタン微粒子を提供することである0 更には為光学的に透明な塗膜および樹脂組成物に混合し
・上に述べた機能を発現するものであるO〔問題点を解
決するための手段〕 本発明の酸化チタン微粒子は、粒径が1ないし50ミリ
ミクロンの酸化チタン微粒子内[、Ti原子に対しSl
ないし10,000 ppmの範囲で、Oo、V、Cr
、Mn、Cu、S’b、W、Pt 。
Furthermore, titanium oxide is active to light but chemically stable. Application of this property to transparent coatings is also being considered. An example of this is U.S. Patent No. 427511.
◎In these examples, in order to suppress the decrease in light resistance caused by titanium oxide, the titanium oxide particle surface is coated with optically stable silicon dioxide (1) or silicon-based coupling agent and colloidal silica are used as a buffer. [Problem to be solved by the invention] However, among these conventional techniques, in the method of coating the surface of titanium oxide particles with silicon dioxide, the diameter of the titanium oxide particles is Although it is effective for objects larger than 100 microns,
In the case of the fine particles described in the present invention, there is a problem that the surface area is large and the surface of one particle cannot be sufficiently covered.In addition, in the latter example, there is a problem that a part of the silicone coupling agent deteriorates and the base material is made of synthetic resin. In the case of 1, the interface with the base material is deteriorated by light and the coating film peels. Therefore, the present invention solves such problems,
The purpose is to provide titanium oxide fine particles that have wear resistance, ultraviolet shielding, chemical resistance, and excellent weather resistance or light resistance. [Means for solving the problem] The titanium oxide fine particles of the present invention have a particle size of 1 to 50 millimeters. Inside the fine particles [, Sl for Ti atoms
Oo, V, Cr in the range from 10,000 ppm to 10,000 ppm
, Mn, Cu, S'b, W, Pt.

Hg、Pb、Biよシ選ばれる金属原子を含むことを特
徴とする0 こむで、前記酸化チタン微粒子は、微結晶性粒子であり
、添加金属原子は結晶構造を形成しているチタン原子の
一部を置換する形、あるいは、結晶格子間に閉じこめら
、れた形で存在するものと考えられる。
The titanium oxide fine particles are microcrystalline particles, and the added metal atoms are one of the titanium atoms forming the crystal structure. It is thought that it exists in the form of substituting parts or in the form of being confined between crystal lattices.

また、前記酸化チタン微粒子は、水、アルコールおよび
その他の溶剤中に分散したコロイドゾルの形が望ましい
Further, the titanium oxide fine particles are preferably in the form of a colloidal sol dispersed in water, alcohol, or other solvents.

ここで、粒径は1ないし50ミリミクロンが必要だが・
塗膜への応用を例にとると、用いる粒径が1ミリミーク
ロン以下では、充分な耐摩耗性、紫外線遮蔽効果が得ら
れず、また、粒径が50ミリミクロン以上では、得られ
た塗膜は白濁し・透明性が低下すると同時に、耐光性が
低下する0まだ、酸化チタン微粒子は、気相合成1粉砕
等が可能であるが・分散性の問題から、液相で粒子成長
によシ得る方法が好ましい。
Here, the particle size needs to be 1 to 50 millimicrons.
Taking the application to paint films as an example, if the particle size used is less than 1 millimicron, sufficient abrasion resistance and ultraviolet shielding effect cannot be obtained, and if the particle size is 50 millimicrons or more, the obtained coating film However, titanium oxide fine particles can be synthesized in the vapor phase by pulverization, etc., but due to dispersibility problems, it is not possible to grow titanium oxide particles in the liquid phase. The method of obtaining is preferred.

液相法として、(1)チタンアルコラード等の有機チタ
ン化合物の加水分解・縮合反応による生成1(1)チタ
ン酸水溶液の中和・脱水縮合による粒子生成、等の方法
が一般的である。この合成途中に、Co、V、Cr、M
u、Cu、8b、W、Pt。
As a liquid phase method, methods such as (1) generation of particles by hydrolysis/condensation reaction of an organic titanium compound such as titanium alcoholade (1) (1) generation of particles by neutralization/dehydration condensation of an aqueous titanic acid solution are common. During this synthesis, Co, V, Cr, M
u, Cu, 8b, W, Pt.

、  Hg、Pb、Biの塩化物・酸塩化物、痔のハロ
ゲン化物や硝酸塩・硫酸塩等の塩類、アセチルアセトネ
ート等の配位したキレート性化合物やアルフラート等の
形で添加できる@特に、(1)のチタン酸から導くケー
スでは上記金属の水酸化物や、強酸塩であることが望ま
しい。
, Hg, Pb, Bi chlorides/acid chlorides, hemorrhoid halides, salts such as nitrates/sulfates, coordinated chelating compounds such as acetylacetonate, alflate, etc. In the case of 1) derived from titanic acid, hydroxides or strong acid salts of the above metals are preferable.

この金属原子は1種あるいは2種以上を%1ないしIQ
、OOOppmの範囲で含有する必要がある。
This metal atom contains one or more types from %1 to IQ
, OOOppm.

即ち、j ppm以下では一添加の効果がなく10.O
Q Optzm以上の添加は技術的にも困難で酸化チタ
ンの特性が損われる為好ましくない。
That is, if the concentration is less than J ppm, there is no effect of adding one. O
Addition of more than Q Optzm is technically difficult and the properties of titanium oxide are impaired, so it is not preferable.

このようKして得られる酸化チタン微粒子の応用につい
て述べる0 塗膜に応用する場合1この酸化チタン微粒子を溶剤およ
びバインダビヒクルに分散させて用いる0バインダビヒ
クルとして用いる材料として杜、シランカップリング剤
、酸化ケイ素ゾルや合成高分子、天然高分子、変成天然
高分子等がある。また、増粘剤、フローコントロール剤
、レベリング剤、溶剤、染料等から構成される0この中
でもシランカップリング剤は、有用であプ、官能性の有
機基を有するシラン化合物が利用可能である・例として
は、  −。
Applications of the titanium oxide fine particles obtained in this way will be described.0 Application to coating films1 The titanium oxide fine particles are used by dispersing them in a solvent and a binder vehicle.Materials used as the binder vehicle include mori, silane coupling agent, There are silicon oxide sols, synthetic polymers, natural polymers, modified natural polymers, etc. Among these, silane coupling agents are useful, and silane compounds with functional organic groups can be used. For example: −.

テトラメトキシシラン。Tetramethoxysilane.

メチルトリメトキシシラン。Methyltrimethoxysilane.

ビニルトリメトキシシラン。Vinyltrimethoxysilane.

r−メタクリロイルオキシプロビルトリメトキジシラン
r-methacryloyloxyprobyltrimethoxydisilane.

γ−グリシドキシプロビルトリメトキシシラン。γ-Glycidoxyprobyltrimethoxysilane.

γ−メルカプトプロビルトリメトキシシラーン。γ-Mercaptopropyltrimethoxysilane.

r−了ミノブロビルトリメトキシシラン。r-Ryominobrovirtrimethoxysilane.

γ−ウレイドプロピルトリメトキシシラン。γ-ureidopropyltrimethoxysilane.

N−フェニルアミノプロピルトリメトキシシラン等の三
官能シランや、前記三官能シランの一部かメチル基、エ
チル基、ビニル基に置換したシラン化合物が挙げられる
Examples include trifunctional silanes such as N-phenylaminopropyltrimethoxysilane, and silane compounds in which part of the trifunctional silane is substituted with a methyl group, ethyl group, or vinyl group.

また1高分子体の例では、セルロース類、石油樹脂類、
キチン類、グルコース類等の天然高分子や、ポリビニル
アルコール、エポキシ樹脂、ポリアクリル酸エステル、
ポリウレタン1ポリスチレン等の合成高分子が挙げられ
る。
Examples of single polymers include cellulose, petroleum resins,
Natural polymers such as chitins and glucose, polyvinyl alcohol, epoxy resins, polyacrylic esters,
Examples include synthetic polymers such as polyurethane and polystyrene.

また、反応性モノマーあるいは、オリゴマーの例として
は、光硬化可能なアクリレートや、エチレングリコール
ジグリシジルエーテル等のエポキシ化合物、ラクトン等
の開環重合性モノマー、イソシアネート類の反応性モノ
マーを挙げることができる。
Examples of reactive monomers or oligomers include photocurable acrylates, epoxy compounds such as ethylene glycol diglycidyl ether, ring-opening polymerizable monomers such as lactones, and reactive monomers such as isocyanates. .

、また、溶剤としては、種々のアルコール類、エテル類
、ケトン類、セロソルブ類−ホルムアミド類、水等が有
用である@ 塗膜用途以外に、樹脂への混合分散し用いることも出来
る。この方法としては、水性エマルジョン樹脂と混合し
、ソリッド化する方法、樹脂へ混練し分散し成形する方
法等公知の方法でブレンドすることができる0これらの
樹脂としては、アクリル系樹脂1ポリカーボネート、塩
ビ、ナイロン等がある。
In addition, various alcohols, ethers, ketones, cellosolves-formamides, water, etc. are useful as solvents. In addition to coating applications, they can also be used by mixing and dispersing in resins. This method can be blended by any known method, such as mixing with an aqueous emulsion resin to form a solid, or kneading and dispersing into resin, and molding. These resins include acrylic resin, polycarbonate, and vinyl chloride. , nylon, etc.

塗膜1樹脂、何れの場合にも、以上述べたような透明性
材料用途に用いる〇 〔作 用〕 このようにして得られる酸化チタン微粒子は、の耐光性
の向上 0透明性の確保 に効果があるが、その作用につき説明する。
Coating film 1 Resin, in either case, is used for transparent material applications as described above. [Function] The titanium oxide fine particles obtained in this way are effective in improving light resistance and ensuring transparency. There is, but I will explain its effect.

即ちミ■の耐光性については、詳細な原理は不明である
が、酸化チタンの光触媒効果が幾つか報告されている(
例えば、G、N 、8chrauzerand  T、
D、Guth、、r、Am、Ohem、soo、。
In other words, although the detailed principle behind the light resistance of Mi is unknown, there have been some reports of the photocatalytic effect of titanium oxide (
For example, G, N, 8chrauzerand T,
D,Guth,,r,Am,Ohem,soo,.

Lユ、7189 (1977) )。本発明は・酸化チ
タン微粒子に光触媒活性をもつ活性点があると考え、各
種金属種を添加し、特に効果のあった金属を見出したも
のである。従って、メカニズムとしてはこれらの金属が
酸化チタンの光活性点の近く、あるい社、弱い結合を伴
って塗膜中に存在し、光触媒能、すなわち光エネルギー
の化学エネルギーへの変換を防げていると推測出来る@
言い換えれば1酸化チタンのもつ光触媒能は、光エネル
ギーを化学エネルギーに変換し、化学的な活性種を作り
だすものであシ、これが、酸化チタンを含む塗膜のビヒ
クルの化学結合を切断、変質させるものであったと考え
られる・そして、本発明は、酸化チタンのもつ光エネル
ギーの化学エネルギーへの変換過程の抑制か、または、
変換された光エネルギーを熱エネルギーとすることにょ
シ、酸化還元能を抑制したものと考えられる@即ち、酸
化チタン中のチタン原子の光励起に要するエネルギーレ
ベルは、紫外可視域にあるが、添加原子のドーピングに
よシ励起あるいは・エネルギー放出過程のレベルが、熱
運動レベルかあるいは遠紫外域ヘシフトしたものと考え
られる口ここで、有機物の基本骨格である炭素〜炭素結
合や・炭素〜水素結合・炭素〜酸素の結合エネルギーは
約80〜100KaaJ17へ02であシ、光エネルギ
ーに換算すると、ちょうど可視・紫外域に相当する0本
発明の構成の主な作用は、このエネルギーレベルを変更
スルことによシ樹脂や塗膜へ応用した場合、光エネルギ
ー伝達機構を変えることKよシ光に対する耐久性を増し
たものである〇 @透明性の確保については、酸化チタンの粒径を50ミ
リζクロン以下にすることKより、粒子表面の乱反射を
抑え透明性を増すことができた。
L Yu, 7189 (1977)). The present invention is based on the idea that titanium oxide fine particles have active sites with photocatalytic activity, and has added various metal species to find a particularly effective metal. Therefore, the mechanism is that these metals exist near the photoactive sites of titanium oxide or in the coating film with weak bonds, preventing photocatalytic activity, that is, the conversion of light energy into chemical energy. It can be inferred that @
In other words, the photocatalytic ability of titanium monoxide converts light energy into chemical energy and creates chemically active species, which cleaves and alters the chemical bonds in the vehicle of the coating film containing titanium oxide. Therefore, the present invention aims at suppressing the process of converting light energy into chemical energy possessed by titanium oxide, or
By using the converted light energy as thermal energy, the redox ability is thought to be suppressed. In other words, the energy level required for photoexcitation of titanium atoms in titanium oxide is in the ultraviolet-visible range, but the added atoms It is thought that the level of the excitation or energy release process is shifted to the thermal kinetic level or to the far ultraviolet region by doping.Here, carbon-carbon bonds, carbon-hydrogen bonds, and The bond energy between carbon and oxygen is approximately 80 to 100 KaaJ1702, which corresponds to the visible and ultraviolet regions when converted to light energy.The main effect of the structure of the present invention is to change this energy level. When applied to resins and coatings, it is necessary to change the light energy transmission mechanism and increase the durability against light. 〇@To ensure transparency, the particle size of titanium oxide should be changed to 50 millimeters. By doing the following K, it was possible to suppress diffused reflection on the particle surface and increase transparency.

透過率を高めようとする光の波長と粒径は、コ胃イド化
学において相関性が見出されている(例えば、H,We
ller at、aJ、Ohem、Phvs 。
It has been found that there is a correlation between the wavelength of light and the particle size, which increases the transmittance (for example, H, We
ller at, aJ, Ohem, Phvs.

Lett@rs、124.557(1986))。Lett@rs, 124.557 (1986)).

本発明は、バインダビヒクルに均等に酸化チタンを分散
させた場合可視光の波長域で透明性に間顯のないレベル
を検討し見出したもので・引用例では、10ミリミクロ
ン以下の粒径が必要とあるが、酸化チタン粒子を所定の
粒径とし、且つバインダ中へ均質に分散させることKよ
シ、粒子と高分子の界面の反射が、許容出来る゛範囲を
見出したものである。
The present invention was developed by studying and discovering that when titanium oxide is evenly dispersed in a binder vehicle, the level of transparency in the visible light wavelength range is constant.In the cited example, the particle size of 10 millimicrons or less is found. Although it is necessary, we have found a range in which the reflection at the interface between the particles and the polymer can be tolerated by setting the titanium oxide particles to a predetermined particle size and uniformly dispersing them in the binder.

〔実施例〕〔Example〕

以下実施例により本発明を更に詳しく説明するが、これ
は本発明を限定するものではない0尚、実施例中、部は
重量部を表わす。
The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited thereto. In the Examples, parts represent parts by weight.

実施例t マグネット攪拌子による攪拌装置を有するガラス製フラ
スコ内ニ、イソプロピルアルコール200部、了セチル
アセトン2部、2−テトラブトキシチタン85部を入れ
均一な溶液とした0続いて該溶液を強攪しつつ、0.1
規定塩酸水9部をゆっくシ滴下した◎滴下終了後、昇温
し、2時間遺留を実施したのち室温下−晩熟成を行った
Example t In a glass flask equipped with a stirring device using a magnetic stirrer, 200 parts of isopropyl alcohol, 2 parts of cetyl acetone, and 85 parts of 2-tetrabutoxytitanium were added to make a homogeneous solution.Then, the solution was stirred vigorously. However, 0.1
9 parts of normal hydrochloric acid solution was slowly added dropwise.◎After the addition was completed, the temperature was raised and left to stand for 2 hours, followed by overnight aging at room temperature.

次ニ、オキシ塩化バナジウム0.15部を、4部の濃塩
酸に溶解し、ここに200部の水を加え希釈した・先に
得られたチタン溶液、を攪拌しつつ・この5ナジウムを
含む水溶液を滴下した。このようにして得られた混合液
500部を更に二昼夜熟成を行った〇 次に前記溶液を攪拌しつつ昇温し、イソプロピルアルコ
ールを主に含む留分を留去した・留出温度が95℃とな
ったところで留去を終了した0こf)留分け、約s o
 o部であ)、イソプロピルアルコール、水、ブタノー
ルを主とするものであった0この液を40℃で1週間熟
成することによシ、チタン原子に対し、500ppmの
バナジウムを含む酸化チタン微粒子分散液を得た。この
固型分濃度は約10%であった・また粒径は、電顕より
10ミリミクロンであることが確認された。
Next, 0.15 parts of vanadium oxychloride was dissolved in 4 parts of concentrated hydrochloric acid, and 200 parts of water was added thereto to dilute it. While stirring the titanium solution obtained earlier, the 5 sodium containing An aqueous solution was added dropwise. 500 parts of the thus obtained mixed solution was further aged for two days and nights.Next, the temperature of the solution was raised while stirring, and the fraction mainly containing isopropyl alcohol was distilled off.The distillation temperature was 95. Distillation was completed when the temperature reached 0°C.) Distillation, approximately s o
By aging this solution, which was mainly composed of isopropyl alcohol, water, and butanol, at 40°C for one week, a titanium oxide fine particle dispersion containing 500 ppm of vanadium based on titanium atoms was obtained. I got the liquid. The solid content concentration was approximately 10%, and the particle size was confirmed to be 10 millimicrons by electron microscopy.

耐光性の評価は、この液5部に酸化発色剤005部を加
え、ガラスプレート上で乾燥させたテスト試料に、キセ
ノンランプによる光照射を50時間行い、その呈色の程
度を目視検査した。この評価結果を第1表に示す。
For evaluation of light resistance, 0.05 parts of an oxidized color former was added to 5 parts of this solution, and the test sample was dried on a glass plate. The test sample was irradiated with light using a xenon lamp for 50 hours, and the degree of color development was visually inspected. The evaluation results are shown in Table 1.

実施例2 ガラス製フラスコ内に、(Tt(ola・雷H10〕鴨
で示されるチタン酸ゲル60部を10.0部の濃塩酸に
加えた0次に1塩化鉛α09部を加えたのち、加熱還流
を2時間行い半透明の水溶液゛とした0続いて、水を1
00部加えたのち窒素気流中、攪拌を行い70℃で60
時間反応させた0このようKして、鉛原子を含む酸化チ
タン微粒子の水性ゾル200部を得た・この固型分濃度
は約10襲であった。この粒径は、電顕によると約15
ミリミクpンであった@ この酸化チタン微粒子の耐光性評価は実施例1と同様に
行りた・その結果を第1表に示す@応用例を 実施例2で得られた水性ゾル100部は窒素バブリング
およびイオン交換樹脂による処理を行うことによシ、液
中の塩化水素量を2重量%迄減少させた・ このチタンゾル10部を7ラスフに入れ、攪拌しつつ、
イソプロピルアルコール50部、水50部を加えた口続
いて、r−グリシドキシプロビルトリメトキ、ジシラン
t・5部、エチル上田ツル120部、フローコントロー
ル剤少量を加え、−昼夜放置し、塗料とした・ この塗液を、酸素プラズマによシ表面処理を行ったポリ
カーボネート製レンズに塗布を行い、120℃で2時間
、加熱し、硬化を行りた◎この硬化膜は、高屈折率(%
=−s、7s)を示した。
Example 2 Into a glass flask, 60 parts of titanic acid gel represented by (Tt(ola/Lightning H10) duck) was added to 10.0 parts of concentrated hydrochloric acid, and 09 parts of lead monochloride α was added. Heated under reflux for 2 hours to form a translucent aqueous solution.
After adding 00 parts, stir in a nitrogen stream and heat to 60 parts at 70°C.
200 parts of an aqueous sol of titanium oxide fine particles containing lead atoms was obtained.The solid content concentration was about 10%. According to electron microscopy, this particle size is about 15
The light resistance of the titanium oxide fine particles was evaluated in the same manner as in Example 1. The results are shown in Table 1. 100 parts of the aqueous sol obtained in Example 2 was By performing nitrogen bubbling and treatment with an ion exchange resin, the amount of hydrogen chloride in the liquid was reduced to 2% by weight. 10 parts of this titanium sol was placed in 7 rasfs, and while stirring,
Add 50 parts of isopropyl alcohol and 50 parts of water, then add r-glycidoxypropyltrimethoxy, 5 parts of disilane t, 120 parts of ethyl Ueda Tsuru, and a small amount of flow control agent. This coating solution was applied to a polycarbonate lens whose surface had been treated with oxygen plasma, and was cured by heating at 120°C for 2 hours. ◎This cured film has a high refractive index ( %
=-s, 7s).

この複合体は表面反射が増加し外観にすぐれると同時に
、良好な紫外線カツト性を示した0耐候性については、
キセノンランプによるフェードメーターで100時間照
射を行った後も膜に変化はみられなかった・ 実施例五〜7.比較例1〜6 実施例2において、塩化鉛のかわりに第1表に示す化合
物を用いること以外は実施例2と同様にして、酸化チタ
ン微粒子を得た◎結果を第1衷に示す0 また、応用例1と同様に塗膜に応用したところ、比較例
のブランクあるいは金属原子を添加したチタン系塗膜は
、光照射によシ剥れおちてしま9・添加による効果がみ
られなかった。
This composite has increased surface reflection and has an excellent appearance, and at the same time shows good UV protection.In terms of weather resistance,
No change was observed in the film even after 100 hours of irradiation with a fade meter using a xenon lamp. Examples 5 to 7. Comparative Examples 1 to 6 Titanium oxide fine particles were obtained in the same manner as in Example 2 except that the compounds shown in Table 1 were used instead of lead chloride ◎The results are shown in the first page 0 When applied to a paint film in the same manner as in Application Example 1, the blank of the comparative example or the titanium-based paint film to which metal atoms were added peeled off due to light irradiation9. No effect of the addition was observed. .

第    1    表 〔発明の効果〕 本発明は1酸化チタンの結晶構造中に、バナジウム・鉛
等の特定の金属を含ませることによシ、光活性のある酸
化チタンの触媒毒作用をかき出すものである@ 本発明によシ得られた酸化チタン微粒子は・その優れた
耐光性と微粒子性を活かして種々の用途がある。
Table 1 [Effects of the Invention] The present invention eliminates the catalytic poisoning effect of photoactive titanium oxide by incorporating specific metals such as vanadium and lead into the crystal structure of titanium monoxide. The titanium oxide fine particles obtained according to the present invention have various uses by taking advantage of their excellent light resistance and fine particle properties.

第1の目的とするところは、塗膜への応用である0即ち
、樹脂成形物品の表面塗装の塗膜の成分に用い、紫外線
遮蔽 耐溶剤、耐薬品性の向上、表面の硬度向上、赤外
線反射膜や数々の光学材料の反射防止膜の為の高屈折率
膜を形成する必須成分として用いられる。この中でも、
成形物の耐久性向上とともに、特に光学用途において重
要な反射防止膜機能を付与できるという効果を有する。
The first objective is to apply it to coatings, that is, to use it as a component of coatings for surface coating of resin molded articles, to improve UV shielding, solvent resistance, chemical resistance, surface hardness, and infrared rays. It is used as an essential component to form high refractive index films for reflective films and anti-reflection films for various optical materials. Among these,
It has the effect of improving the durability of molded products and providing an anti-reflection film function, which is particularly important in optical applications.

第2の目的とするところは、樹脂、特に透明樹脂へ混合
し分散させることKより、樹脂の屈折率の向上、紫外線
遮蔽性向上、耐光性向上を果たすことである。
The second objective is to improve the refractive index, UV shielding properties, and light resistance of the resin by mixing and dispersing it into a resin, especially a transparent resin.

このように、透明性・耐光性、耐薬品性、あるいは高屈
折率を要求される光学材料用途において光劣化を抑え耐
光性を向上させるという効果を有する0 以  上
In this way, it has the effect of suppressing photodeterioration and improving light resistance in optical material applications that require transparency, light resistance, chemical resistance, or high refractive index.

Claims (1)

【特許請求の範囲】 1)粒径が1ないし50ミリミクロンの酸化チタン微粒
子内に、Ti原子に対し、1ないし10000ppmの
範囲で、Co、V、Cr、Mn、Cu、Sb、W、Pt
、Hg、Pb、Biより選ばれる金属原子を含むことを
特徴とする酸化チタン微粒子。 2)前記酸化チタン微粒子は、微結晶構造を有し、添加
金属原子は、結晶構造の一部に置換あるいは、閉じこめ
られた形で存在することを特徴とする特許請求の範囲1
項記載の酸化チタン微粒子。 3)前記酸化チタン微粒子は、水または他の溶剤に分散
したコロイドゾルであることを特徴とする特許請求の範
囲1項記載の酸化チタン微粒子。
[Claims] 1) Co, V, Cr, Mn, Cu, Sb, W, Pt in the titanium oxide fine particles with a particle size of 1 to 50 millimicrons in the range of 1 to 10,000 ppm relative to Ti atoms.
, Hg, Pb, and Bi. 2) Claim 1, wherein the titanium oxide fine particles have a microcrystalline structure, and the additive metal atoms are present in a form substituted or confined in a part of the crystalline structure.
Titanium oxide fine particles as described in Section 1. 3) The titanium oxide fine particles according to claim 1, wherein the titanium oxide fine particles are a colloidal sol dispersed in water or other solvent.
JP62058258A 1987-03-13 1987-03-13 Titanium oxide fine particles and optical member Expired - Lifetime JP2534492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62058258A JP2534492B2 (en) 1987-03-13 1987-03-13 Titanium oxide fine particles and optical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62058258A JP2534492B2 (en) 1987-03-13 1987-03-13 Titanium oxide fine particles and optical member

Publications (2)

Publication Number Publication Date
JPS63225532A true JPS63225532A (en) 1988-09-20
JP2534492B2 JP2534492B2 (en) 1996-09-18

Family

ID=13079129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62058258A Expired - Lifetime JP2534492B2 (en) 1987-03-13 1987-03-13 Titanium oxide fine particles and optical member

Country Status (1)

Country Link
JP (1) JP2534492B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972761A (en) * 1995-09-05 1997-03-18 Nippon Soda Co Ltd Cover glass for instrument
WO1997024288A1 (en) * 1995-12-27 1997-07-10 Tohkem Products Corporation Stable anatase titanium dioxide and process for preparing the same
KR20020003887A (en) * 2000-06-21 2002-01-16 김충섭 Method for Preparing Titanium Suboxide Powders
WO2004052786A1 (en) * 2002-12-09 2004-06-24 Tayca Corporation Titanium oxide particles having useful properties and method for production thereof
WO2004079407A1 (en) * 2003-03-05 2004-09-16 Fuji Photo Film Co., Ltd. High refractive index layer production process of curable coating composition, antireflection film, polarizing plate and image display device using thereof
JP2005162914A (en) * 2003-12-03 2005-06-23 Nippon Shokubai Co Ltd Ultraviolet light-shielding film, metal oxide particle for ultraviolet light shielding, and composition for formation of ultraviolet light shielding material
CN100390570C (en) * 2003-03-05 2008-05-28 富士胶片株式会社 High refractive index layer production process of curable coating composition, antireflection film, polarizing plate and image display device using thereof
JP2013035698A (en) * 2011-08-04 2013-02-21 Nippon Telegr & Teleph Corp <Ntt> Method of reducing carbon dioxide
WO2021065852A1 (en) 2019-10-02 2021-04-08 信越化学工業株式会社 Titanium oxide particles, dispersion of titanium oxide particles, and method for producing dispersion of titanium oxide particles

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972761A (en) * 1995-09-05 1997-03-18 Nippon Soda Co Ltd Cover glass for instrument
WO1997024288A1 (en) * 1995-12-27 1997-07-10 Tohkem Products Corporation Stable anatase titanium dioxide and process for preparing the same
KR20020003887A (en) * 2000-06-21 2002-01-16 김충섭 Method for Preparing Titanium Suboxide Powders
WO2004052786A1 (en) * 2002-12-09 2004-06-24 Tayca Corporation Titanium oxide particles having useful properties and method for production thereof
JPWO2004052786A1 (en) * 2002-12-09 2006-04-13 テイカ株式会社 Titanium oxide particles having beneficial properties and method for producing the same
JP4546834B2 (en) * 2002-12-09 2010-09-22 テイカ株式会社 Titanium oxide particles having beneficial properties and method for producing the same
WO2004079407A1 (en) * 2003-03-05 2004-09-16 Fuji Photo Film Co., Ltd. High refractive index layer production process of curable coating composition, antireflection film, polarizing plate and image display device using thereof
CN100390570C (en) * 2003-03-05 2008-05-28 富士胶片株式会社 High refractive index layer production process of curable coating composition, antireflection film, polarizing plate and image display device using thereof
JP2005162914A (en) * 2003-12-03 2005-06-23 Nippon Shokubai Co Ltd Ultraviolet light-shielding film, metal oxide particle for ultraviolet light shielding, and composition for formation of ultraviolet light shielding material
JP2013035698A (en) * 2011-08-04 2013-02-21 Nippon Telegr & Teleph Corp <Ntt> Method of reducing carbon dioxide
WO2021065852A1 (en) 2019-10-02 2021-04-08 信越化学工業株式会社 Titanium oxide particles, dispersion of titanium oxide particles, and method for producing dispersion of titanium oxide particles
KR20220075361A (en) 2019-10-02 2022-06-08 신에쓰 가가꾸 고교 가부시끼가이샤 Titanium oxide particles, a titanium oxide particle dispersion, and a method for producing a titanium oxide particle dispersion

Also Published As

Publication number Publication date
JP2534492B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
JP5427093B2 (en) Uniformly dispersible photocatalyst coating liquid, method for producing the same, and photocatalytically active composite material obtained using the same
JP6565923B2 (en) Surface-modified metal oxide particle dispersion and production method thereof, surface-modified metal oxide particle-silicone resin composite composition, surface-modified metal oxide particle-silicone resin composite, optical member, and light emitting device
TWI428282B (en) Metal oxide complex sol, coating composition and optical member
US20090163654A1 (en) Silicone resin composition
US20120168666A1 (en) Coating composition and uses thereof
EP0728164A1 (en) Process for the production of compounds based on silanes containing epoxy groups
KR20110089831A (en) Silicone resin composition
WO2010143645A1 (en) Near-infrared shielding coating agent curable at ordinary temperatures, near-infrared shielding film using same, and manufacturing method therefor
JP2009072753A (en) Photocatalytic composition for anti-reflection and glass substrate using the composition
CN114292485B (en) Antibacterial adhesion-resistant hydrophobic anti-reflection material, and preparation method and application thereof
JPS63275682A (en) Coating composition containing titanium oxide
JPS63225532A (en) Titanium oxide fine article
JP2009120700A (en) Functional fine particle, method for producing the same, and coating composition formed by blending the same
KR20200055435A (en) Dispersion of zirconia nanoparticles and curable resin composition containing the same
JP3848458B2 (en) Method for producing UV blocker
JPH03243666A (en) Ultraviolet ray shielding transparent flaky particle and production thereof
JPS63223076A (en) Titanium oxide-containing coating compound and coating film
KR20080004723A (en) Photocatalyst coating solution
CN112694835B (en) Quantum dot composite coating liquid for solar panel surface antireflection film and preparation method and application thereof
KR100989076B1 (en) Cross-linking Agents Incorporating A Light Diffusion Agent of Spherical Silica Bead And Methods For Making Same
JP2016079221A (en) Producing method of reactant or vinyl sulfone acid and metal particle
CN1445262A (en) High hydrophilic polytitanium siloxane compound induced by photocatalysis and its preparing method
KR101795751B1 (en) Preparation of high refractive index zironia organic-inorganic composit
KR20210007708A (en) Surface-treated inorganic oxide, method for treating surfaces, and dispersion composition
JPS6126637A (en) Coating composition and its preparation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term