JPS63224765A - Preparation of organic thin film - Google Patents

Preparation of organic thin film

Info

Publication number
JPS63224765A
JPS63224765A JP5898987A JP5898987A JPS63224765A JP S63224765 A JPS63224765 A JP S63224765A JP 5898987 A JP5898987 A JP 5898987A JP 5898987 A JP5898987 A JP 5898987A JP S63224765 A JPS63224765 A JP S63224765A
Authority
JP
Japan
Prior art keywords
thin film
substrate
orientation
molecules
molecular layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5898987A
Other languages
Japanese (ja)
Inventor
Tetsuzo Yoshimura
徹三 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5898987A priority Critical patent/JPS63224765A/en
Publication of JPS63224765A publication Critical patent/JPS63224765A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To limit the orientation in a molecule and the orientation of the whole thin film, by detecting the orientation of the molecule in the molecular layer formed on a liq. surface, controlling the direction of a substrate based on the detected result and laminating the molecular layer on the substrate. CONSTITUTION:The light from a light source 4 arranged below the liq. surface is projected on the molecular layer M on the liq. surface through a moving polarizer 5, and the light transmitted upward is received by a photodetector 6. The substrate S is appropriately rotated by a driving part 8 in the direction as shown by the arrow A under the command from a control part 7, and the direction of the substrate S is controlled. After the direction of the substrates is determined, the substrate S is slowly pulled up from below the liq. surface as in the conventional LB method. Alternatively, the substrate is slowly pulled up from above the liq. surface, and a molecular layer M having the orientation corresponding to the direction of the substrate is stuck on the substrate S.

Description

【発明の詳細な説明】 〔楯   要〕 本発明は、ラングミュア・プロジェット法を用いた有機
薄膜の作製方法において、液面の分子の配向方向を検知
し、これに基づいて基板の向きを制御し、この基板状に
分子層を積層していくようにしたことにより、各分子層
内の配向のみならず、薄膜全体の配向制御をも可能にし
たものである。
[Detailed Description of the Invention] [Shield Summary] The present invention is a method for producing an organic thin film using the Langmuir-Prodgett method, in which the orientation direction of molecules on the liquid surface is detected and the orientation of the substrate is controlled based on this. However, by stacking molecular layers on this substrate, it is possible to control not only the orientation within each molecular layer but also the orientation of the entire thin film.

〔産業上の利用分野〕[Industrial application field]

本発明は、有機薄膜(例えば絶縁膜、フォトレジスト膜
、非線形光学膜、フォトクロミック膜等)の作製方法と
して知られるラングミュア・プロジェット法(以下、L
B法と称す)の改良に関する。
The present invention is based on the Langmuir-Prodgett method (hereinafter referred to as L
(referred to as method B).

〔従 来 の 技 術〕[Traditional techniques]

従来の一般的なLB法は、まず水槽内の液面に分子を浮
かべ、これを圧縮し固相化して分子層(単分子膜)を形
成する。その後に、水槽内に基板を入れて徐々に引き上
げることにより、上記分子層を基板上に付着させる。以
上の操作を逐次繰返すことにより、基板上に複数の分子
層が積層され、薄膜ができあがる。
In the conventional LB method, molecules are first floated on a liquid surface in a water tank, and then compressed and solidified to form a molecular layer (monolayer). Thereafter, the molecular layer is deposited onto the substrate by placing the substrate in a water bath and gradually pulling it up. By sequentially repeating the above operations, a plurality of molecular layers are laminated on the substrate, and a thin film is completed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述したLB法では、基板を水槽内から引き上げる毎に
、新たに液面の分子の圧縮を行うが、その際に液面の分
子の配向状態が変化する。そのため、基板上に積層され
た各分子層内での分子の配向状態は良いが、それぞれの
分子層間の方向関係は第4図に示すように不規則となり
、よって薄膜全体での配向制御は不可能であった。
In the above-mentioned LB method, each time the substrate is pulled up from the water tank, the molecules on the liquid surface are newly compressed, but at that time, the orientation state of the molecules on the liquid surface changes. Therefore, although the orientation of molecules within each molecular layer stacked on the substrate is good, the directional relationship between each molecular layer becomes irregular as shown in Figure 4, and therefore the orientation control over the entire thin film is difficult. It was possible.

特に、上記方法で非線形光学薄膜を作製した場合、各分
子眉間の配向方向を揃えることが出来ないために、非線
形光学効果が十分に発揮されないという問題があった。
In particular, when a nonlinear optical thin film is produced by the above method, there is a problem that the nonlinear optical effect is not sufficiently exhibited because the orientation directions between the eyebrows of each molecule cannot be aligned.

本発明は、上記問題点に鑑み、各分子層内の配向のみな
らず、薄膜全体の配向制御をも可能にした有機薄膜の作
製方法を提供することを目的とする。
In view of the above problems, an object of the present invention is to provide a method for producing an organic thin film that makes it possible to control not only the orientation within each molecular layer but also the orientation of the entire thin film.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の有機薄膜の作製方法は、液面に形成された分子
層内の分子の配向方向を検知し、この検知結果に基づい
て基板の向きを制御し、この基板上へ上記分子層を積層
するようにしたことを特徴とするものである。
The method for producing an organic thin film of the present invention detects the orientation direction of molecules in a molecular layer formed on a liquid surface, controls the orientation of a substrate based on the detection result, and laminates the molecular layer on this substrate. It is characterized by the fact that it is made to do so.

〔作   用〕[For production]

基板上に積層された各分子層内の分子の配向方向は、液
面の分子層内の分子の配向方向と、それに対する基板の
向きとによって決まる。よって、−上記手段に示したよ
うに、液面の分子層内の分子の配向方向に基づいて基板
の向きを適宜制御することにより、基板上に積層される
分子層内の分子の配向方向を、各分子層毎に制御するこ
とができる。従って、たとえ基板を水槽内から引き上げ
る毎に液面の分子の配向状態が変化したとしても、その
都度、上記基板の向きの制御を行うことにより、薄膜全
体の各分子層間の方向関係を所望のとおりに制御・する
ことが可能になる。
The orientation direction of the molecules in each molecular layer stacked on the substrate is determined by the orientation direction of the molecules in the molecular layer at the liquid surface and the orientation of the substrate with respect to the orientation direction of the molecules. Therefore, as shown in the above means, by appropriately controlling the orientation of the substrate based on the orientation direction of the molecules in the molecular layer on the liquid surface, the orientation direction of the molecules in the molecular layer stacked on the substrate can be adjusted. , can be controlled for each molecular layer. Therefore, even if the orientation of molecules on the liquid surface changes each time the substrate is pulled out of the water tank, by controlling the orientation of the substrate each time, the directional relationship between each molecular layer of the entire thin film can be adjusted to the desired value. It becomes possible to control and control as desired.

C実  施  例〕 以下、本発明の実施例について、図面を参照しながら説
明する。
C Embodiment] Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明の一実施例に使用する薄膜作製装置を
示す斜視図である。ここでは、有機物の薄膜材料として
、ジアセチレン系材料(例えば第5図〜第7図の中に示
すようなMNADA、DVDA、PTS、ETCD、T
CDU等)を用いた場合を例にとって述べる。
FIG. 1 is a perspective view showing a thin film manufacturing apparatus used in an embodiment of the present invention. Here, diacetylene-based materials (for example, MNADA, DVDA, PTS, ETCD, T
An example will be described using a CDU (CDU, etc.).

まず、水槽1内の水溶液Wの液面に、有機物(ジアセチ
レン系材料)の分子を浮かべる。そして、可動バリア2
を固定バリア3に向って1余々に移動させることにより
、上記分子を圧縮し固相化して、液面に分子層(単分子
膜)Mを形成する。
First, molecules of an organic substance (diacetylene material) are floated on the surface of the aqueous solution W in the water tank 1. And movable barrier 2
By moving the molecules toward the fixed barrier 3 by more than one point, the molecules are compressed and solidified to form a molecular layer (monolayer) M on the liquid surface.

ここまでは、従来のLB法と同様である。The process up to this point is similar to the conventional LB method.

次に、上記分子層M内の分子の配光方向を、光源(例え
ば螢光灯やレーザ等)4、可動偏光子5及び光検知器(
例えばカメラや光検知素子等)6を用いて検知する。具
体的には、液面よりも下方に配置された光源4からの光
を、可動偏光子5を一〇 − 介して液面」二の分子層Mに照射し、その上方への透過
光を光検知器6で受光する。ここで、分子層Mを構成す
るジアセチレン系分子は、一般に第2図に示すように長
軸方向と短軸方向とで光の吸収率が大きく異なり、すな
わち強い2色性を示す。
Next, the light distribution direction of the molecules in the molecular layer M is determined using a light source (for example, a fluorescent lamp, a laser, etc.) 4, a movable polarizer 5, and a photodetector (
For example, the detection is performed using a camera, a light detection element, etc.) 6. Specifically, light from a light source 4 placed below the liquid surface is irradiated onto the molecular layer M at the liquid surface via a movable polarizer 5, and the transmitted light is transmitted upward. The light is received by the photodetector 6. Here, the diacetylene molecules constituting the molecular layer M generally have a light absorption rate that differs greatly between the long axis direction and the short axis direction, as shown in FIG. 2, that is, exhibits strong dichroism.

従って、可動偏光子5を回転させることによって照射光
の偏光方向を変化させ、その時の光検知器6の出力変化
を見れば、分子の配向方向を正確に検出できる。なお、
可動偏光子5ば、液面と光検知器6との間に配置するよ
うにしてもよい。
Therefore, by rotating the movable polarizer 5 to change the polarization direction of the irradiated light and observing the change in the output of the photodetector 6 at that time, the orientation direction of the molecules can be accurately detected. In addition,
The movable polarizer 5 may be placed between the liquid surface and the photodetector 6.

このようにして分子層Mの分子の配向方向がわかったら
、次は、この配向方向に基づいて基板Sの向きを制御す
る。この制御は、上記配向方向に基づいたコントロール
部7からの指示により、駆動部8が基板Sを矢印入方向
に適宜回転させることによって行う。コントロール部7
は、例えば基板Sの向きを上記配向方向に対して平行も
しくは直角あるいは所定の角度にするような指示を駆動
部8に与える。
Once the orientation direction of the molecules in the molecular layer M is known in this way, the next step is to control the orientation of the substrate S based on this orientation direction. This control is performed by the drive section 8 appropriately rotating the substrate S in the direction of the arrow in accordance with instructions from the control section 7 based on the orientation direction. Control section 7
gives an instruction to the drive unit 8 to, for example, orient the substrate S parallel to, perpendicular to, or at a predetermined angle with respect to the orientation direction.

上記のようにして基板7の向きが決定したら、その後は
従来のL B法と同様に、基板Sを液面下から徐々に引
き」二げる、あるいは液面」二から徐々に引き下げる。
Once the orientation of the substrate 7 has been determined as described above, the substrate S is then gradually lowered from below the liquid surface, or gradually lowered from the liquid level, as in the conventional LB method.

すると、基板S上には、その向きに応じた配向方向を持
つ分子層が付着する。
Then, a molecular layer having an orientation direction corresponding to the orientation is deposited on the substrate S.

以上の操作を繰返しながら、その都度、」二記配向方向
の検知及び基板Sの向きの制御を行うことにより、所望
のとおりに配向制御された分子層が基板S上に逐次積層
される。このようにして、薄膜全体の各分子層間の方向
関係を所望のとおりに制御することができる。その−例
を第3図fa)〜fclに示す。同図(alは、積層さ
れた全ての分子層内の分子の配向方向を同一にした場合
、同図fblは、分子層内の分子の配向方向が交互に直
交するように積層した場合、同図(IZ)は、分子層内
の分子の配向方向を徐々に一定角度だけ回転させながら
螺旋状に積層した場合である。特に、同図falのよう
に非線形光学薄膜を作製した場合は、従来のLB法では
得られなかった十分な非線形光学効果が得られる。この
他にも、用途に応して、様々な配向制御が可能である。
While repeating the above operations, molecular layers whose orientations are controlled as desired are successively stacked on the substrate S by detecting the orientation direction and controlling the orientation of the substrate S each time. In this way, the directional relationships between each molecular layer throughout the thin film can be controlled as desired. Examples thereof are shown in FIGS. 3 fa) to fcl. The same figure (al is the same when the orientation direction of the molecules in all the stacked molecular layers is the same, and the same figure fbl is the same when the orientation directions of the molecules in the molecular layers are stacked alternately orthogonally. The figure (IZ) shows a case in which the molecules in the molecular layer are laminated in a spiral while gradually rotating the orientation direction of the molecules by a certain angle.In particular, when a nonlinear optical thin film is fabricated as shown in the figure fal, A sufficient nonlinear optical effect that could not be obtained with the LB method can be obtained.In addition, various orientation controls are possible depending on the application.

なお、本発明で使用し得る薄膜材料は、従来のL B法
で使用し得た全ての有機材料を含み、−に述したジアセ
チレン系材料に限定されるものではない。
Note that the thin film material that can be used in the present invention includes all organic materials that can be used in the conventional LB method, and is not limited to the diacetylene materials described in -.

また、本発明における配向方向の検知方法としては、第
1図で示した光学的方法に限定されることはなく、薄膜
材料の種類に応じた各種の方法を用いることができる。
Furthermore, the method for detecting the orientation direction in the present invention is not limited to the optical method shown in FIG. 1, and various methods can be used depending on the type of thin film material.

〔発明の効果〕〔Effect of the invention〕

本発明の有機薄膜の作製方法によれば、液面の分子の配
向方向に対して基板の向きを制御できるようにしたこと
により、積層された各分子層内の配向のみならず、各分
子層間の方向関係をも制御でき、従って薄膜全体の配向
制御が可能になる。
According to the method for producing an organic thin film of the present invention, by making it possible to control the orientation of the substrate with respect to the orientation direction of molecules on the liquid surface, not only the orientation within each stacked molecular layer but also the It is also possible to control the directional relationship between the two, thus making it possible to control the orientation of the entire thin film.

本発明の方法で非線形光学薄膜を作製する場合は、全て
の分子層内の分子の配向方向を揃えることができるので
、十分な非線形光学効果を得ることができるようになる
When producing a nonlinear optical thin film using the method of the present invention, the orientation directions of molecules in all molecular layers can be aligned, so that a sufficient nonlinear optical effect can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に使用する薄膜作製装置を示
す斜視図、 第2図はジアセチレン系分子の2色性を示すための図、 第3図(al〜tc+は上記実施例による各分子層間の
方向関係の制御の一例を示す模式図、 第4図は従来のLB法における各分子層間の方向関係の
不規則性を示す模式図、 第5図(al −tel、第6図(a)〜(d)および
第7図(a)〜(jlは有機物の薄膜材料の一例を示す
図である。 1・・・水槽、 2・・・可動バリア、 3・・・固定バリア、 4・・・光源、 5・・・可動偏光子、 6・・・光検知器、 7・・・コントロール部、 8・・・駆動部、 M・・・分子層、 S・・・基板。 0         廿 〉ト;)ζこプ?ヒイ刈(付ろ月1(jd)第3図 イに、宋、、71LB玉ム1−「ろj 第4図 −イ列 院 −Ω                  ^S−区 膣 0I= O、O
Fig. 1 is a perspective view showing a thin film production apparatus used in one embodiment of the present invention, Fig. 2 is a diagram showing the dichroism of diacetylene molecules, Fig. 3 (al to tc+ are the examples of the above-mentioned examples). Fig. 4 is a schematic diagram showing an example of controlling the directional relationship between each molecular layer in the conventional LB method; Figures (a) to (d) and Figures 7 (a) to (jl) are diagrams showing examples of organic thin film materials. 1...Aquarium, 2...Movable barrier, 3...Fixed barrier , 4... Light source, 5... Movable polarizer, 6... Photodetector, 7... Control section, 8... Drive section, M... Molecular layer, S... Substrate. 0 廿〉ト;) ζ こ ふ ? Hiikari (Tsukuro month 1 (jd) Fig. 3 I, Song,, 71 LB ball 1 - "roj Fig. 4 - I-ren-in - Ω ^S- ward Vagina 0I = O, O

Claims (1)

【特許請求の範囲】 1)槽(1)内の液面に有機物の分子を圧縮して分子層
(M)を形成し、該分子層を基板(S)上へ逐次積層し
て薄膜を作製する有機薄膜の作製方法において、 前記液面に形成された分子層(M)内の分子の配向方向
を検知し、該検知の結果に基づいて前記基板(S)の向
きを制御し、該基板上へ前記分子層を積層することを特
徴とする有機薄膜の作製方法。 2)前記積層されたすべての分子層内の分子を互いに同
一方向に向けることを特徴とする特許請求の範囲第1項
記載の有機薄膜の作製方法。 3)前記積層された互いに隣接する分子層内の分子を互
いに直交する方向に向けることを特徴とする特許請求の
範囲第1項記載の有機薄膜の作製方法。 4)前記積層された互いに隣接する分子層内の分子を互
いに一定角度だけ回転する方向に向けて螺線状にするこ
とを特徴とする特許請求の範囲第1項記載の有機薄膜の
作製方法。 5)前記分子はジアセチレン系材料の分子であることを
特徴とする特許請求の範囲第1項乃至第4項のいずれか
1つに記載の有機薄膜の作製方法。 6)前記ジアセチレン系材料は、MNADA、DVDA
、PTS、ETCD、TCDUのうちのいずれかである
ことを特徴とする特許請求の範囲第5項記載の有機薄膜
の作製方法。 7)前記配向方向の検知は、前記分子の2色性を利用し
て、前記分子層(M)に偏光を照射し、その透過率もし
くは反射率の角度依存性を測定することにより行うこと
を特徴とする特許請求の範囲第5項または第6項記載の
有機薄膜の作製方法。
[Claims] 1) Molecules of an organic substance are compressed on the liquid surface in the tank (1) to form a molecular layer (M), and the molecular layers are successively stacked on a substrate (S) to produce a thin film. In the method for producing an organic thin film, the direction of orientation of molecules in the molecular layer (M) formed on the liquid surface is detected, the orientation of the substrate (S) is controlled based on the result of the detection, and the orientation of the substrate (S) is controlled. A method for producing an organic thin film, comprising stacking the molecular layer on top. 2) The method for producing an organic thin film according to claim 1, characterized in that the molecules in all the laminated molecular layers are oriented in the same direction. 3) The method for producing an organic thin film according to claim 1, characterized in that molecules in the stacked mutually adjacent molecular layers are directed in directions orthogonal to each other. 4) The method for producing an organic thin film according to claim 1, characterized in that the molecules in the laminated mutually adjacent molecular layers are formed into a spiral in a direction in which they rotate by a certain angle relative to each other. 5) The method for producing an organic thin film according to any one of claims 1 to 4, wherein the molecules are molecules of a diacetylene material. 6) The diacetylene material is MNADA, DVDA.
, PTS, ETCD, and TCDU, the method for producing an organic thin film according to claim 5. 7) The orientation direction may be detected by utilizing the dichroism of the molecules, irradiating the molecular layer (M) with polarized light, and measuring the angular dependence of its transmittance or reflectance. A method for producing an organic thin film according to claim 5 or 6.
JP5898987A 1987-03-16 1987-03-16 Preparation of organic thin film Pending JPS63224765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5898987A JPS63224765A (en) 1987-03-16 1987-03-16 Preparation of organic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5898987A JPS63224765A (en) 1987-03-16 1987-03-16 Preparation of organic thin film

Publications (1)

Publication Number Publication Date
JPS63224765A true JPS63224765A (en) 1988-09-19

Family

ID=13100255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5898987A Pending JPS63224765A (en) 1987-03-16 1987-03-16 Preparation of organic thin film

Country Status (1)

Country Link
JP (1) JPS63224765A (en)

Similar Documents

Publication Publication Date Title
JP4275087B2 (en) Method for aligning rod-like liquid crystal molecules and optical device manufactured thereby
CN104698524B (en) A kind of polarizer and preparation method thereof and image display panel, image display device
CN110426758A (en) Optical film materials, construction method and its application based on super surface
KR970059786A (en) Control method of pre-tilt direction of liquid crystal cell
JPH01133003A (en) Polarizing plate
CN108051884B (en) A kind of vortex beams detector and preparation method thereof
CN105204231B (en) Liquid crystal display panel and its manufacturing method
CN108574043A (en) Flexible magnetic field strength transducer based on magnetoelectric composite film
JPS63224765A (en) Preparation of organic thin film
JP3806283B2 (en) Method for manufacturing 3D video display
CN107407762A (en) The color creating device and color creation method of improved color are created by improving line polarisation tendency
JPH02158701A (en) Composite phase plate
JP2003232928A (en) Long optical film, method for manufacturing long optical film, and long elliptic polarizing film
JPH03124426A (en) Orientation of film
GB2144653A (en) Methods of preparing Langmuir-Blodgett multilayers
JPH0618898A (en) Liquid crystal element
JPH02156230A (en) Production of optical wavelength converting element and optical wavelength converting element
US5670624A (en) Two-dimensional aggregation and fixation of protein by injection into a substrate solution having higher surface tension and specific gravity
JPH046899Y2 (en)
KR20020031453A (en) Method for fabricating multidomain lquid crystal display panel
JPS61138236A (en) Display element
JPS62291620A (en) Liquid crystal element
Zhang et al. Assembling polyoxometalate microcrystals into thin films with preferential [110]-orientation
JPH02139522A (en) Liquid crystal display device and production thereof
JPH03287122A (en) Production of liquid crystal display body