JPS6322444B2 - - Google Patents

Info

Publication number
JPS6322444B2
JPS6322444B2 JP55188389A JP18838980A JPS6322444B2 JP S6322444 B2 JPS6322444 B2 JP S6322444B2 JP 55188389 A JP55188389 A JP 55188389A JP 18838980 A JP18838980 A JP 18838980A JP S6322444 B2 JPS6322444 B2 JP S6322444B2
Authority
JP
Japan
Prior art keywords
sintered body
voltage
nonlinear resistance
metal layer
resistance element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55188389A
Other languages
Japanese (ja)
Other versions
JPS57111004A (en
Inventor
Hiroshi Tsuyuki
Junichi Ideguchi
Yoshiaki Ishizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP55188389A priority Critical patent/JPS57111004A/en
Publication of JPS57111004A publication Critical patent/JPS57111004A/en
Publication of JPS6322444B2 publication Critical patent/JPS6322444B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、電圧非直線性抵抗素子及びその製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a voltage nonlinear resistance element and a method for manufacturing the same.

電圧非直線性抵抗素子は、電極間に加えられる
印加電圧によつて抵抗値が非直線的に変化し、印
加電圧がバリスタ電圧を超る範囲で、抵抗値が激
減して電流が急増する特異な特性を有している。
この電圧非直線性に着目し、電圧非直線性抵抗素
子は、音響機器に関する小形直流モータのノイズ
防止、リレー接点の保護、IC、LSI等の半導体素
子の静電気に対する保護、カラーテレビブラウン
管回路の放電吸収などの手段として、広く利用さ
れている。
Voltage nonlinear resistance elements are unique in that the resistance value changes nonlinearly depending on the applied voltage applied between the electrodes, and in the range where the applied voltage exceeds the varistor voltage, the resistance value sharply decreases and the current increases rapidly. It has certain characteristics.
Focusing on this voltage non-linearity, voltage non-linear resistance elements are used to prevent noise in small DC motors used in audio equipment, protect relay contacts, protect semiconductor devices such as ICs and LSIs from static electricity, and discharge electricity in color TV cathode ray tube circuits. It is widely used as a means of absorption.

電圧非直線性抵抗素子の種類としては、従来よ
り、酸化錫(SnO2)系、酸化鉄(Fe2O3)系、
酸化亜鉛(ZnO)系等が良く知られているが、最
近は、酸化チタン(TiO2)系、チタン酸ストロ
ンチウム(SrTiO3)系のものも注目されている。
これらの電圧非直線性抵抗素子は、種類によつて
動作原理を異にするが、概略的には、セラミツク
焼結体の表面又は内部におけるPN接合やシヨツ
トキー障害などのポテンシヤル障壁を通過する電
流の非直線性を利用したものである。すなわち、
BaTiO2系、SnO2系、Fe2O3系、ZnO系の一部の
ものは、焼結体自体は直線性抵抗体で、これに特
別な電極を付与することにより電極と焼結体との
間にポテシヤル障壁を形成し、その整流特性によ
つてバリスタ特性を得ている。したがつて、所定
のバリスタ特性を得るためには焼結体と電極との
界面における接触を、酸化皮膜や部分還元層のな
い一定の安定した状態にコントロールすることが
必要となる。ところが、従来は電極形成時の熱処
理条件、雰囲気条件によつて酸素の拡散等が起
り、酸化皮膜が部分還元のためにこの接触状態が
変化してしまい、バリスタ特性にバラツキを生じ
てしまうという難点があつた。
Conventionally, the types of voltage nonlinear resistance elements include tin oxide (SnO 2 )-based, iron oxide (Fe 2 O 3 )-based,
Zinc oxide (ZnO)-based materials are well known, but recently, titanium oxide (TiO 2 )-based materials and strontium titanate (SrTiO 3 )-based materials have also attracted attention.
The operating principle of these voltage nonlinear resistance elements differs depending on the type, but generally speaking, they are based on the current flow that passes through a potential barrier such as a PN junction or a Schottky fault on the surface or inside of a ceramic sintered body. This takes advantage of nonlinearity. That is,
For some BaTiO 2- based, SnO 2- based, Fe 2 O 3 -based, and ZnO-based products, the sintered body itself is a linear resistor, and by adding a special electrode to it, the electrode and sintered body can be connected. A potential barrier is formed between the two, and its rectifying properties provide varistor properties. Therefore, in order to obtain predetermined varistor characteristics, it is necessary to control the contact at the interface between the sintered body and the electrode to a certain stable state without an oxide film or a partially reduced layer. However, conventional methods have the disadvantage that oxygen diffusion occurs depending on the heat treatment conditions and atmospheric conditions during electrode formation, and the contact state changes due to partial reduction of the oxide film, resulting in variations in varistor characteristics. It was hot.

一方、TiO2系、SrTiO3系、ZnO系の一部の電
圧非直線性抵抗素子は、焼結体自体の有する電圧
非直線性を利用したものであり、焼結体自身の持
つバリスタ特性を充分に発揮させるために、通常
はオーム性接触電極を付与する。オーム性接触電
極を付与する方法としては、In―Ga合金をこす
り付ける方法、In―Ga含有銀ペースト焼付法、
Cu、Al等の金属溶射法、Ni―Cr合金の真空蒸着
法またはNi無電解メツキ法等がある。
On the other hand, some voltage nonlinear resistance elements such as TiO 2 series, SrTiO 3 series, and ZnO series utilize the voltage nonlinearity of the sintered body itself, and utilize the varistor characteristics of the sintered body itself. For full performance, ohmic contact electrodes are usually provided. Methods for applying ohmic contact electrodes include rubbing In-Ga alloy, baking In-Ga containing silver paste,
Examples include thermal spraying of metals such as Cu and Al, vacuum evaporation of Ni-Cr alloys, and electroless plating of Ni.

しかし、In―Ga合金をこすり付ける方法は合
金の融点が低く耐熱性に難があり、高価で不安定
であること、またリード線の接続に特別の工夫を
要するため生産性が上がらず、結果的に高価な電
極となつて実用には不向きである。
However, the method of rubbing In-Ga alloy has low melting point of the alloy and poor heat resistance, is expensive and unstable, and requires special ingenuity to connect the lead wires, which does not increase productivity. This makes the electrode expensive and unsuitable for practical use.

またNi―Cr合金の真空蒸着法、Cu、Al等の金
属溶射法は、焼結体に対する電極の付着力が弱
く、しかも加工性、生産性に難があり、結果的に
はコスト高となり、適当でない。更にNi無電解
メツキ法は、メツキ膜が酸化しやすく半田付けが
困難であり、Ni層の上に半田付けの良好なAg層
を焼付けラミネートした場合はコスト高になり、
また化学処理による残留イオンが寿命特性を劣化
させる等の難点がある。
In addition, vacuum evaporation of Ni-Cr alloys and thermal spraying of metals such as Cu and Al have weak adhesion of the electrode to the sintered body, and problems with workability and productivity, resulting in high costs. It's not appropriate. Furthermore, in the Ni electroless plating method, the plating film is easily oxidized and soldering is difficult, and if an Ag layer with good solderability is baked and laminated on the Ni layer, the cost will be high.
In addition, there are drawbacks such as residual ions caused by chemical treatment deteriorating life characteristics.

一方、オーミツク、銀焼付法は、In―Gaを微
量含有させた銀粉末ペーストを、スクリーン印刷
法などによつて印刷塗布し、これを焼付熱処理し
てオーム性接触電極を得るものであり、前述の各
方法に比べて、加工性、生産性が格段に優れてい
る。しかし、高価な銀を主成分として用いるため
にコスト高になること、シルバーマイグレーシヨ
ンの誘発や半田喰われ現象等による信頼性の低下
等を惹起し信頼性に難点があること、材料的に銀
に限定されその選択幅が小さいこと等の諸欠点の
ほか、焼付熱処理の過程で焼結体の表面が酸化ま
たは還元され、パリスタ特性にバラツキを生じる
という欠点もあつた。
On the other hand, in the ohmic silver baking method, a silver powder paste containing a small amount of In-Ga is printed and coated using a screen printing method or the like, and then baked and heat-treated to obtain an ohmic contact electrode. It has much better workability and productivity than the other methods. However, since expensive silver is used as the main component, the cost is high, reliability is reduced due to silver migration and solder eating phenomena, etc., and there are problems with reliability. In addition to various drawbacks such as a limited selection range and a narrow selection range, there was also the drawback that the surface of the sintered body was oxidized or reduced during the baking heat treatment process, causing variations in the pallister characteristics.

本発明は上述する従来の欠点を除去し、電極形
成にあたつて、焼結体と電極との界面の酸化皮
膜、焼結体の部還元化を阻止して、パリスタ特性
を向上させると同時に安定させ、更に、加工性、
生産性、半田付性を向上させ、電極コストを低減
させた電圧非直線性抵抗素子及びその製造方法を
提供することを目的とする。
The present invention eliminates the above-mentioned conventional drawbacks, prevents the oxide film on the interface between the sintered body and the electrode, and the partial reduction of the sintered body when forming the electrode, and improves the pallister characteristics. Stabilize, further improve workability,
It is an object of the present invention to provide a voltage nonlinear resistance element that improves productivity and solderability and reduces electrode cost, and a method for manufacturing the same.

この目的を達成するため、本発明は、焼結体の
表面に電極となる金属層を付与した後、中性雰囲
気中で800℃以下の温度で熱処理することを特徴
とする。
In order to achieve this object, the present invention is characterized in that after a metal layer serving as an electrode is provided on the surface of a sintered body, heat treatment is performed at a temperature of 800° C. or lower in a neutral atmosphere.

第1図は、TiO2焼結体の表面にオーミツク銀
ペーストを塗布した後、空気中で熱処理したもの
(曲線A1)と、窒素雰囲気(中性雰囲気)中で熱
処理したもの(曲線A2)の電圧―電流特性を測
定した結果を示している。図において縦軸に電流
I(mA)をとり、横軸に電圧V(V)をとつてあ
る。この第1図の曲線A1,A2の比較から明らか
なように、空気中で熱処理した電圧非直線性抵抗
素子(曲線A1)は、パリスタ特性は非常に低い
ものであるが、窒素雰囲気中の中性雰囲気中で熱
処理した電圧非直線性抵抗素子(曲線A2)は極
めて高いパリスタ特性を示す。これは、空気中の
熱処理では焼結体と電極との界面に空気の拡散等
により酸化皮膜が形成され、オーミツク接触つま
りバリスタ特性が出なくなるのに対し、中性雰囲
気中で熱処理した場合は、この酸化皮膜が形成さ
れず、したがつて安定したバリスタ特性が充分に
発揮されるものと考えられる。
Figure 1 shows the TiO 2 sintered body that was heat-treated in air after applying Ohmic silver paste on its surface (curve A 1 ), and the one that was heat-treated in a nitrogen atmosphere (neutral atmosphere) (curve A 2 ). ) shows the results of measuring the voltage-current characteristics of In the figure, the vertical axis represents the current I (mA), and the horizontal axis represents the voltage V (V). As is clear from the comparison of curves A 1 and A 2 in Fig. 1, the voltage nonlinear resistance element heat-treated in air (curve A 1 ) has very low pallister characteristics, but The voltage nonlinear resistance element (curve A 2 ) heat-treated in a neutral atmosphere exhibits extremely high pallister characteristics. This is because heat treatment in air forms an oxide film on the interface between the sintered body and the electrode due to air diffusion, which prevents ohmic contact or varistor characteristics, whereas heat treatment in a neutral atmosphere It is considered that this oxide film is not formed and therefore stable varistor characteristics are fully exhibited.

次に、第2図はTiO2焼結体を各温度400〜960
℃において特殊雰囲気で熱処理した後、In―Ga
の合金ペーストを塗布したものの電圧―電流特性
を測定した結果を示すグラフである。この第2図
を見ると明らかなように、400〜800℃の温度範囲
では、一定したバリスタ特性が得られるが、温度
が800℃を超え870℃、960℃のように上昇すると、
バリスタ特性がそれにつれて変化して行くことが
わかる。これは、800℃以上の温度で熱処理した
場合、焼結体の表面が還元されるためと考えられ
る。
Next, Figure 2 shows the TiO 2 sintered body at various temperatures of 400 to 960.
After heat treatment in a special atmosphere at ℃, In-Ga
3 is a graph showing the results of measuring the voltage-current characteristics of a material coated with the alloy paste. As is clear from Figure 2, constant varistor characteristics can be obtained in the temperature range of 400 to 800°C, but when the temperature exceeds 800°C and increases to 870°C and 960°C,
It can be seen that the varistor characteristics change accordingly. This is thought to be because the surface of the sintered body is reduced when heat treated at a temperature of 800°C or higher.

すなわち、焼結体の表面に電極となる金属層を
付与した後、中性雰囲気中で800℃以下の温度で
熱処理することにより、焼結体と電極との界面に
おける酸素拡散による酸化皮膜の形成を防止する
と同時に、焼結体の還元化を阻止し、高度の安定
したバリスタ特性を有する電圧非直線性抵抗素子
を実現することができる。
In other words, after applying a metal layer to serve as an electrode on the surface of the sintered body, heat treatment is performed at a temperature of 800°C or less in a neutral atmosphere to form an oxide film due to oxygen diffusion at the interface between the sintered body and the electrode. At the same time, it is possible to prevent reduction of the sintered body and realize a voltage nonlinear resistance element having highly stable varistor characteristics.

このバリスタ特性の改善効果は、焼結体の種類
に関係なく得られる。すなわち、焼結体は
SrTiO3系、TiO2系、SnO2系、Fe2O3系または
ZnO系などのいずれであつてもよい。
This effect of improving varistor characteristics can be obtained regardless of the type of sintered body. In other words, the sintered body is
SrTiO 3 series, TiO 2 series, SnO 2 series, Fe 2 O 3 series or
It may be of any type such as ZnO type.

また、焼結体の表面に付与する電極としての金
属層は、Cu、Ag、Ni、Ni―Cr合金等、幅広く
選定することができる。したがつて、これらの電
極材料を適宜選定することにより、用途目的に合
つた融通性の高い電極形成が可能となる。たとえ
ば、Cu、Ni等を使用して電極コストを引き下げ
たり、Cu、Ag等を使用して半田付け性を改善し
たりすることも自由である。第3図はCu電極と
した場合の本発明に係る電圧非直線性抵抗素子の
電圧―電流特性図であり、熱処理温度400〜750℃
の範囲で、極めて優れた特性が得られていること
がわかる。なお、Cu電極の場合は、熱処理温度
を600〜800℃程度とすることが望ましい。Cu電
極の焼付の場合、600℃以上の温度で熱処理する
と、引張強度が増大するからである。
Further, the metal layer as an electrode provided on the surface of the sintered body can be selected from a wide range of materials such as Cu, Ag, Ni, and Ni-Cr alloy. Therefore, by appropriately selecting these electrode materials, it is possible to form highly flexible electrodes that suit the purpose of use. For example, it is free to use Cu, Ni, etc. to reduce electrode cost, or to use Cu, Ag, etc. to improve solderability. FIG. 3 is a voltage-current characteristic diagram of the voltage nonlinear resistance element according to the present invention when a Cu electrode is used, and the heat treatment temperature is 400 to 750°C.
It can be seen that extremely excellent characteristics are obtained within this range. In addition, in the case of a Cu electrode, it is desirable that the heat treatment temperature is about 600 to 800°C. This is because when baking a Cu electrode, heat treatment at a temperature of 600°C or higher increases the tensile strength.

また、焼結体の表面に金属層を形成する方法と
しては、金属粉末ペーストをスクリーン印刷する
方法が最適である。このスクリーン印刷法は、焼
結体に対する付着力の強い電極が形成できること
加工性、生産性が高いこと等の利点があるからで
ある。ただし、このスクリーン印刷法のほか、ス
パツタリング等、他の方法を採用することもでき
る。また、Cu、Ni、Ni―Cr合金等で電極を形成
した場合は、その上に、半田メツキまたは半田コ
ート等を施し、半田付性を向上させることが望ま
しい。
Furthermore, as a method for forming a metal layer on the surface of the sintered body, a method of screen printing a metal powder paste is most suitable. This is because this screen printing method has advantages such as being able to form electrodes with strong adhesion to the sintered body, and having high processability and productivity. However, other than this screen printing method, other methods such as sputtering can also be used. Further, when the electrode is formed of Cu, Ni, Ni-Cr alloy, etc., it is desirable to apply solder plating or solder coating thereon to improve solderability.

以上述べたように、本発明は、焼結体の表面に
電極となる金属層を付与した後、中性雰囲気中で
800℃以下の温度で熱処理することを特徴とする
から、電極形成にあたつて、焼結体と電極との界
面における酸化皮膜の形成、焼結体の部分還元を
阻止し、バリスタ特性を向上させると同時に安定
させ、更に、加工性、生産性、半田付性を向上さ
せ、電極コストを低減させた、電圧非直線性抵抗
素子及びその製造方法を提供することができる。
As described above, in the present invention, after providing a metal layer to serve as an electrode on the surface of a sintered body,
Since it is characterized by heat treatment at a temperature of 800℃ or less, it prevents the formation of an oxide film at the interface between the sintered body and the electrode and partial reduction of the sintered body during electrode formation, improving varistor characteristics. It is possible to provide a voltage nonlinear resistance element and a method for manufacturing the same, which are simultaneously stabilized and improved in processability, productivity, and solderability, and reduced in electrode cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼結体の表面に銀ペーストを塗布した
後、空気中で熱処理したものと、中性雰囲気中で
熱処理したものの電圧―電流特性図、第2図は焼
結体を温度400〜960℃の特殊雰囲気で熱処理した
後、In―Gaのペーストを塗布したものの電圧―
電流特性図、第3図はCu電極として焼付熱処理
したものの電圧―電流特性図である。
Figure 1 is a voltage-current characteristic diagram of a sintered body heat-treated in air and a neutral atmosphere after applying silver paste on the surface, and Figure 2 is a sintered body heated to a temperature of 400~ Voltage after applying In-Ga paste after heat treatment in a special atmosphere of 960℃
Current characteristic diagram. Figure 3 is a voltage-current characteristic diagram of a Cu electrode subjected to baking heat treatment.

Claims (1)

【特許請求の範囲】 1 焼結体の表面に、中性雰囲気中で800℃以下
の温度で熱処理されたCu、Ag、Ni、Ni―Cr合
金の一種以上を主成分とする金属層を有すること
を特徴とする電圧非直線性抵抗素子。 2 前記焼結体は、SrTiO3、TiO2、SnO2
Fe2O3、ZnOのいずれかを主成分とするものより
成ることを特徴とする特許請求の範囲第1項に記
載の電圧非直線性抵抗素子。 3 前記金属層は、最外層に半田付け性の良好な
金属層を有することを特徴とする特許請求の範囲
第1項または第2項に記載の電圧非直線性抵抗素
子。 4 焼結体の表面に電極となる金属層を付与した
後、中性雰囲気中で800℃以下の温度で熱処理す
ることを特徴とする、電圧非直線性抵抗素子の製
造方法。 5 前記焼結体は、SrTiO3、TiO2、SnO2
Fe2O3、ZnOのいずれかを主成分とするものより
成ることを特徴とする特許請求の範囲第4項に記
載の電圧非直線性抵抗素子の製造方法。 6 前記金属層は、Cu、Ag、Ni、Ni―Cr合金
の一種以上を主成分とするものより成ることを特
徴とする特許請求の範囲第4項または第5項に記
載の電圧非直線性抵抗素子の製造方法。 7 前記金属層は、前記焼結体の表面に金属粉末
ペーストをスクリーン印刷して付与することを特
徴とする特許請求の範囲第4項、第5項または第
6項に記載の電圧非直線性抵抗素子の製造方法。 8 前記金属層は、前記焼結体の表面にスパツタ
リングによつて付与することを特徴とする特許請
求の範囲第4項、第5項または第6項に記載の電
圧非直線性抵抗素子。
[Claims] 1. A metal layer whose main component is one or more of Cu, Ag, Ni, and Ni-Cr alloy, which is heat-treated at a temperature of 800°C or less in a neutral atmosphere, on the surface of the sintered body. A voltage nonlinear resistance element characterized by: 2 The sintered body is made of SrTiO 3 , TiO 2 , SnO 2 ,
The voltage nonlinear resistance element according to claim 1, characterized in that it is made of an element containing either Fe 2 O 3 or ZnO as a main component. 3. The voltage nonlinear resistance element according to claim 1 or 2, wherein the metal layer has a metal layer with good solderability as an outermost layer. 4. A method for manufacturing a voltage nonlinear resistance element, which comprises applying a metal layer to serve as an electrode to the surface of a sintered body, and then heat-treating the sintered body at a temperature of 800°C or lower in a neutral atmosphere. 5 The sintered body is made of SrTiO 3 , TiO 2 , SnO 2 ,
5. The method of manufacturing a voltage nonlinear resistance element according to claim 4, wherein the voltage nonlinear resistance element is made of a material containing either Fe 2 O 3 or ZnO as a main component. 6. Voltage nonlinearity according to claim 4 or 5, characterized in that the metal layer is made of one or more of Cu, Ag, Ni, and Ni-Cr alloy as a main component. A method of manufacturing a resistive element. 7. Voltage nonlinearity according to claim 4, 5, or 6, wherein the metal layer is provided by screen printing a metal powder paste on the surface of the sintered body. A method of manufacturing a resistive element. 8. The voltage nonlinear resistance element according to claim 4, 5, or 6, wherein the metal layer is applied to the surface of the sintered body by sputtering.
JP55188389A 1980-12-26 1980-12-26 Voltage non-linear resistance element and method of producing same Granted JPS57111004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55188389A JPS57111004A (en) 1980-12-26 1980-12-26 Voltage non-linear resistance element and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55188389A JPS57111004A (en) 1980-12-26 1980-12-26 Voltage non-linear resistance element and method of producing same

Publications (2)

Publication Number Publication Date
JPS57111004A JPS57111004A (en) 1982-07-10
JPS6322444B2 true JPS6322444B2 (en) 1988-05-12

Family

ID=16222767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55188389A Granted JPS57111004A (en) 1980-12-26 1980-12-26 Voltage non-linear resistance element and method of producing same

Country Status (1)

Country Link
JP (1) JPS57111004A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861601A (en) * 1981-10-07 1983-04-12 株式会社村田製作所 Voltage nonlinear resistor
JPS60142503A (en) * 1983-12-28 1985-07-27 ティーディーケイ株式会社 Varistor
JP2841395B2 (en) * 1988-11-25 1998-12-24 ティーディーケイ株式会社 Method for manufacturing NTC thermistor
JPH031404U (en) * 1989-05-22 1991-01-09

Also Published As

Publication number Publication date
JPS57111004A (en) 1982-07-10

Similar Documents

Publication Publication Date Title
CA1103013A (en) Silver compositions
US3619703A (en) Degaussing device having series connected ptc and ntc resistors
JPS6243326B2 (en)
JPS6322444B2 (en)
JPS58178903A (en) Conductive paste
US5316973A (en) Method of making semiconducting ferroelectric PTCR devices
US3588636A (en) Ohmic contact and method and composition for forming same
US3678569A (en) Method for forming ohmic contacts
JPH07105719A (en) Conductive paste and resistor element
JPS6127003A (en) Conductive paste composition
JPH03233805A (en) Electrode of electronic part
JPH04211101A (en) Voltage nonlinear resistor element
JP3016560B2 (en) Method for manufacturing voltage non-linear resistor
JPH0370361B2 (en)
JP2503974B2 (en) Conductive paste
JPS62235702A (en) Positive characteristics porcelain semiconductor
JPS5854481B2 (en) Manufacturing method for electrodes for titanium-based oxides
JPS60701A (en) Ormic electrode
JP2649081B2 (en) Thick film copper paste
KR100426158B1 (en) Silver-containing stubbing paste for attaching ceramic PTC thermistors
JPH02306606A (en) Semiconductor porcelain electronic parts and conductive composition
JPH0415563B2 (en)
JPH1153938A (en) Semiconductor ceramic conductive paste and semiconductor ceramic part
JPS62238602A (en) Positive characteristics porcelain
JPH07297008A (en) Positive temperature coefficient thermistor and thermistor device using the same