JPS63223302A - Ceramics stationary blade for gas turbine - Google Patents

Ceramics stationary blade for gas turbine

Info

Publication number
JPS63223302A
JPS63223302A JP5659287A JP5659287A JPS63223302A JP S63223302 A JPS63223302 A JP S63223302A JP 5659287 A JP5659287 A JP 5659287A JP 5659287 A JP5659287 A JP 5659287A JP S63223302 A JPS63223302 A JP S63223302A
Authority
JP
Japan
Prior art keywords
blade
lower side
ceramic
side wall
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5659287A
Other languages
Japanese (ja)
Inventor
Saburo Usami
三郎 宇佐美
Ichiro Takahashi
一郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5659287A priority Critical patent/JPS63223302A/en
Publication of JPS63223302A publication Critical patent/JPS63223302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To prevent the generation of excessive heat stress in a simple construction by interposing a ceramics spring in at least one position between a blade and upper/lower side walls so as to absorb relative-displacements in the radial direction among all components. CONSTITUTION:The upper and lower portions of a blade 1 are respectively held by means of upper and lower side wall plates 2, 3 so as to form a radial passage. And then, upper and lower side walls 4, 5 are abutted to the upper and lower surfaces of the upper and lower side wall plates 2, 3, respectively, and respective projections 8, 9 are engaged with the retainer ring 10 and the support ring 11 of a gas turbine casing so as to form a blade body. In this case, a ceramics spring 13 is, for example, fixed via a flat plate seat 14 on the upper surface of the upper side wall 4. And further, the head portion of a bolt 12 is fixed to the outer surface of the lower side wall 5, wherein the bolt 12 is fitted by passing through the central portions of respective components. Therefore, the spring 13 can absorb relative-displacements in the radial direction among all components.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービン用セラミック静翼に係り。[Detailed description of the invention] [Industrial application field] The present invention relates to a ceramic stator blade for a gas turbine.

特に構造の簡単なセラミック静翼に関する。In particular, it relates to ceramic stator blades with a simple structure.

〔従来の技術〕[Conventional technology]

耐熱l911製のケーシングに組込んで用いられる従来
のセラミック静翼は、特開昭54−106714号に記
載のように、中央翼の内部を貫通して金属コアを設置し
、この金属コアによって翼とその上下に配置したサイド
ウオールを一体化する構成となしていた。この構成の特
徴は、耐熱性のセラミック翼とサイドウオールで断熱と
流路形成を行い、金属コアで負荷を分担するように機能
を分けた点にある。
Conventional ceramic stator blades that are used by being assembled into a casing made of heat-resistant l911 have a metal core installed through the center blade, as described in Japanese Patent Application Laid-open No. 54-106714. It was designed to integrate the sidewalls placed above and below it. The feature of this configuration is that the heat-resistant ceramic blades and sidewalls provide insulation and flow path formation, while the metal core divides the functions to share the load.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この従来技術においては、高温の燃焼ガスの下で金属コ
アの強度や耐食性を確保するため、金属コア内を空冷し
たり、翼と金属コアの間に断熱材を設置する必要がある
。金属コア内の冷却空気は燃焼ガス中に放出されるため
ガスタービンの効率を低下させる要因となる。また、こ
の冷却空気によって翼内面やサイドウオールの片面を冷
却すると、燃焼ガスに接する他の部分との間に温度差を
生じ、これらセラミック部材内に熱応力を発生させるこ
とになる。さらに、この空気の流路が閉塞するなどして
十分な冷却が行なわれない場合には、金属コアの変形や
酸化が進むことが考えられる。
In this conventional technology, in order to ensure the strength and corrosion resistance of the metal core under high-temperature combustion gas, it is necessary to air-cool the inside of the metal core or install a heat insulating material between the blades and the metal core. The cooling air within the metal core is released into the combustion gases and is a factor that reduces the efficiency of the gas turbine. Furthermore, when the inner surface of the blade or one side of the sidewall is cooled by this cooling air, a temperature difference is generated between the inner surface of the blade and one side of the sidewall that is in contact with the combustion gas, and thermal stress is generated within these ceramic members. Further, if sufficient cooling is not performed due to blockage of the air flow path, deformation and oxidation of the metal core may proceed.

本発明の目的は、金属コアとその冷却手段をなくして構
造の簡単なガスタービン用セラミック静翼を提供するこ
とにある。
An object of the present invention is to provide a ceramic stator vane for a gas turbine that has a simple structure by eliminating a metal core and its cooling means.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、耐熱セラミック製ボルトを翼内とサイドウ
オールの一つを貫通させて、耐熱セラミックばねを介し
ナツト締結することにより、達成される。
The above object is achieved by passing a heat-resistant ceramic bolt through the wing and one of the sidewalls and fastening it with a nut via a heat-resistant ceramic spring.

〔作用〕[Effect]

燃焼ガスによって翼が加熱膨張することによる半径方向
の相対変化はセラミック製ばねにより吸収されるため、
翼とサイドウオール間に大きな熱応力が発生することは
防止でき、耐熱セラミック製ボルト、ナツト、ばねは冷
却を必要としない。
The relative change in the radial direction due to the heating and expansion of the blades due to the combustion gases is absorbed by the ceramic springs.
Large thermal stresses between the wings and sidewalls are avoided, and the high-temperature ceramic bolts, nuts, and springs do not require cooling.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図及び第2図により説明
する。翼1は耐熱セラミックの炭化珪素製で、軸方向の
流路を形成し、内部が中空の柱状をなしている。上、下
サイドウオール板2,3は、それぞれ前記翼1の上下を
保持して半径方向の流路を形成するもので、同じく炭化
珪素製で中央に円孔を有する平行四辺形の板状をなして
いる。上。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. The blade 1 is made of silicon carbide, a heat-resistant ceramic, and has a columnar shape with an axial flow path and a hollow interior. The upper and lower sidewall plates 2 and 3 respectively hold the upper and lower sides of the blade 1 to form a radial flow path, and are also made of silicon carbide and have a parallelogram plate shape with a circular hole in the center. I am doing it. Up.

下サイドウオール4,5は同様の平行四辺形の縁形状を
有し中央に円孔を有するニッケル基耐熱合金製で、それ
ぞれ炭化珪素製シールリング6.7を介して前記上、下
サイドウオール板2,3の上。
The lower sidewalls 4 and 5 are made of a nickel-based heat-resistant alloy with similar parallelogram edge shapes and a circular hole in the center, and are connected to the upper and lower sidewall plates through silicon carbide seal rings 6 and 7, respectively. Above 2 and 3.

下面に接している。これら上、下サイドウオール4.5
の上、下面には突起8,9が形成され、それらはそれぞ
れガスタービンケーシングのリテーナリング10とサポ
ートリング11に係合して翼体を固定する。ボルト12
は炭化珪素製で焼結後にねじ部を精密研削され、下方の
下サイドウオール5外面に頭部が固定され、下サイドウ
オール5゜下サイドウオール板3.翼1.上サイドウオ
ール板2および上サイドウオール6の中央部および板ば
ね13の中央部を貫通している。板ばね13は炭化珪素
製で下面は精密研削で平坦に仕上げられ、同じく炭化珪
素製の平板座14を介して上サイドウオール4の上面に
固定される。ナツト15は炭化珪素製で、ボルト12に
嵌合しばね13を介して翼体を組立てる。断熱材16は
炭化珪素繊維製で、翼1内及び上、下サイドウオール板
2,3と上、下サイドウオール4,5間の空間に配置さ
れる。耐熱シール17.18は上、下サイドウオール板
2,3及び上、下サイドウオール4,5の縁部に設けら
れた溝に挿入されて隣接翼間における燃焼ガスのシール
を行う。
It touches the bottom surface. These upper and lower side walls 4.5
Protrusions 8 and 9 are formed on the upper and lower surfaces of the blade body, and these protrusions 8 and 9 engage with a retainer ring 10 and a support ring 11 of the gas turbine casing, respectively, to fix the blade body. bolt 12
is made of silicon carbide, the threaded part is precisely ground after sintering, and the head is fixed to the outer surface of the lower sidewall 5 below, and the lower sidewall plate 3. Wings 1. It passes through the center portions of the upper sidewall plate 2 and the upper sidewall 6 and the center portion of the leaf spring 13. The leaf spring 13 is made of silicon carbide, the lower surface of which is finished flat by precision grinding, and is fixed to the upper surface of the upper sidewall 4 via a flat seat 14 also made of silicon carbide. The nut 15 is made of silicon carbide, and is fitted onto the bolt 12 to assemble the wing body via the spring 13. The heat insulating material 16 is made of silicon carbide fiber and is disposed within the blade 1 and in the space between the upper and lower sidewall plates 2 and 3 and the upper and lower sidewalls 4 and 5. The heat-resistant seals 17 and 18 are inserted into grooves provided at the edges of the upper and lower sidewall plates 2 and 3 and the upper and lower sidewalls 4 and 5 to seal combustion gas between adjacent blades.

以上の構成で翼体を組立てるにあたっては、下サイドウ
オール5にボルト12を貫通させると共にその上面にシ
ールリング7と断熱材16を配置してその上に下サイド
ウオール板3と翼1を載置する。次に、翼1内に断熱材
16を充填した後、その上に上サイドウオール板2.シ
ールリング6゜断熱材16及び上サイドウオール4を載
置し、さらにその上に平板座14とばね13を設置する
When assembling the wing body with the above configuration, the bolts 12 are passed through the lower sidewall 5, the seal ring 7 and the heat insulating material 16 are arranged on the upper surface, and the lower sidewall plate 3 and the wing 1 are placed on top of the bolts 12. do. Next, after filling the inside of the blade 1 with a heat insulating material 16, an upper sidewall plate 2. A seal ring 6°, a heat insulating material 16 and an upper side wall 4 are placed, and a flat plate seat 14 and a spring 13 are further installed thereon.

その後、ボルト12の上端からナツト15を挿入して締
付けることにより、翼体は組立てられる。
Thereafter, the wing body is assembled by inserting and tightening the nut 15 from the upper end of the bolt 12.

このとき、翼1には半径方向に圧縮応力が加えられ、熱
衝撃時などにおける翼1の破壊を防止する作用がある。
At this time, compressive stress is applied to the blade 1 in the radial direction, which has the effect of preventing destruction of the blade 1 during thermal shock or the like.

これら翼体をケーシングに設置する方法は、従来の金属
製翼体の場合と同様で、円周方向に一部切欠いた部分か
ら挿入してケーシングのリテーナリング10とサポート
リング11に突起8,9を係合させて周方向に送り、隣
接する翼体の両者間にシール17.18を設置する。サ
ポートリング11と突起9の間には半径方向の熱変形を
吸収する間隙21を存在させである。
The method for installing these wing bodies in the casing is the same as in the case of conventional metal wing bodies, by inserting them from a partially cut out part in the circumferential direction and attaching the protrusions 8 and 9 to the retainer ring 10 and support ring 11 of the casing. are engaged and sent circumferentially to establish seals 17, 18 between adjacent airfoils. A gap 21 is provided between the support ring 11 and the protrusion 9 to absorb thermal deformation in the radial direction.

約1500℃の燃焼ガスが流入した場合も、流路を形成
してこの燃焼ガスと接触する翼1.上。
Even when combustion gas of about 1500°C flows in, the blades 1 form a flow path and come into contact with the combustion gas. Up.

下サイドウオール板2,3及び伝熱によって昇温するボ
ルト12.ばね13.ナツト15はいずれも十分な耐熱
性を有する炭化珪素製であるから、これらは空冷しなく
ても十分な強度と耐酸化性を有する。また、翼1が昇降
温によって膨張収縮し、ボルトに対して半径方向に相対
変位を生じても、そればばね13の変形によって吸収し
、翼体に無理な応力が発生することは防止される。なお
、リテーナリング10と上サイドウオール6の間の空間
19及び下サイドウォール5下部の空間20には、従来
の金属製翼体の場合と同様、冷却空気が導入されている
から、金属製のこれら部材10゜6.5は高温にさらさ
れることはない。
Lower sidewall plates 2, 3 and bolts 12 whose temperature increases due to heat transfer. Spring 13. Since the nuts 15 are all made of silicon carbide which has sufficient heat resistance, they have sufficient strength and oxidation resistance even without air cooling. Furthermore, even if the blade 1 expands and contracts due to rising and falling temperatures and causes a relative displacement in the radial direction with respect to the bolt, this is absorbed by the deformation of the spring 13, and unreasonable stress is prevented from being generated in the blade body. . Note that cooling air is introduced into the space 19 between the retainer ring 10 and the upper sidewall 6 and the space 20 below the lower sidewall 5, as in the case of conventional metal wing bodies. These parts 10°6.5 are not exposed to high temperatures.

第3図に示す他の実施例では、上、下サイドウオール4
,5そのものを炭化珪素製とし、ボルト12も下サイド
ウオール5と一体としたもので、第1図に示した実施例
における上、下サイドウオール板2,3.シールリング
6.7.平板座14及び断熱材16を排除することが出
来る。この構造では熱応力が発生し易いため、温度変化
のゆるやかな場合に適している。
In another embodiment shown in FIG.
, 5 themselves are made of silicon carbide, and the bolts 12 are also integrated with the lower sidewall 5, so that the upper and lower sidewall plates 2, 3, . Seal ring 6.7. The flat seat 14 and the heat insulating material 16 can be eliminated. Since thermal stress is likely to occur in this structure, it is suitable for cases where temperature changes are gradual.

第4図に示すさらに他の実施例は、第1図に示した実施
例における翼1.上、下サイドウオール板2,3を一体
に成形し、上、下サイドウオール板2.3と上、下サイ
ドウオール4,5間に板状のばね13,13を配置した
もので、シールリング6.7.ボルト12.ナツト15
及び平板座14を排除できる。翼体の組立ては、リテー
ナリング10.サポートリング11へ挿入時に同時に行
なわれ、ばね13,13により突起8,9はそれぞれリ
テーナリング10.サポートリング11の内面へ半径方
向に押付けられる。
Still another embodiment shown in FIG. 4 is based on the blade 1 in the embodiment shown in FIG. The upper and lower sidewall plates 2, 3 are integrally molded, and plate-shaped springs 13, 13 are arranged between the upper and lower sidewall plates 2.3 and the upper and lower sidewalls 4, 5, and the seal ring 6.7. Bolt 12. Natsu 15
And the flat plate seat 14 can be eliminated. To assemble the wing body, use the retainer ring 10. When inserted into the support ring 11, the springs 13, 13 cause the protrusions 8, 9 to move, respectively, into the retainer ring 10. It is pressed radially onto the inner surface of the support ring 11.

〔発明の効果〕〔Effect of the invention〕

このように、本発明によれば翼に半径方向の圧縮応力が
付与されるとともに翼が加熱膨張することによる半径方
向変位はセラミック製ばねにより吸収されるため、過大
な熱応力が発生することは防止でき、さらに従来用いら
れていた金属コアとその冷却手段をなくして、構造簡単
なガスタービン用セラミック静翼が得られる。
As described above, according to the present invention, radial compressive stress is applied to the blade and the radial displacement caused by heating and expansion of the blade is absorbed by the ceramic spring, so that excessive thermal stress is prevented from occurring. Furthermore, by eliminating the conventionally used metal core and its cooling means, a ceramic stator vane for a gas turbine with a simple structure can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の縦断面図、第2図はその横
断面図、第3図は本発明の他の実施例の縦断面図、第4
図は本発明の更に他の実施例の断面図である。 1・・・翼、2・・・上サイドウオール板、3・・・下
サイドウオール板、4・・・上サイドウオール、5・・
・下サイドウオール、6,7・・・シールリング、10
・・・リテーナリング、11・・・サポートリング、1
2・・・ボルト、13・・・ばね。
FIG. 1 is a longitudinal cross-sectional view of one embodiment of the present invention, FIG. 2 is a cross-sectional view thereof, FIG. 3 is a longitudinal cross-sectional view of another embodiment of the present invention, and FIG.
The figure is a sectional view of yet another embodiment of the present invention. 1... Wing, 2... Upper side wall plate, 3... Lower side wall plate, 4... Upper side wall, 5...
・Lower side wall, 6, 7... Seal ring, 10
... Retainer ring, 11 ... Support ring, 1
2...Bolt, 13...Spring.

Claims (1)

【特許請求の範囲】 1、燃焼ガスの軸方向流路を形成するセラミツク製翼、
それぞれケーシング外周部のリテーナリングと内周部の
サポートリングに係合すると共に前記翼の半径方向両端
を保持する上、下サイドウオールとからなり、これら翼
、上、下サイドウオールの間の少なくとも1ケ所にセラ
ミツク製ばねを介在させて半径方向のこれら間の相対変
位を吸収するようにしたガスタービン用セラミツク静翼
。 2、特許請求の範囲第1項のものにおいて、翼を中空と
なすと共に該中空部を貫通してセラミツク製ボルトを設
置し、該ボルトは一端を上、下サイドウオールの一方に
固定され他端は他方を貫通してその外部に設置したばね
を介してナツトにより固定され、上、下サイドウオール
と翼を可撓性を有して半径方向に締結してなるガスター
ビン用セラミツク静翼。
[Claims] 1. Ceramic blades forming an axial flow path for combustion gas;
The upper and lower sidewalls each engage a retainer ring on the outer periphery of the casing and a support ring on the inner periphery of the casing and hold both ends of the blade in the radial direction. A ceramic stator vane for a gas turbine in which ceramic springs are interposed at two positions to absorb relative displacement between these parts in the radial direction. 2. In claim 1, the wing is hollow and a ceramic bolt is installed through the hollow part, one end of the bolt is fixed to one of the upper and lower side walls, and the other end is fixed to one of the upper and lower side walls. A ceramic stationary vane for a gas turbine, which is fixed by a nut through a spring installed on the outside of the second side wall, and the upper and lower sidewalls and the blade are flexibly fastened in the radial direction.
JP5659287A 1987-03-13 1987-03-13 Ceramics stationary blade for gas turbine Pending JPS63223302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5659287A JPS63223302A (en) 1987-03-13 1987-03-13 Ceramics stationary blade for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5659287A JPS63223302A (en) 1987-03-13 1987-03-13 Ceramics stationary blade for gas turbine

Publications (1)

Publication Number Publication Date
JPS63223302A true JPS63223302A (en) 1988-09-16

Family

ID=13031466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5659287A Pending JPS63223302A (en) 1987-03-13 1987-03-13 Ceramics stationary blade for gas turbine

Country Status (1)

Country Link
JP (1) JPS63223302A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218824A (en) * 1988-12-14 1990-08-31 General Electric Co <Ge> Frame assembly of gas turbine engine
US6081379A (en) * 1998-10-28 2000-06-27 Coherent, Inc. Multiple coupled Gires-Tournois interferometers for group-delay-dispersion control
US6154318A (en) * 1998-08-18 2000-11-28 Coherent, Inc. Group-delay-dispersive multilayer-mirror structures and method for designing same
US6164903A (en) * 1998-12-22 2000-12-26 United Technologies Corporation Turbine vane mounting arrangement
JP2001041003A (en) * 1999-07-16 2001-02-13 General Electric Co <Ge> Prestressed gas turbine nozzle
GB2409004A (en) * 2003-12-08 2005-06-15 Ingersoll Rand Energy Systems Radial flow turbine
JP2007182881A (en) * 2006-01-03 2007-07-19 General Electric Co <Ge> Gas turbine stator and turbine blade assembly
US7326030B2 (en) * 2005-02-02 2008-02-05 Siemens Power Generation, Inc. Support system for a composite airfoil in a turbine engine
US10072516B2 (en) 2014-09-24 2018-09-11 United Technologies Corporation Clamped vane arc segment having load-transmitting features
EP3670837A1 (en) * 2018-12-21 2020-06-24 Rolls-Royce plc Turbine section of a gas turbine engine with ceramic matrix composite vanes
EP4030036A1 (en) * 2021-01-15 2022-07-20 Raytheon Technologies Corporation Vane arc segment support platform with curved radial channel

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218824A (en) * 1988-12-14 1990-08-31 General Electric Co <Ge> Frame assembly of gas turbine engine
US6154318A (en) * 1998-08-18 2000-11-28 Coherent, Inc. Group-delay-dispersive multilayer-mirror structures and method for designing same
US6081379A (en) * 1998-10-28 2000-06-27 Coherent, Inc. Multiple coupled Gires-Tournois interferometers for group-delay-dispersion control
US6164903A (en) * 1998-12-22 2000-12-26 United Technologies Corporation Turbine vane mounting arrangement
EP1013885A3 (en) * 1998-12-22 2001-08-01 United Technologies Corporation Turbine vane mounting arrangement
JP2001041003A (en) * 1999-07-16 2001-02-13 General Electric Co <Ge> Prestressed gas turbine nozzle
GB2409004A (en) * 2003-12-08 2005-06-15 Ingersoll Rand Energy Systems Radial flow turbine
GB2409004B (en) * 2003-12-08 2007-07-04 Ingersoll Rand Energy Systems Nozzle bolting arrangement for a radial flow turbine
US7326030B2 (en) * 2005-02-02 2008-02-05 Siemens Power Generation, Inc. Support system for a composite airfoil in a turbine engine
JP2007182881A (en) * 2006-01-03 2007-07-19 General Electric Co <Ge> Gas turbine stator and turbine blade assembly
US10072516B2 (en) 2014-09-24 2018-09-11 United Technologies Corporation Clamped vane arc segment having load-transmitting features
EP3000979B1 (en) * 2014-09-24 2018-10-31 United Technologies Corporation Clamped vane arc segment having load-transmitting features
EP3670837A1 (en) * 2018-12-21 2020-06-24 Rolls-Royce plc Turbine section of a gas turbine engine with ceramic matrix composite vanes
US11047247B2 (en) 2018-12-21 2021-06-29 Rolls-Royce Plc Turbine section of a gas turbine engine with ceramic matrix composite vanes
EP4030036A1 (en) * 2021-01-15 2022-07-20 Raytheon Technologies Corporation Vane arc segment support platform with curved radial channel
US11448096B2 (en) 2021-01-15 2022-09-20 Raytheon Technologies Corporation Vane arc segment support platform with curved radial channel

Similar Documents

Publication Publication Date Title
RU2728671C2 (en) Turbine ring assembly without a mounting gap in a cold state
RU2741192C2 (en) Turbine ring assembly
US4679981A (en) Turbine ring for a gas turbine engine
EP1502009B1 (en) Attachment of a ceramic shroud in a metal housing
US10767863B2 (en) Combustor tile with monolithic inserts
US4396349A (en) Turbine blade, more particularly turbine nozzle vane, for gas turbine engines
US8967974B2 (en) Composite airfoil assembly
JP3984104B2 (en) Fixing the metal cap to the wall of the CMC combustion chamber in the turbomachine
EP0548929B1 (en) Catalytic combustion apparatus
US4378961A (en) Case assembly for supporting stator vanes
JPS63223302A (en) Ceramics stationary blade for gas turbine
JP2007107524A (en) Assembly for controlling thermal stress in ceramic matrix composite article
KR20070009391A (en) Method for loading and locking tangential rotor blades and blade design
JP2004176911A (en) Structure for mounting components having different coefficient or rate of thermal expansion or sealing space between the components
JP2003083088A (en) Sealing structure of combustor liner
US20220195894A1 (en) Turbine ring assembly mounted on a cross-member
JPH076366B2 (en) Gas turbine vane
JPS6050999B2 (en) Axial flow compressor stator structure
EP0204509B1 (en) Housing for turbocharger
US5704762A (en) Ceramic-to-metal stator vane assembly
US4053257A (en) Stator vane assembly for gas turbines
CN115298485A (en) Combustion chamber with ceramic heat shield and seal
JP5078341B2 (en) Turbine blade ring structure and assembly method thereof
US8591182B2 (en) Device for suspending guide blades
JPH0571761B2 (en)