JPS63222442A - High frequency integrated circuit - Google Patents

High frequency integrated circuit

Info

Publication number
JPS63222442A
JPS63222442A JP5625887A JP5625887A JPS63222442A JP S63222442 A JPS63222442 A JP S63222442A JP 5625887 A JP5625887 A JP 5625887A JP 5625887 A JP5625887 A JP 5625887A JP S63222442 A JPS63222442 A JP S63222442A
Authority
JP
Japan
Prior art keywords
metal
dielectric
semiconductor substrate
transmission line
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5625887A
Other languages
Japanese (ja)
Inventor
Toshihiko Yoshimasu
敏彦 吉増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP5625887A priority Critical patent/JPS63222442A/en
Publication of JPS63222442A publication Critical patent/JPS63222442A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To make the thickness of the dielectric of a strip line thin and to make the width of each transmission line narrow, by forming the transmission lines on the dielectric which is formed on a semiconductor substrate. CONSTITUTION:A grounding electrode metal 8 is formed on a GaAs semiconductor substrate 1. The metal 8 is connected to a grounding metal 9. An amorphous silicon oxide film is formed as a dielectric 10 on the metal 8. A gate wiring metal 11 and a drain wiring metal 14 are formed on the dielectric 10. The metals 11 and 14 are connected to a gate electrode metal 6 and a drain electrode metal 7, respectively. The metal 11 and the metal 14 are transmission lines. The metals 11 and 14 face the metal 8 by way of the dielectric 10. The metal 8, the dielectric 10 and the metal 11 form a strip line 15. Thus the thickness of the dielectric 10 of the line 15 becomes thin, and the width of each transmission line becomes narrow.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高周波集積回路に関し、さらに詳しくは、集
積回路内の伝送線路幅を細(出来ると共に伝送線路にお
ける波長短縮効果を抑制することが出来る高周波集積回
路に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to high frequency integrated circuits, and more specifically, to a high frequency integrated circuit that can reduce the width of a transmission line in an integrated circuit (as well as suppress the wavelength shortening effect in the transmission line). Concerning integrated circuits.

従来技術 従来の高周波集積回路として、例えばG、A。Conventional technology Examples of conventional high frequency integrated circuits include G and A.

等の半導体を用いた高周波モノリシック築積回路が知ら
れている。
High-frequency monolithic integrated circuits using semiconductors such as the following are known.

このような高周波モノリンク集積回路における伝送線路
は、半導体基板上に直接金属を層着することにより形成
されている。
The transmission line in such a high frequency monolink integrated circuit is formed by directly depositing a metal layer on a semiconductor substrate.

例えば、特性インピーダンス50Ωの伝送線路は、10
0μm厚のG、A、半導体基板上に約80μm幅で金を
蒸着して形成されている。
For example, a transmission line with a characteristic impedance of 50Ω is
It is formed by depositing gold to a width of about 80 μm on a G, A, and semiconductor substrate with a thickness of 0 μm.

第4図はその構造例を示すもので、1はG、A。FIG. 4 shows an example of its structure, where 1 is G and A.

半導体基板、2はMBSFETのソースのn+層、3は
ドレインのn十層、4はチャネルの1層、5はソース電
極金属、16はゲート電極配線金属、17はドレイン電
極配線金属、18は接地電極金属である。
Semiconductor substrate, 2 is n+ layer of source of MBSFET, 3 is n10 layer of drain, 4 is 1 layer of channel, 5 is source electrode metal, 16 is gate electrode wiring metal, 17 is drain electrode wiring metal, 18 is ground It is an electrode metal.

伝送線路は、ゲート電極配線金属16及びドレイン電極
配線金属17によって形成されており、G、A、半導体
基板1を挟んで接地電極金属18と対向し、ストリップ
線路15を形成している。
The transmission line is formed by a gate electrode wiring metal 16 and a drain electrode wiring metal 17, and faces a ground electrode metal 18 with G, A, and semiconductor substrate 1 in between, forming a strip line 15.

従来技術の問題点 ところが、高周波モノリシック集積回路の動作周波数が
高くなるにつれて、高誘電率の半導体基板を使用する場
合、回路設計上次のような問題点が生じる。半導体とし
てG、A、を例にとると、その比誘電率は約13と比較
的大きいため、動作周波数が高くなるにつれて、誘電体
としてのG。
Problems with the Prior Art However, as the operating frequency of high-frequency monolithic integrated circuits increases, the following problems arise in circuit design when using a semiconductor substrate with a high dielectric constant. Taking G and A as semiconductors as an example, their dielectric constant is relatively large at about 13, so as the operating frequency increases, the dielectric constant of G increases.

A、による波長の短縮が著しくなり、例えば100μm
厚の半絶縁性G、A、基板上に形成した特性インピーダ
ンス50Ωの伝送線路の線路幅は約80μmであり、そ
のときの実効比誘電率は約8である。従って、例えば2
0GHzの高周波信号(波長15m)が、前記伝送線路
を伝搬するときの波長は1 / 8 ′/2に短縮され
て約5.3fiとなる。
A, the wavelength is significantly shortened, for example by 100 μm.
The line width of the transmission line with a characteristic impedance of 50 Ω formed on thick semi-insulating G and A substrates is about 80 μm, and the effective dielectric constant at that time is about 8. Therefore, for example 2
When a 0 GHz high frequency signal (wavelength 15 m) propagates through the transmission line, the wavelength is shortened to 1/8'/2, which is approximately 5.3 fi.

そうすると、例えば第5図のような約80μm幅の伝送
線路のT字型分岐点を考えると、A点とB点間で約0.
015波長(−80μm15.3m)の電気長となって
しまうが、この電気長はスミスチャート上で約10“の
回転を与えるもので、回路設計上無視できなくなる。
For example, if we consider a T-shaped branch point of a transmission line with a width of about 80 μm as shown in FIG. 5, the distance between points A and B is about 0.
This results in an electrical length of 0.015 wavelength (-80 μm 15.3 m), which gives a rotation of about 10" on the Smith chart and cannot be ignored in terms of circuit design.

このため、回路設計上、分岐点をA点からB点までの間
のどこに設定するかを厳しく判断しなければならないが
、この判断は困難で、多くの場合は実験的に求めざるを
得ないという問題点があっ発明の目的 本発明の目的とするところは、伝送線路の幅を細く出来
ると共に、波長短縮効果を小さく抑え、回路設計上の困
難性を軽減することが出来る高周波集積回路を提供する
ことにある。
Therefore, in circuit design, it is necessary to make a strict judgment as to where to set the branch point between point A and point B, but this judgment is difficult and must be determined experimentally in many cases. SUMMARY OF THE INVENTION An object of the present invention is to provide a high-frequency integrated circuit that can reduce the width of a transmission line, suppress the wavelength shortening effect, and reduce difficulties in circuit design. It's about doing.

発明の構成 本発明の高周波集積回路は、半導体基板上に低抵抗率金
属により形成した接地電極と、前記接地電極上に形成し
た前記半導体基板より低誘電率の誘電体と、前記誘電体
上に形成した低抵抗率金属による伝送線路とにより形成
したストリップ線路を具備してなることを構成上の特徴
とするものである。
Structure of the Invention The high frequency integrated circuit of the present invention includes: a ground electrode formed of a low resistivity metal on a semiconductor substrate; a dielectric having a dielectric constant lower than that of the semiconductor substrate formed on the ground electrode; The structure is characterized by comprising a transmission line formed of a low resistivity metal and a strip line formed of a low resistivity metal.

作用 本発明の高周波集積回路では、伝送線路を半導体基板上
に直接形成するのではなく、半導体基板上に形成した誘
電体上に形成する。そして、その誘電体をストリップ線
路の誘電体とする。
Function: In the high frequency integrated circuit of the present invention, the transmission line is not formed directly on the semiconductor substrate, but on a dielectric material formed on the semiconductor substrate. Then, this dielectric material is used as a dielectric material of a strip line.

この誘電体厚は半導体基板厚よりも薄くできるので、同
じ特性インピーダンスをもたせるのに従来よりも線路幅
を細くすることができる。
Since this dielectric thickness can be made thinner than the semiconductor substrate thickness, the line width can be made narrower than in the past to provide the same characteristic impedance.

また、この誘電体は半導体基板より低誘電率なので、波
長短縮効果を低減でき、分岐点の設定等の回路設計上の
困難性が解消される。
Furthermore, since this dielectric material has a lower dielectric constant than the semiconductor substrate, the wavelength shortening effect can be reduced, and difficulties in circuit design such as setting branch points can be solved.

実施例 以下、図に示す実施例に基づいて、本発明を更に詳しく
説明する。ここに、第1図は本発明の一実施例の高周波
集積回路の要部断面図、第2TyJは本発明の一実施例
におけるT字型分岐点の平面図、第3図fa) (b)
 (cl (dl fatは第11!Iに示す高周波集
積回路の製造過程を示す要部断面図である。
EXAMPLES Hereinafter, the present invention will be explained in more detail based on examples shown in the drawings. Here, FIG. 1 is a sectional view of a main part of a high-frequency integrated circuit according to an embodiment of the present invention, 2nd TyJ is a plan view of a T-shaped branch point according to an embodiment of the present invention, and FIG. 3 fa) (b)
(cl (dl fat) is a sectional view of a main part showing the manufacturing process of the high frequency integrated circuit shown in No. 11!I.

第1図に示す高周波集積回路50において、G。In the high frequency integrated circuit 50 shown in FIG.

A、半導体基板1に、MESFETのソースのn″Iw
2と、ドレインのn今層3と、チャネルのn屓4とが形
成されている。
A, MESFET source n″Iw on semiconductor substrate 1
2, a drain n-layer 3, and a channel n-layer 4 are formed.

ソースのn”Fi2上にはソース電極金属5、ドレイン
のn十層3上にはドレイン電極金[7、チャネルの0層
4上にはゲート電極金属6が形成されている。
A source electrode metal 5 is formed on the source n'' Fi2, a drain electrode gold [7] is formed on the drain n'' layer 3, and a gate electrode metal 6 is formed on the channel 0 layer 4.

G、A、半導体基板l上には接地電極金属8が形成され
、その接地電極金1718はバイアホール等により形成
した接地金属9と接続されている。
G, A, a ground electrode metal 8 is formed on the semiconductor substrate l, and the ground electrode metal 1718 is connected to the ground metal 9 formed by a via hole or the like.

接地電極金属8上には非晶質のシリコン酸化膜を誘電体
10として形成している。
An amorphous silicon oxide film is formed as a dielectric 10 on the ground electrode metal 8 .

誘電体10上には、ゲート配線金属11とドレ  −イ
ン配線金属14とが形成され、これらは各々ゲート電極
金属6.ドレイン電極金I7!7と接続されている。
A gate wiring metal 11 and a drain wiring metal 14 are formed on the dielectric 10, each of which is connected to the gate electrode metal 6. It is connected to the drain electrode gold I7!7.

ゲート配線金属11.ドレイン配線金属14が伝送線路
であり、これらは誘電体10を介して接地電極金属8と
対向し、ストリップ線路15を形成している。
Gate wiring metal 11. The drain wiring metal 14 is a transmission line, which faces the ground electrode metal 8 via the dielectric 10 to form a strip line 15.

さて、非晶質のシリコン酸化膜の誘電体10は、例えば
3μm厚程度に薄く形成できる。そうすると、特性イン
ピーダンス50Ωを得るための伝送線路幅は約6.5μ
mとなり、従来のG11A、半導体基板上の伝送線路幅
約80μmの約1/12となる。
Now, the dielectric 10 made of an amorphous silicon oxide film can be formed as thin as, for example, about 3 μm. Then, the transmission line width to obtain a characteristic impedance of 50Ω is approximately 6.5μ.
m, which is approximately 1/12 of the transmission line width on the semiconductor substrate of the conventional G11A, which is approximately 80 μm.

また、伝送線路における実効比誘電率は約2.5であり
、20GHz高周波信号(波長15mm)が伝搬すると
きの波長は1/2.5′/2に短縮されて約9゜51と
なる。これは従来のG t A−半導体基板上の伝送線
路における波長約5.3 mmより波長短縮効果が小さ
くなっている。
Further, the effective dielectric constant of the transmission line is approximately 2.5, and the wavelength when a 20 GHz high frequency signal (wavelength 15 mm) propagates is shortened to 1/2.5'/2, which is approximately 9°51. This has a smaller wavelength shortening effect than the wavelength of about 5.3 mm in a conventional transmission line on a G t A-semiconductor substrate.

そこで、第2図に示す約6.5μm幅の伝送線路のT字
型分岐点を考えると、A点とB点間で約0゜0007波
長(=6.5 μm/9.5Wm)の電気長となり、ス
ミスチャート上の回転は約0.5°である。
Therefore, considering the T-shaped branch point of a transmission line with a width of approximately 6.5 μm shown in Fig. 2, an electric current of approximately 0°0007 wavelength (=6.5 μm/9.5 Wm) is generated between points A and B. The rotation on the Smith chart is about 0.5°.

従って、第2図のような分岐点での電気長は無視でき、
回路設計上の問題点を大幅に低減できる。
Therefore, the electrical length at the branch point as shown in Figure 2 can be ignored,
Problems in circuit design can be significantly reduced.

次に、高周波集積回路50の製造プロセス例を第3図[
a)〜(alを参照して説明する。但し、MESFET
の形成までのプロセスは従来と同様なので説明を省略し
、その後のプロセスについて以下に述べる。
Next, an example of the manufacturing process of the high frequency integrated circuit 50 is shown in FIG.
a) ~ (Explained with reference to al. However, MESFET
The process up to the formation of is the same as the conventional one, so the explanation will be omitted, and the subsequent process will be described below.

falG、A、半導体基板1上に接地電極金属8を形成
し、その接地電極金属8上に非晶質のシリコン酸化膜を
誘電体10として形成する。
falG, A. A ground electrode metal 8 is formed on a semiconductor substrate 1, and an amorphous silicon oxide film is formed as a dielectric 10 on the ground electrode metal 8.

(bl  レジスト12等を用いた光露光等によ性、誘
電体10にゲート電極金I7!6へ貫通する孔19およ
びドレイン電極金H7へ貫通する孔20をあける。
(bl) A hole 19 penetrating to the gate electrode gold I7!6 and a hole 20 penetrating to the drain electrode gold H7 are made in the dielectric 10 by photo-exposure using a resist 12 or the like.

FC+  ゲート電極金属6へ配線を行うための接続金
属13およびドレイン電極金M7へ配線を行うための接
続金属16 (例えば金等)をリフトオフ法等により形
成する。
A connection metal 13 for wiring to the FC+ gate electrode metal 6 and a connection metal 16 (for example, gold) for wiring to the drain electrode gold M7 are formed by a lift-off method or the like.

(d)  レジスト等によりパターニングし、金等の低
抵抗率の金属をリフトオフ法等により形成し、誘電体1
0上にゲート配線金属11およびドレイン配線金属14
を形成する。
(d) Patterning with resist etc. and forming a low resistivity metal such as gold by lift-off method etc. to form dielectric 1
Gate wiring metal 11 and drain wiring metal 14 on
form.

(al  接地電極金属8に、バイアホール等を用いて
接地金rjX9より接地電位を与える。
(Al Apply a ground potential to the ground electrode metal 8 from the ground metal rjX9 using a via hole or the like.

以上、高周波集積回路50を例にとって本発明の詳細な
説明したが、本発明はこれによって限定されるわけでは
なく、半導体基板としては、例えばSλや、InPその
他の化合物半導体等が使用可能であり、ストリップ線路
の誘電体としては、非晶質のシリコン窒化膜等も使用可
能である。
The present invention has been described above in detail by taking the high frequency integrated circuit 50 as an example, but the present invention is not limited thereto.For example, Sλ, InP, and other compound semiconductors can be used as the semiconductor substrate. As the dielectric material of the strip line, an amorphous silicon nitride film or the like can also be used.

発明の効果 本発明によれば、半導体基板上に低抵抗率金属により形
成した接地電極と、前記接地電極上に形成した前記半導
体基板より低誘電率の誘電体と、前記誘電体上に形成し
た低抵抗率金属による伝送線路とにより形成したストリ
ップ線路を具備してなることを特徴とする高周波集積回
路が提供され、これによりストリップ線路の誘電体の厚
さを薄くできるため伝送線路幅を細くできる。同時に、
この誘電体は半導体基板より低誘電率であるから、伝送
線路上を伝搬する高周波信号の波長短縮効果を低減でき
、これにより回路設計上の問題点が軽減される。
Effects of the Invention According to the present invention, a ground electrode formed of a low resistivity metal on a semiconductor substrate, a dielectric material having a lower dielectric constant than the semiconductor substrate formed on the ground electrode, and a dielectric material formed on the dielectric material. Provided is a high-frequency integrated circuit characterized by comprising a strip line formed by a transmission line made of a low-resistivity metal, whereby the thickness of the dielectric of the strip line can be made thinner, so that the width of the transmission line can be made narrower. . at the same time,
Since this dielectric material has a lower dielectric constant than the semiconductor substrate, it is possible to reduce the wavelength shortening effect of high frequency signals propagating on the transmission line, thereby reducing problems in circuit design.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の高周波集積回路の要部断面
図、第2図は本発明の一実施例におけるT字型分岐点の
平面図、第3図(al (bl (C) Fd) (8
1は第1図に示す高周波集積回路の製造過程を示す要部
断面図、第4図は従来の高周波集積回路の一例の要部断
面図、第5図は従来のT字型分岐点の平面図である。 (符号の説明) 1・・・G、A、半導体基板 8・・・接地電極金ffl     10・・・誘電体
11・・・ゲート配線金属 14・・・ドレイン配線金属 15・・・ストリップ線路。
FIG. 1 is a sectional view of a main part of a high-frequency integrated circuit according to an embodiment of the present invention, FIG. 2 is a plan view of a T-shaped branch point according to an embodiment of the present invention, and FIG. Fd) (8
1 is a cross-sectional view of a main part showing the manufacturing process of the high-frequency integrated circuit shown in FIG. 1, FIG. 4 is a cross-sectional view of a main part of an example of a conventional high-frequency integrated circuit, and FIG. 5 is a plan view of a conventional T-shaped branch point. It is a diagram. (Explanation of symbols) 1...G, A, semiconductor substrate 8...ground electrode gold ffl 10...dielectric 11...gate wiring metal 14...drain wiring metal 15...strip line.

Claims (1)

【特許請求の範囲】[Claims] 1、半導体基板上に低抵抗率金属により形成した接地電
極と、前記接地電極上に形成した前記半導体基板より低
誘電率の誘電体と、前記誘電体上に形成した低抵抗率金
属による伝送線路とにより形成したストリップ線路を具
備してなることを特徴とする高周波集積回路。
1. A ground electrode formed of a low resistivity metal on a semiconductor substrate, a dielectric having a lower dielectric constant than the semiconductor substrate formed on the ground electrode, and a transmission line made of a low resistivity metal formed on the dielectric. A high frequency integrated circuit comprising a strip line formed by.
JP5625887A 1987-03-11 1987-03-11 High frequency integrated circuit Pending JPS63222442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5625887A JPS63222442A (en) 1987-03-11 1987-03-11 High frequency integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5625887A JPS63222442A (en) 1987-03-11 1987-03-11 High frequency integrated circuit

Publications (1)

Publication Number Publication Date
JPS63222442A true JPS63222442A (en) 1988-09-16

Family

ID=13022056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5625887A Pending JPS63222442A (en) 1987-03-11 1987-03-11 High frequency integrated circuit

Country Status (1)

Country Link
JP (1) JPS63222442A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433408B1 (en) 1999-01-08 2002-08-13 Nec Corporation Highly integrated circuit including transmission lines which have excellent characteristics
JP2009246157A (en) * 2008-03-31 2009-10-22 Toshiba Corp High frequency band semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433408B1 (en) 1999-01-08 2002-08-13 Nec Corporation Highly integrated circuit including transmission lines which have excellent characteristics
JP2009246157A (en) * 2008-03-31 2009-10-22 Toshiba Corp High frequency band semiconductor device

Similar Documents

Publication Publication Date Title
JP3184493B2 (en) Electronic device manufacturing method
US3737743A (en) High power microwave field effect transistor
US4596070A (en) Interdigitated IMPATT devices
US4596069A (en) Three dimensional processing for monolithic IMPATTs
US4692791A (en) Monolithic IMPATT with stripline leads
US4824800A (en) Method of fabricating semiconductor devices
JPS63222442A (en) High frequency integrated circuit
JPS6146081A (en) Manufacture of josephson junction element
JP2852679B2 (en) Semiconductor device and manufacturing method thereof
JPS61111582A (en) Process of grounding planar device and ic and product obtained
JPS62211962A (en) Manufacture of high-frequency semiconductor device
JP2972638B2 (en) Superconducting planar circuit manufacturing method
JPH10200312A (en) Microwave integrated circuit
JP2792243B2 (en) High frequency transmission line
JPS62294303A (en) Semiconductor device and its manufacture
JPH10289966A (en) Flip chip semiconductor device
JP2878049B2 (en) High frequency transistor
JPS61268060A (en) Semiconductor device
JPH05235194A (en) Microwave monolithic integrated circuit
JPH03210803A (en) Transmission line with variable characteristic impedance
JP3533796B2 (en) Method for manufacturing semiconductor device
JP3168969B2 (en) Field effect transistor and integrated circuit, method for manufacturing field effect transistor or integrated circuit
JPH07183428A (en) Distribution amplifier ic
JPS61284969A (en) Manufacture of field effect transistor
JP2869902B2 (en) Half wavelength coupling filter