JPS63219558A - Heat treatment for ti-6al-4v alloy material - Google Patents

Heat treatment for ti-6al-4v alloy material

Info

Publication number
JPS63219558A
JPS63219558A JP5304187A JP5304187A JPS63219558A JP S63219558 A JPS63219558 A JP S63219558A JP 5304187 A JP5304187 A JP 5304187A JP 5304187 A JP5304187 A JP 5304187A JP S63219558 A JPS63219558 A JP S63219558A
Authority
JP
Japan
Prior art keywords
phase
less
cooling
hours
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5304187A
Other languages
Japanese (ja)
Inventor
Hideo Sakuyama
秀夫 作山
Hideo Takatori
英男 高取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP5304187A priority Critical patent/JPS63219558A/en
Publication of JPS63219558A publication Critical patent/JPS63219558A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To make homogeneous the mechanical properties of a large-sized member, by working a Ti-6Al-4V alloy material in the alpha+beta area or beta area, thereafter subjecting the material to heat holding and controlled cooling under specific conditions and applying the same to an aging treatment. CONSTITUTION:The Al-6Al-4V alloyed material is worked by rolling, forging, hydrostatic pressing, etc., in the alpha+beta area of beta area and is thereafter held for 10min-8hr at 800-1,050 deg.C. Said material is continuously cooled little by little in succession to the range of 600-800 deg.C and is held for 10min-8hr at said temp. The material is then cooled to about <=300 deg.C at the air-cooling ratio or cooling ratio over that, more specifically, at the cooling ratio of about >=0.15 deg.C/sec. In succession to said cooling treatment, the aging treatment is applied to the material for 1-10hr at the temp. range of 450-650 deg.C. By this treatment, the alpha phase is deposited from the residual beta phase and the strength of the material is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高比強度材料として広く用いられているTi
−6Al−4V合金材の特に大型の部材に適した熱処理
方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention applies to Ti, which is widely used as a high specific strength material.
The present invention relates to a heat treatment method suitable for particularly large-sized members made of -6Al-4V alloy materials.

[従来の技術] Ti−6Al−4V合金材はAl1.50〜6.75%
(重量基準) 、V3.50〜4.50%、l”eO,
30%以下、00.20%以下、C0,10%以下、N
 o、 05%以下、HO,015%以下、Y O,0
05%以下含むTi合金材で、その高い比強度と優れた
靭性とを利用し、構造用材料として広く用いられている
。近年ではその寸法の大型化した製品の需要が高まり、
大型部材を均一に高強度にする熱処理方法が必要とされ
るようになってきている。
[Prior art] Ti-6Al-4V alloy material has Al 1.50 to 6.75%
(weight basis), V3.50-4.50%, l”eO,
30% or less, 0.20% or less, C0.10% or less, N
o, 05% or less, HO, 015% or less, Y O, 0
It is a Ti alloy material containing 0.05% or less of Ti, and is widely used as a structural material due to its high specific strength and excellent toughness. In recent years, demand for products with larger dimensions has increased,
There is an increasing need for a heat treatment method that uniformly increases the strength of large components.

これに対し、一般に高強度を求める場合には、溶体化時
効処理、溶体化過時効処理等がとられるが、これらはマ
ルテンサイト変態を利用しているため、冷却速度が各部
位により異なる大型の部材では強度のばらつきが大きく
なる欠点を有する。
On the other hand, when high strength is generally required, solution aging treatment, solution overaging treatment, etc. are used, but since these utilize martensitic transformation, the cooling rate differs depending on each part of the large-sized The disadvantage is that the strength of the members varies widely.

また、均一な強度を得るための焼鈍処理や、二重焼鈍(
duplex anneal )では、高強度が得られ
にくい。同様にβ相からの焼き入れは、伸び、絞りが低
下するという欠点を有する。
In addition, annealing treatment and double annealing (
duplex anneal), it is difficult to obtain high strength. Similarly, quenching from the β phase has the disadvantage of decreasing elongation and reduction of area.

又、Ti−6Al−4V合金は、冷間での成形性が乏し
く熱間で加工されることが多い。この熱間での加工の目
的は、目的の形状にすることと、機械的性質の向上であ
る。
Furthermore, the Ti-6Al-4V alloy has poor cold formability and is often hot-processed. The purpose of this hot processing is to form a desired shape and to improve mechanical properties.

[発明が解決しようとする問題点] しかしながら、T i −6A 1  4 V 合金ハ
、熱間での加工硬化能は小ざく、変形が表面にかたより
がちである。このため、大型部材では、通常の焼鈍、例
えばA M 34920に定める705〜760℃の焼
鈍では、中心部は加工があまり加わっていないため、所
望の機械的性質の向上が1qられず、表面近傍で強度が
高く、中心部で強度が低い、不均一な強度分布をもつ。
[Problems to be Solved by the Invention] However, the T i -6A 14 V alloy C has a small hot work hardening ability, and deformation tends to be concentrated on the surface. For this reason, with normal annealing for large parts, such as annealing at 705 to 760°C specified in A M 34920, the center part is not processed much, so the desired mechanical properties cannot be improved by 1q, and the areas near the surface are It has an uneven intensity distribution with high intensity in the center and low intensity in the center.

この強度の不均一性は、応力が負荷された場合には、応
力集中を生じる原因となり、耐用期間の短縮につながる
This non-uniformity in strength causes stress concentration when stress is applied, leading to a shortened service life.

本発明では、Ti−6Al−4V合金大型部材の機械的
性質の均質化を目的とする。
The present invention aims to homogenize the mechanical properties of a large Ti-6Al-4V alloy member.

また、上記不均一性をさけるために、β変態点近傍より
徐冷することも考えられるが、このような熱処理では高
強度が得られない。そこで、発明ではさらに高強度を得
ることも目的とする。
Further, in order to avoid the above-mentioned non-uniformity, it is possible to perform slow cooling from near the β transformation point, but high strength cannot be obtained with such heat treatment. Therefore, the invention aims to obtain even higher strength.

[問題点を解決するための手段] 本発明は、Ti−6Al−4V合金材をα+β域または
β域で加工した後、880℃以上1050℃以下で10
分以上8時間以内保持し、その後600 ℃以上880
℃未満の範囲の温度まで連続的に徐冷し、その温度で1
0分以上8時間以内保持した後、空冷もしくはそれ以上
の冷却速度で冷却し、さらに450℃以上650℃以下
の温度域で1時間以上10時間以内の時効処理を加える
ことを特徴とするTi−6Al−4V合金材の熱処理方
法である。
[Means for Solving the Problems] The present invention provides a method for processing a Ti-6Al-4V alloy material in the α+β region or β region, and then processing the material at a temperature of 880°C or higher and 1050°C or lower for 10°C.
Hold for at least 8 hours, then at 600°C or more at 880°C.
Continuously slow cooling to a temperature in the range below ℃, and at that temperature 1
After holding for 0 minutes to 8 hours, the Ti- This is a method for heat treatment of 6Al-4V alloy material.

本発明の前記Ti−6Al−4V合金材はA I 5.
50〜6.75%(重量基準、以下同様)、■3.50
〜4.50%、Feo、30%以下、00.2%以下、
C0,10%以下、No、05%以下、l−10,01
5%以下、Y O,005%以下を含むTi合金材に適
用されるものである。
The Ti-6Al-4V alloy material of the present invention is A I5.
50-6.75% (weight basis, same below), ■3.50
~4.50%, Feo, 30% or less, 00.2% or less,
C0, 10% or less, No, 05% or less, l-10,01
It is applied to Ti alloy materials containing 5% or less and 0.005% or less.

上記α+β域またはβ域での加工は、例えば圧延、鍛造
、静水圧プレス等によって行い、その侵の熱処理により
、材料は全体にわたりα相の等軸化及び再結晶をおこし
、加工の前履歴の影響がなくなり、均一な状態となる。
Processing in the above α+β region or β region is performed, for example, by rolling, forging, isostatic pressing, etc., and the erosive heat treatment causes equiaxed and recrystallized α phase throughout the material, which changes the previous history of processing. The effect disappears and the state becomes uniform.

880℃未満の温度では、十分なα相の等軸化及び再結
晶が行われない。なお、かつこの間にAI、O等のα安
定化型元素はα相へ、V、Fe等のβ安定化型元素はβ
相へと濃縮されていく。
At temperatures below 880° C., sufficient equiaxing and recrystallization of the α phase does not occur. Additionally, during this period, α-stabilized elements such as AI and O enter the α phase, and β-stabilized elements such as V and Fe enter the β phase.
Concentrates into phases.

温度の上限を1050℃としたのは、これ以上の温度で
はα相が消失し、上記のα安定化型元素、β安定化型元
素の濃縮が行われないためでおる。
The reason why the upper limit of the temperature is set to 1050° C. is that at a temperature higher than this, the α phase disappears and the above-mentioned α-stabilized elements and β-stabilized elements are not concentrated.

時間を10分以上としたのは、これより短い時間では、
材料に均一な温度分布を与えられないためであり、8時
間以内としたのは、経済的な効率を考慮したためである
The reason for setting the time to 10 minutes or more is that if the time is shorter than this,
This is because a uniform temperature distribution cannot be given to the material, and the reason why the heating time is set within 8 hours is because economical efficiency is considered.

本発明では、上記高温での保持にひきつづき、600℃
以上880℃未満の範囲の温度まで徐冷するが、その徐
冷の速度は0.2℃/ Sec以下が適当である。そし
てその温度で10分以上8時間以内保持する。
In the present invention, in addition to holding at the above-mentioned high temperature,
It is slowly cooled to a temperature in the range below 880°C, and the slow cooling rate is suitably 0.2°C/Sec or less. Then, hold at that temperature for 10 minutes or more and 8 hours or less.

前記第1の保持温度から上記第2の保持温度までの徐冷
は、α相、β相の平衡的な変態を促し、なおかつ、β相
のβ安定化型元素による安定化も促進する。冷却速度が
速いときは、拡散が変態に追いつかないため、β相の安
定化が十分性われない。
Slow cooling from the first holding temperature to the second holding temperature promotes equilibrium transformation of the α phase and β phase, and also promotes stabilization of the β phase by the β stabilizing element. When the cooling rate is high, diffusion cannot keep up with transformation, and the β phase is not sufficiently stabilized.

第2の保持温度は、そこからの冷却により、マルテンサ
イト変態をおこさず、残留β相を多く残させることを目
的として選ばれている。平衡状態ではこれらの温度はM
f点より上に位置しているため、マルテンサイトを生じ
るはずであるが、β相にはβ安定化型元素が濃縮されて
いるため、本発明の場合はマルテンサイトは生じない。
The second holding temperature is selected for the purpose of not causing martensitic transformation and leaving a large amount of residual β phase by cooling from there. At equilibrium these temperatures are M
Since it is located above the f point, martensite should be produced, but since β-stabilizing elements are concentrated in the β phase, martensite is not produced in the case of the present invention.

ただし、600℃未満の温度ではβ相が安定化しすぎて
おり、この後の時効処理によってα相を析出させないた
め、本発明には含めない。
However, at temperatures below 600° C., the β phase becomes too stable and the α phase is not precipitated by the subsequent aging treatment, so it is not included in the present invention.

この後、空冷もしくはそれ以上の冷却速度で冷却するが
、具体的には0.15℃/ Sec以上の冷却速度で3
00℃以下の温度まで冷却する。これより遅い速度で冷
却した場合には、α相の成長により、β相は失くなって
しまい、残留β相は存在しない。
After that, it is cooled by air or at a cooling rate higher than that, but specifically, at a cooling rate of 0.15°C/Sec or higher.
Cool to a temperature below 00°C. If the cooling rate is slower than this, the β phase will be lost due to the growth of the α phase, and no residual β phase will exist.

上記の熱処理にひきつづき、450℃以上650℃以下
の温度域にて、1時間以上、10時間以内の時効処理を
加える。これにより残留β相からはα相が析出し、強度
を向上させる。
Following the above heat treatment, an aging treatment is applied at a temperature range of 450° C. or higher and 650° C. or lower for 1 hour or more and 10 hours or less. As a result, the α phase precipitates from the residual β phase, improving the strength.

[実施例] 以下に実施例を示す。[Example] Examples are shown below.

実施例1 直径240mm(7)T i −6A I −4V合金
α+β域鍛造材を供試材とした。これを950℃で1.
5時間保持後、1時間ないし1時間30分かけてa o
o’c又は700℃まで冷却し、その温度で1時間保持
した後水冷を行った。これに引き続き500℃又は60
0℃で4時間の時効処理を施した。
Example 1 A forged material in the α+β region of a Ti-6A I-4V alloy having a diameter of 240 mm (7) was used as a test material. This was heated to 950℃ for 1.
After holding for 5 hours, ao for 1 hour to 1 hour 30 minutes.
The mixture was cooled to 700° C., maintained at that temperature for 1 hour, and then cooled with water. Following this, 500℃ or 60℃
Aging treatment was performed at 0°C for 4 hours.

実施例2 実施例1におけるのと同じ供試材を用い、これを920
℃で1.5時間保持後、1時間ないし1時間30分かけ
て800℃又は700℃まで冷却し、その温度で1時間
保持した後水冷を行った。これに引き続き500℃又は
600℃で4時間の時効処理を施した。
Example 2 Using the same test material as in Example 1, it was
After being held at 1.5 hours at 0.degree. C., it was cooled to 800.degree. C. or 700.degree. C. over 1 hour to 1 hour and 30 minutes, kept at that temperature for 1 hour, and then cooled with water. Subsequently, aging treatment was performed at 500°C or 600°C for 4 hours.

かかる素材から図に示す位置から試験片を採取し、機械
的性質の試験をした。
A test piece was taken from the material at the position shown in the figure and tested for mechanical properties.

試験結果の1例として920℃より800℃まで冷却し
、ここより水冷したものを600℃で時効したものの試
験結果を表1に示す。
As an example of the test results, Table 1 shows the test results of a sample that was cooled from 920°C to 800°C, water-cooled from there, and then aged at 600°C.

表1 比較例1 実施例1と同じ供試材を用い、700℃で4時間熱処理
後空冷した。この素材の機械的性質の試験結果を表2に
示す。
Table 1 Comparative Example 1 Using the same test material as in Example 1, it was heat treated at 700° C. for 4 hours and then air cooled. Table 2 shows the test results for the mechanical properties of this material.

表2 比較例2 実施例1と同じ供試材を用い、1100℃で2時間熱処
理後空冷した。この素材の機械的性質の試験結果を表3
に示す。
Table 2 Comparative Example 2 The same test material as in Example 1 was heat treated at 1100° C. for 2 hours and then cooled in air. Table 3 shows the test results of the mechanical properties of this material.
Shown below.

表3 比較例3 実施例1と同じ供試材を用い、920℃で1.5時間熱
処理後至温まで徐冷し、ついで600℃で4時間時効処
理した。この素材の機械的性質の試験結果を表4に示す
Table 3 Comparative Example 3 Using the same test material as in Example 1, it was heat treated at 920°C for 1.5 hours, slowly cooled to the lowest temperature, and then aged at 600°C for 4 hours. Table 4 shows the test results for the mechanical properties of this material.

表4 比較例4 実施例1と同じ供試材を用い、955℃で1.5時間熱
処理後、水冷し、ついで550℃で6時間時効処理した
。この素材の機械的性質の試験結果を表5に示す。
Table 4 Comparative Example 4 Using the same test material as in Example 1, it was heat treated at 955°C for 1.5 hours, cooled with water, and then aged at 550°C for 6 hours. Table 5 shows the test results for the mechanical properties of this material.

表5 前記実施例並びに比較例における機械的性質のばらつき
を含めた評価方法として、NIL−HO2に−5では、
Afaでの評価を推薦している。これは 。
Table 5 As an evaluation method including variations in mechanical properties in the above examples and comparative examples, for NIL-HO2-5,
We recommend evaluation with Afa. this is .

次式で表わされる値である。This value is expressed by the following formula.

A値=平均値−に×標準偏差 ここで、に値はデータの数と求める信頼度により決まる
数値で、データ数15.99%信頼度の場合は3.52
である。
A value = average value - × standard deviation Here, the value is determined by the number of data and the desired reliability, and in the case of 15.99% reliability for the number of data, it is 3.52
It is.

これによりデータを整理した結果を表6に示す。Table 6 shows the results of organizing the data.

表6 [発明の効果] 上記表6から明らかなとおり、本発明のものは比較例の
ものに較べ、強度に信頼性を考慮に入れると、優れた強
度が1qられている。これはばらつきの少ない高強度材
が得られることを示している。
Table 6 [Effects of the Invention] As is clear from Table 6 above, the product of the present invention has superior strength by 1q compared to the comparative example when reliability is taken into account. This indicates that a high-strength material with little variation can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図は供試材の寸法と試験片の採取位置を示す説明図であ
る。
The figure is an explanatory diagram showing the dimensions of the sample material and the sampling position of the test piece.

Claims (1)

【特許請求の範囲】[Claims] Ti−6Al−4V合金材をα+β域またはβ域で加工
した後、880℃以上1050℃以下で10分以上8時
間以内保持し、その後600℃以上880℃未満の範囲
の温度まで連続的に徐冷し、その温度で10分以上8時
間以内保持した後、空冷もしくはそれ以上の冷却速度で
冷却し、さらに450℃以上650℃以下の温度域で1
時間以上10時間以内の時効処理を加えることを特徴と
するTi−6Al−4V合金材の熱処理方法。
After processing the Ti-6Al-4V alloy material in the α+β region or β region, it is held at 880°C or more and 1050°C or less for 10 minutes or more and 8 hours, and then continuously reduced to a temperature in the range of 600°C or more and less than 880°C. After cooling and holding at that temperature for 10 minutes or more and less than 8 hours, cool with air cooling or a faster cooling rate, and then cool in a temperature range of 450°C or more and 650°C or less.
1. A method for heat treatment of Ti-6Al-4V alloy material, characterized by applying an aging treatment for more than 10 hours and less than 10 hours.
JP5304187A 1987-03-10 1987-03-10 Heat treatment for ti-6al-4v alloy material Pending JPS63219558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5304187A JPS63219558A (en) 1987-03-10 1987-03-10 Heat treatment for ti-6al-4v alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5304187A JPS63219558A (en) 1987-03-10 1987-03-10 Heat treatment for ti-6al-4v alloy material

Publications (1)

Publication Number Publication Date
JPS63219558A true JPS63219558A (en) 1988-09-13

Family

ID=12931801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5304187A Pending JPS63219558A (en) 1987-03-10 1987-03-10 Heat treatment for ti-6al-4v alloy material

Country Status (1)

Country Link
JP (1) JPS63219558A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0683242A1 (en) * 1994-03-23 1995-11-22 Nkk Corporation Method for making titanium alloy products
KR100473809B1 (en) * 2002-11-22 2005-03-08 학교법인 포항공과대학교 Method for manufacturing (α+ β)titanium alloys with improved mechanical and dynamic fracture properties

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0683242A1 (en) * 1994-03-23 1995-11-22 Nkk Corporation Method for making titanium alloy products
US5516375A (en) * 1994-03-23 1996-05-14 Nkk Corporation Method for making titanium alloy products
KR100473809B1 (en) * 2002-11-22 2005-03-08 학교법인 포항공과대학교 Method for manufacturing (α+ β)titanium alloys with improved mechanical and dynamic fracture properties

Similar Documents

Publication Publication Date Title
Ivasishin et al. Precipitation and recrystallization behavior of beta titanium alloys during continuous heat treatment
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
JPH11106824A (en) Method for bainitic-quenching bearing steel
US4457789A (en) Process for annealing steels
JPS59145765A (en) Aluminum alloy heat treatment
JPS63219558A (en) Heat treatment for ti-6al-4v alloy material
JPS58141333A (en) Heat treatment of forging
JPS58141331A (en) Heat treatment of forging
JPS62284060A (en) Manufacture of hot rolled titanium alloy plate
JP2713346B2 (en) Stainless steel wire excellent in high strength properties and its manufacturing method
JPH04355A (en) Production of titanium alloy
RU2344182C2 (en) Method of thermal processing of high-strength maraging steel articles
RU2086667C1 (en) Method of treating aging austenite invar alloys
JPH0379742A (en) Production of duplex stainless steel excellent in corrosion resistance and sheet of same
JPS61194163A (en) Heat treatment of (alpha+beta) type titanium alloy
JP2771180B2 (en) Direct softening heat treatment method for high carbon steel
Khobaib et al. Experiments on directional martensitic transformation in steel
CA1151513A (en) Process for annealing steels
SU808544A1 (en) Method of recrysrallized annealing of low-carbon steels
SU744040A1 (en) Method of thermal treatment of martensite-aged steel
SU819192A1 (en) Method of strengthening austenite dispersion-hardened steels
JPS6233750A (en) Manufacture of alpha+beta-type titanium alloy sheet
JPH06272004A (en) Method for working titanium alloy
JPH01195265A (en) Manufacture of high-strength beta-type titanium alloy
JP4046368B2 (en) Thermomechanical processing method for β-type titanium alloy