JPS6321882A - Excimer laser - Google Patents

Excimer laser

Info

Publication number
JPS6321882A
JPS6321882A JP61166990A JP16699086A JPS6321882A JP S6321882 A JPS6321882 A JP S6321882A JP 61166990 A JP61166990 A JP 61166990A JP 16699086 A JP16699086 A JP 16699086A JP S6321882 A JPS6321882 A JP S6321882A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
discharge
main discharge
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61166990A
Other languages
Japanese (ja)
Inventor
Shinichiro Kawamura
信一郎 河村
Hiroyuki Kondo
洋行 近藤
Hideo Hara
秀雄 原
Kensho Tokuda
憲昭 徳田
Hitoshi Takeuchi
仁 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP61166990A priority Critical patent/JPS6321882A/en
Publication of JPS6321882A publication Critical patent/JPS6321882A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To efficiently obtain a laser beam having a high space uniformity and large crosssectional shape by spark discharging between a pre-ionizing electrode buried through an insulator in one of main discharging electrodes and the main discharging electrode to preliminarily ionize it. CONSTITUTION:When a high voltage is applied between a power supply paths 13 and 18, a spark discharge occurs between pre-ionizing electrodes 16 and 17 and a main discharge electrode 12, a current flows in a passage of the path 13, a peaking capacitor 14, a main discharge electrode 12, the electrodes 16, 17 and a power supply path 18 to charge a peaking capacitor 14. A laser gas between the electrodes 11 and 12 is sufficiently pre-ionized, thereby obtaining uniform electron density of 10<7> (cm<-3>) or more. Thus, since a uniform glow discharge can be performed, an arc discharge is reduced to enhance a laser oscillation efficiency, the space uniformity of a laser beam crosssectional strength distribution is improved, and a laser output having large sectional size is obtained.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は一対の主放電電極間で放電させてレーザガスを
励起しレーザ発振を得る紫外線予備電離式放電型エキシ
マレーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an ultraviolet pre-ionization type discharge excimer laser device which excites a laser gas by generating a discharge between a pair of main discharge electrodes to obtain laser oscillation.

B、従来の技術 第3図にこの種のエキシマレーザ装置の電極部分の一例
を示す。レーザ発振に必要なグロー放電を主放電電極1
,2間で行なわせるためには、主放電電極1,2間のレ
ーザガスを電離して少なくとも10’[C11″″3]
の電子密度にする必要がある。
B. Prior art FIG. 3 shows an example of the electrode portion of this type of excimer laser device. The main discharge electrode 1 generates the glow discharge necessary for laser oscillation.
, 2, the laser gas between the main discharge electrodes 1 and 2 must be ionized to at least 10'[C11''''3]
It is necessary to have an electron density of

そこで、給電路3.ピーキングキャパシタ4.主放電電
極2および給電路5により形成されるピーキングキャパ
シタ4の充電回路中に、予備電離電極6〜9により間隙
数IのスパークギャップGを設け、給電路3と5に高電
圧を印加するとスパークギャップGで火花放電が起き、
その火花放電を介してピーキングキャパシタ4に充電電
流を供給するようになっている。しかして、火花放電に
よって発生した紫外線により主放電電極1,2間のレー
ザガスが予備的に電離されて電子密度が高められる。
Therefore, power supply line 3. Peaking capacitor 4. In the charging circuit of the peaking capacitor 4 formed by the main discharge electrode 2 and the power supply path 5, a spark gap G with a gap number I is provided by the preliminary ionization electrodes 6 to 9, and when a high voltage is applied to the power supply paths 3 and 5, a spark occurs. Spark discharge occurs in gap G,
A charging current is supplied to the peaking capacitor 4 through the spark discharge. Therefore, the laser gas between the main discharge electrodes 1 and 2 is preliminarily ionized by the ultraviolet rays generated by the spark discharge, and the electron density is increased.

そして、ピーキングキャパシタ4の充電電圧が予備電離
されたレーザガスのブレークダウン電圧に達すると、ピ
ーキングキャパシタ4に蓄えられていた電荷は、再びス
パークギャップGを経由して主放電電極1,2間で放電
し、これによりレーザガスが励起されてレーザ発振が可
能となる。
When the charging voltage of the peaking capacitor 4 reaches the breakdown voltage of the pre-ionized laser gas, the charge stored in the peaking capacitor 4 is discharged between the main discharge electrodes 1 and 2 via the spark gap G again. However, this excites the laser gas and enables laser oscillation.

C0発明が解決しようとする問題点 紫外線予i1電離を充分行なうためには、予備電離電極
6と7および8と9との間のスパークギャップGをでき
るだけ主放電電極1,2の近くに配置する方が好ましい
。しかしながら、近すぎると、予備電離電極6,8と主
放電電極2との間で短絡放電してピーキングキャパシタ
4が充電されず、主放電ができないという問題がある。
C0 Problem to be solved by the invention In order to perform sufficient ultraviolet pre-ionization, the spark gap G between the pre-ionization electrodes 6 and 7 and 8 and 9 should be placed as close as possible to the main discharge electrodes 1 and 2. is preferable. However, if it is too close, there is a problem that a short circuit discharge occurs between the preliminary ionization electrodes 6, 8 and the main discharge electrode 2, and the peaking capacitor 4 is not charged, making it impossible to perform the main discharge.

また、予備電離が不十分であったり、不均一であると、
レーザ発振効率が低く、得られるレーザビームの断面パ
ターンの空間的均一性が悪く、パターンサイズが小さい
という問題もある。
Also, if pre-ionization is insufficient or uneven,
There are also problems in that the laser oscillation efficiency is low, the spatial uniformity of the cross-sectional pattern of the obtained laser beam is poor, and the pattern size is small.

本発明の目的は、主放電電極近傍で紫外線予備電離を行
なって上記問題を解決したエキシマレーザ装置を提供す
ることにある。
An object of the present invention is to provide an excimer laser device that solves the above problems by performing ultraviolet preliminary ionization near the main discharge electrode.

D1問題点を解決するための手段 本発明は、予備電離電極16.17を主放電電極11゜
12の少なくとも一方に絶縁体15を介して埋設し、予
備電離電極16.17と主放電電極12との間の火花放
電により予備電離するよう構成される。
Means for Solving Problem D1 The present invention embeds a pre-ionization electrode 16.17 in at least one of the main discharge electrodes 11 and 12 with an insulator 15 in between. It is configured to pre-ionize by a spark discharge between the

81作用 一対の主放電電顕間11.12に高電圧を印加すると、
予I11電離電極16.17と主放電電極12との間で
火花放電し、主放電電極12の放電領域で火花放電が起
きる その結果、火花放電によって発生する紫外線によ
り両主放電電極11.12間のレーザガスが充分に、し
かも均一に予備電離される。
81 Effect When a high voltage is applied between the pair of main discharge electron microscopes 11.12,
A spark discharge occurs between the pre-I11 ionization electrode 16.17 and the main discharge electrode 12, and a spark discharge occurs in the discharge area of the main discharge electrode 12. As a result, ultraviolet rays generated by the spark discharge cause a spark discharge to occur between the two main discharge electrodes 11.12. laser gas is sufficiently and uniformly pre-ionized.

F、実施例 一第1の実施例− 第1図は本発明の第1の実施例を示し、紙面と垂直方向
(以下、長手方向)に延在する一対の主放電電極11.
12が対向配置され、給電路13とピーキングキャパシ
タ14を介して直列に接続されている。一方の主放電電
極120両側部、詳しくは放電面AR域外の両側部には
電界方向に貫通する孔121,122があけられ、その
孔121,122に、絶縁体15を介して予備電離電極
16.17が埋設されている。
F. Embodiment 1 First Embodiment - FIG. 1 shows a first embodiment of the present invention, in which a pair of main discharge electrodes 11.
12 are arranged opposite to each other and connected in series via a power supply line 13 and a peaking capacitor 14. Holes 121 and 122 penetrating in the direction of the electric field are formed on both sides of one main discharge electrode 120, specifically on both sides outside the discharge surface AR region, and the preliminary ionization electrode 16 is inserted into the holes 121 and 122 through an insulator 15. .17 is buried.

予備ffi離電極電極、17の先端は主放電電極12の
放電面から突出しないようにされ、他端は給電路18と
接続されている。また、この主放電電極12の長手方向
に例えば等間隔に複数個の予備電離電極16゜17゛が
設けられている。なお、ピーキングキャパシタ14も例
えば等間隔で同方向に複数個設けられている。
The tip of the preliminary ffi separation electrode 17 is made not to protrude from the discharge surface of the main discharge electrode 12, and the other end is connected to the power supply path 18. Further, a plurality of preliminary ionization electrodes 16° to 17° are provided at equal intervals in the longitudinal direction of the main discharge electrode 12, for example. Note that a plurality of peaking capacitors 14 are also provided, for example, at equal intervals and in the same direction.

このように構成されたエキシマレーザ装置の動作を、給
電路13に不図示の高電圧制御回路から高電圧が周期的
に印加され、給電路18が接地されている場合について
説明する。
The operation of the excimer laser device configured as described above will be described with reference to a case where a high voltage is periodically applied to the power supply line 13 from a high voltage control circuit (not shown) and the power supply line 18 is grounded.

給電路13と18の間に高電圧を印加すると、予備電離
電極16.17と主放電電極12との間で火花放電が起
き、給電路13.ピーキングキャパシタ14゜主放電電
極12.予備電離電極16.17および給電路18の経
路で電流が流れピーキングキャパシタ14が充電される
When a high voltage is applied between the feed lines 13 and 18, a spark discharge occurs between the pre-ionization electrode 16.17 and the main discharge electrode 12, causing the feed line 13. Peaking capacitor 14° Main discharge electrode 12. A current flows through the path of the pre-ionization electrodes 16, 17 and the power supply path 18, and the peaking capacitor 14 is charged.

このとき、上述した火花放電が、主放電電極12の放電
面ARの極く近傍で、かつピーキングキャパシタ14の
充電回路を形成すべく起きるので、従来のような短路放
電をすることなく、火花放電により発生した紫外線によ
り、両主放電電極11゜12間(主放電領域)のレーザ
ガスが充分に予備電離され、 lO’[am−″3コ以
上の電子密度を均一に得ることができる。
At this time, the spark discharge described above occurs very close to the discharge surface AR of the main discharge electrode 12 and to form a charging circuit for the peaking capacitor 14, so that the spark discharge does not occur as a short circuit discharge as in the conventional case. The laser gas between the two main discharge electrodes 11 and 12 (main discharge region) is sufficiently pre-ionized by the ultraviolet rays generated by this, and an electron density of 3 or more lO'[am-'' can be uniformly obtained.

従って、両主放電電極11.12間のレーザガスの電子
密度が低い部分がなくなり、−様なグロー放電を実現で
き、この結果、アーク放電が減少してレーザ発振効率が
高くなり、レーザビーム断面強度分布の空間的均一性が
向上し、断面寸法の大きなレーザ出力が得られる。
Therefore, the part where the electron density of the laser gas is low between the two main discharge electrodes 11 and 12 is eliminated, and a --like glow discharge can be realized.As a result, arc discharge is reduced, laser oscillation efficiency is increased, and the laser beam cross-sectional strength is The spatial uniformity of the distribution is improved, and a laser output with a large cross-sectional dimension can be obtained.

なお、主放電電極11.12および予備電離電極16゜
17を、ニッケルメッキをしたアルミニウムや真鍮。
The main discharge electrodes 11 and 12 and the preliminary ionization electrodes 16 and 17 are made of nickel-plated aluminum or brass.

あるいはSUS 316や純ニツケル材で形成するのが
好ましく、特に、純ニッケルが最も好ましい。
Alternatively, it is preferably made of SUS 316 or pure nickel, and pure nickel is particularly preferred.

また、絶縁体15はフッソ系樹脂、例えばデュポン社製
のテフロン等で形成するのが好ましい。
Further, the insulator 15 is preferably formed of a fluorine-based resin, such as Teflon manufactured by DuPont.

−第2の実施例− 第2図に本発明の第2の実施例を示す。本例は、主放電
電極11.12の双方に、上述したと同様に絶縁体15
を介して予l電離電極16.17,18゜19を埋設し
たものであり、給電路13→予備電離電極1g、19→
主放電電極11→ピーキングキャパシタ14→主放電電
極12→予備電離電極16.17→給電路18の経路で
充電電流が流れる。従って、主放1!電極11.12双
方の放電面近傍で火花放電が生じるから、両生放電電極
11.12間のレーザガスの電子密度の大きさおよび均
一性がさらに向上し、より一層高いレーザ発振効率が得
られ、レーザビーム断面強度分布の空間的均一性および
レーザビーム断面寸法を更に改碧できる。
-Second Embodiment- Fig. 2 shows a second embodiment of the present invention. In this example, an insulator 15 is provided on both the main discharge electrodes 11 and 12 in the same manner as described above.
Pre-ionization electrodes 16, 17, 18° 19 are buried through the power supply line 13→pre-ionization electrode 1g, 19→
A charging current flows along the path of main discharge electrode 11 -> peaking capacitor 14 -> main discharge electrode 12 -> preliminary ionization electrode 16.17 -> power supply path 18 . Therefore, main release 1! Since spark discharge occurs near the discharge surfaces of both the electrodes 11 and 12, the size and uniformity of the electron density of the laser gas between the amphibodi discharge electrodes 11 and 12 are further improved, and even higher laser oscillation efficiency is obtained. The spatial uniformity of the beam cross-sectional intensity distribution and the laser beam cross-sectional dimensions can be further improved.

G0発明の効果 本発明によれば、従来よりも主放電領域の近傍で予備電
離することができ、空間的均一性が高く断面形状が大き
いレーザビームを高効率に得ることができる。
G0 Effects of the Invention According to the present invention, preliminary ionization can be performed closer to the main discharge region than in the past, and a laser beam with high spatial uniformity and a large cross-sectional shape can be obtained with high efficiency.

また、予備電離する際の火花放電の強度を小さくしても
、レーザガス中の電子密度を十分に高くできるので、火
花放電時に発生する主放電電極と予備電離電極間のスパ
ッタリングによる不純物量が減少し、レーザガス寿命が
向上するという効果も得られる。
Furthermore, even if the intensity of the spark discharge during pre-ionization is reduced, the electron density in the laser gas can be made sufficiently high, so the amount of impurities due to sputtering between the main discharge electrode and the pre-ionization electrode that occurs during spark discharge is reduced. , the effect of improving the laser gas life can also be obtained.

更に、予備電離電極を主放電電極中に埋設したので、主
放電電極によって作られる電界分布を乱すことなしに主
放電電極の近傍で予備電離を起こすことができる。
Furthermore, since the pre-ionization electrode is embedded in the main discharge electrode, pre-ionization can occur in the vicinity of the main discharge electrode without disturbing the electric field distribution created by the main discharge electrode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す主放ff1ffi
極周辺の構成図、第2図は本発明の第2の実施例を示す
第1図に相当する構成図、第3図は従来のニキシマレー
ザ装置の主放電電極周辺の構成を示す図である。 11.12 :主放電電極 13.18:給電路 14:ピーキングキャパシタ 15:絶縁体 、  16,17,18,19 :予備電離電極特許出
願人  日本光学工業株式会社 代理人弁理士   永 井 冬 紀 第1図 第2図
FIG. 1 shows the main radiation ff1ffi according to the first embodiment of the present invention.
FIG. 2 is a block diagram corresponding to FIG. 1 showing the second embodiment of the present invention, and FIG. 3 is a diagram showing the structure around the main discharge electrode of a conventional niximer laser device. 11.12: Main discharge electrode 13.18: Power supply path 14: Peaking capacitor 15: Insulator, 16, 17, 18, 19: Pre-ionization electrode Patent applicant Nippon Kogaku Kogyo Co., Ltd. Representative patent attorney Noriyuki Nagai Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 主放電電極と予備電離電極を備えたエキシマレーザ装置
において、 前記予備電離電極を前記主放電電極の少なくとも一方に
絶縁体を介して埋設し、前記予備電離電極と主放電電極
との間で火花放電させることにより予備電離するよう構
成したことを特徴とするエキシマレーザ装置。
[Scope of Claims] An excimer laser device including a main discharge electrode and a pre-ionization electrode, wherein the pre-ionization electrode is embedded in at least one of the main discharge electrodes with an insulator interposed therebetween, and the pre-ionization electrode and the main discharge electrode An excimer laser device characterized in that it is configured to perform preliminary ionization by causing a spark discharge between.
JP61166990A 1986-07-16 1986-07-16 Excimer laser Pending JPS6321882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61166990A JPS6321882A (en) 1986-07-16 1986-07-16 Excimer laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61166990A JPS6321882A (en) 1986-07-16 1986-07-16 Excimer laser

Publications (1)

Publication Number Publication Date
JPS6321882A true JPS6321882A (en) 1988-01-29

Family

ID=15841351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61166990A Pending JPS6321882A (en) 1986-07-16 1986-07-16 Excimer laser

Country Status (1)

Country Link
JP (1) JPS6321882A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189988A (en) * 1989-01-18 1990-07-25 Central Glass Co Ltd Excimer laser device
US6117071A (en) * 1997-07-29 2000-09-12 Asahi Kogaku Kogyo Kabushiki Kaisha Endoscope with movable imaging unit for zooming or focusing
CN108923230A (en) * 2018-07-18 2018-11-30 中山普宏光电科技有限公司 A kind of dielectric impedance spark preionization discharge electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189988A (en) * 1989-01-18 1990-07-25 Central Glass Co Ltd Excimer laser device
US6117071A (en) * 1997-07-29 2000-09-12 Asahi Kogaku Kogyo Kabushiki Kaisha Endoscope with movable imaging unit for zooming or focusing
CN108923230A (en) * 2018-07-18 2018-11-30 中山普宏光电科技有限公司 A kind of dielectric impedance spark preionization discharge electrode

Similar Documents

Publication Publication Date Title
JPS6321882A (en) Excimer laser
JP3281032B2 (en) Discharge excitation type gas laser device
JP3154584B2 (en) Discharge excitation gas laser device
JP2614231B2 (en) Gas laser device
JPH0318752B2 (en)
JPS62243379A (en) Gas pulse laser
JP2772147B2 (en) Pulsed laser electrode
JP2734191B2 (en) Laser device
JPS61125096A (en) Discharge device of gas laser
JPH0730177A (en) Pulse laser oscillation device
JPS63228776A (en) Gas laser device
JPH01151277A (en) Pulse laser electrode
JP2581377B2 (en) Excimer laser device
JPS63228778A (en) Gas laser device
RU1777526C (en) Electric discharge laser with diffusion cooling
JPH02103979A (en) Pulsed-laser oscillating apparatus
JPH05335672A (en) Excimer laser device
JPH01214184A (en) Pulse laser oscillation device
JPS63227074A (en) Gas laser device
JPH05259555A (en) High repetition pulse laser electrode
JPH0432282A (en) Gas laser output apparatus
JPH0263180A (en) Pulse laser oscillator
JPH02240981A (en) Gas laser device
JPH05121812A (en) Highly-repetitive pulse laser electrode
JPH07162069A (en) Gas laser equipment