JPS63216956A - Production of heat-transfer tube of multi-tubular evaporator and finned plate of plate evaporator - Google Patents

Production of heat-transfer tube of multi-tubular evaporator and finned plate of plate evaporator

Info

Publication number
JPS63216956A
JPS63216956A JP62051002A JP5100287A JPS63216956A JP S63216956 A JPS63216956 A JP S63216956A JP 62051002 A JP62051002 A JP 62051002A JP 5100287 A JP5100287 A JP 5100287A JP S63216956 A JPS63216956 A JP S63216956A
Authority
JP
Japan
Prior art keywords
plate
tube
plasma
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62051002A
Other languages
Japanese (ja)
Inventor
Hisamitsu Mine
峯 久充
Yutaka Ito
裕 伊藤
Masahiro Tsutsui
筒井 政博
Toshihiko Okamoto
俊彦 岡本
Kazuo Nojima
野島 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIICHI METEKO KK
Kobe Steel Ltd
Original Assignee
DAIICHI METEKO KK
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIICHI METEKO KK, Kobe Steel Ltd filed Critical DAIICHI METEKO KK
Priority to JP62051002A priority Critical patent/JPS63216956A/en
Publication of JPS63216956A publication Critical patent/JPS63216956A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To form a coated film having improved adhesion and durability on a heat-transfer tube, by filling the space extending from the finned part of a heat-transfer tube to be thermally sprayed by plasma to a plasma gun with an oxygen-free atmosphere, and reducing and removing the useless matter in the space. CONSTITUTION:The heat-transfer tube 1 (or finned plate) to be thermally sprayed by plasma is sent into a chamber 4 by means of a tube holder 3, and thermally sprayed by the plasma gun 2. At this time, an inert gas is sent into the space extending from the finned part of the tube 1 to the plasma gun 2 to form an oxygen-free atmosphere, the inert gas is mostly sucked by an exhaust fan 6 through a filter 5, and the discharge of the gas into the atmosphere and the circulation to the chamber 4 are controlled by control valves 7. As a result, the infiltration of oxides into a coated film and the oxidation of the coated film can be controlled, and the coated film having high adhesive strength, durability, and excellent heat radiation efficiency is formed on the heat-transfer tube 1.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、管外蒸発伝達率または平面蒸発伝達率が、そ
れぞれ飛躍的に高められた多管式蒸発器の伝熱管および
プレート式蒸発器のフィンプレートの製造方法に関する
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a heat exchanger tube of a multi-tube evaporator and a plate-type evaporator, each of which has a dramatically increased extra-tube evaporation transfer coefficient or planar evaporation transfer coefficient, respectively. The present invention relates to a method for manufacturing a fin plate.

[従来の技術] 多管式蒸発器およびプレート式蒸発器は、熱交換器や蒸
発器等に広く実用されている。ところで、省エネルギー
、新エネルギー開発等の見地から、多管式蒸発器の伝熱
管およびプレート式蒸発器のフィンプレートに対する性
能向上の要求は一段と高まっている。
[Prior Art] Multi-tube evaporators and plate evaporators are widely used in heat exchangers, evaporators, and the like. Incidentally, from the viewpoint of energy saving, new energy development, etc., demands for improved performance of heat transfer tubes of multi-tube evaporators and fin plates of plate evaporators are increasing.

この要求に応するため、第6図に示すように、管体の外
周に形成されるフィン11を該フィンの先端側が肉盛さ
れていてその肉厚がフィンの根元側より厚い形状の被膜
12を形成した伝熱管1および管体の外周に形成された
フィンの表面に、該フィンの立上り壁に対して30〜6
0度の傾斜角度から金属粉末を大気中でプラズマ溶射し
、前記フィンの先端部側壁に肉盛りをする伝熱管1の製
造方法が提案されている。
In order to meet this requirement, as shown in FIG. 6, the fins 11 formed on the outer periphery of the tube body are coated with a coating 12 which is thicker on the tip side of the fin and thicker than the base side of the fin. 30 to 6 on the surface of the fins formed on the outer periphery of the heat exchanger tube 1 and the tube body.
A method of manufacturing the heat exchanger tube 1 has been proposed in which metal powder is plasma sprayed in the atmosphere at an inclination angle of 0 degrees to build up the side walls of the tips of the fins.

これらは、いわゆるローフイン型伝熱管にプラズマ溶射
法によって所定の肉盛り加工をすることに関連する技術
であるが、伝熱有効面積の拡大と外周面における気泡発
生個数の増大を目的とするものである。
These are technologies related to applying a predetermined build-up process to so-called loaf-in type heat transfer tubes by plasma spraying, and their purpose is to expand the effective heat transfer area and increase the number of bubbles generated on the outer circumferential surface. be.

ここで、外周面における気泡発生個数の増大について詳
しく述べる。伝熱管およびフィンプレートの外周には通
常液体を流して熱除去を行なっているが、この場合、管
外蒸発熱伝達は管外周面における気泡の発生個数によっ
て著しく影響される。したがって、伝熱管の性能を高め
るためには、伝達管外表面において、気泡をいかに一様
に、多く、連続して発生させるかということが重要な課
題となる。
Here, the increase in the number of bubbles generated on the outer peripheral surface will be described in detail. Usually, heat is removed by flowing a liquid around the outer periphery of the heat exchanger tube and fin plate, but in this case, the evaporative heat transfer outside the tube is significantly affected by the number of bubbles generated on the outer periphery of the tube. Therefore, in order to improve the performance of a heat transfer tube, it is important to determine how uniformly, in large numbers, and continuously bubbles are generated on the outer surface of the transfer tube.

この課題を達成するためには■伝熱面のキャビティ半径
を適切に制御して、気泡核を増大し、かつ■キャビティ
を奥広とし、気泡発生を安定化する必要があることが知
られている。
It is known that in order to achieve this goal, it is necessary to ■ appropriately control the cavity radius of the heat transfer surface to increase the number of bubble nuclei, and ■ make the cavity deep and wide to stabilize the generation of bubbles. There is.

なお、プレート式蒸発器のフィンプレートについても上
記の伝熱管と同様である。
Note that the fin plates of the plate type evaporator are also similar to the heat exchanger tubes described above.

[発明が解決しようとする問題点] 上記従来技術は、大気中でのプラズマ溶射による伝熱管
の製造に関するものであり、プラズマ溶射工程における
被膜等の酸化を配慮しておらず、次のような問題を有し
ている。
[Problems to be Solved by the Invention] The above-mentioned conventional technology relates to the manufacture of heat transfer tubes by plasma spraying in the atmosphere, and does not take into account oxidation of the coating etc. in the plasma spraying process, and has the following problems. I have a problem.

(1)母材に対する被膜の密着強度が低下し、剥離しや
すく、耐久性が劣ること。
(1) The adhesion strength of the coating to the base material is reduced, it is easy to peel off, and the durability is poor.

(2)被膜中に酸化物が混入、介在するため、熱伝導性
が劣化すること。
(2) Thermal conductivity deteriorates because oxides are mixed or present in the coating.

(3)活性金属を肉盛りする場合、上記(1) 、 (
2)の問題が顕著となるので、活性金属を溶射材として
使用できないこと。
(3) When overlaying active metal, the above (1), (
2) Active metals cannot be used as thermal spraying materials because the problem of 2) becomes significant.

[問題点を解決するための手段] 上記問題点は、プラズマ溶射加工されている伝熱管およ
びフィンプレートのフィン部からプラズマガンまでの空
間を無酸化雰囲気に保ち、該空間からプラズマ溶射に伴
ない発生する不要物を常に吸引除去しながらプラズマ溶
射加工する多管式蒸発器の伝熱管およびプレート式蒸発
器のフィンプレートの製造法により、解決される。
[Means for solving the problem] The above problem is solved by keeping the space from the fin part of the heat exchanger tube and fin plate being subjected to plasma spray processing to the plasma gun in a non-oxidizing atmosphere, and from which plasma spraying is carried out. This problem is solved by a method for manufacturing the heat transfer tubes of a multi-tube evaporator and the fin plates of a plate evaporator, which are processed by plasma spraying while constantly suctioning and removing generated waste materials.

なお、伝熱管およびフィンプレートの加工中の部分以外
の部分の雰囲気は酸化雰囲気であっても何ら問題はない
Note that there is no problem even if the atmosphere of the heat exchanger tube and the fin plate other than the parts being processed is an oxidizing atmosphere.

[実施例] IL里ユ 第1図を用いて、実施例1を説明する。伝導管を正圧に
保たれた無酸化雰囲気のチャンバー内でプラズマ溶射す
るものである。
[Example] Example 1 will be described with reference to FIG. 1. Plasma spraying is carried out in a chamber with a non-oxidizing atmosphere where the conduction tube is kept under positive pressure.

被加工される伝導管1は管保持具3を通ってチャンバー
4に送られる。チャンバー4内には、プラズマガン2に
より、溶射に伴って不活性ガスが注入される。本実施例
では伝導管外面法線に対し30〜60°傾けて配置した
2基のプラズマガン2を用い、アルゴンガス等の不活性
ガス流量VI、及びvI2をともに10〜150 SL
Mにした。
The conduction tube 1 to be processed is sent to a chamber 4 through a tube holder 3. Inert gas is injected into the chamber 4 by the plasma gun 2 during thermal spraying. In this example, two plasma guns 2 arranged at an angle of 30 to 60 degrees with respect to the normal to the outer surface of the conduction tube are used, and the inert gas flow rate VI and vI2 such as argon gas are both 10 to 150 SL.
I made it M.

この不活性ガスの大部分は、排気ファン6により、フィ
ルタ5を通過する。これにより、溶射時に発生するヒエ
ームや粉末の浮遊物をフィルタ一方向へ素早く除去し、
回収できるので、溶射点近傍を常に清浄に保つことがで
きる。
Most of this inert gas is passed through the filter 5 by the exhaust fan 6. This quickly removes suspended particles of heat and powder generated during thermal spraying in one direction of the filter.
Since it can be recovered, the vicinity of the thermal spraying point can always be kept clean.

不活性ガスは、コントロールバルブ7を制御することに
より、大気への放出とチャンバー4への戻し、循環とを
調整できる。本実施例では不活性ガスの大気への放出流
量VO,をO〜290 SLMとし、不活性ガスのチャ
ンバーへの戻し、循環流量VI3を10〜300 SL
Mとした。
By controlling the control valve 7, the release of the inert gas to the atmosphere, return to the chamber 4, and circulation can be adjusted. In this example, the flow rate VO of the inert gas released to the atmosphere is set to 0~290 SLM, and the flow rate VI3 of the inert gas returned to the chamber and circulated is set to 10~300 SL.
It was set as M.

したがって、大気放出流量■olをプラズマガンからの
注入量V■(+VIxより少すくスることにより、チャ
ンバー4内を不活性ガスで正圧とし、無酸化雰囲気とす
ることができる。
Therefore, by setting the atmospheric discharge flow rate ■ol to be slightly smaller than the injection amount V■(+VIx) from the plasma gun, the inside of the chamber 4 can be made to have a positive pressure with an inert gas and a non-oxidizing atmosphere can be created.

また、チャンバー4内が正圧であるから不活性ガスの一
部は管保持具3と伝熱管1の間の隙間から大気中へ漏れ
るので、大気のチャンバー4内への侵入を防止している
。本実施例ではこの漏れ流量VO2、VO5を1〜50
 SLMとした。管保持具3と伝熱管1の間の隙間をい
わば不活性ガスのカーテンで連続シールするエア・タイ
ト構造であるため、被加工品1のチャンバー4への送入
およびチャンバーからの送出を容易にできる。
Furthermore, since the inside of the chamber 4 is under positive pressure, a portion of the inert gas leaks into the atmosphere from the gap between the tube holder 3 and the heat transfer tube 1, thereby preventing the atmosphere from entering the chamber 4. . In this embodiment, the leakage flow rates VO2 and VO5 are set to 1 to 50.
It was named SLM. Since it has an air-tight structure in which the gap between the tube holder 3 and the heat transfer tube 1 is continuously sealed with a curtain of inert gas, it is easy to feed the workpiece 1 into and out of the chamber 4. can.

衷m(辻ユ 第2図を用いて、実施例2を説明する。まず、チャンバ
ー4内を真空ポンプ8で排気する。被加工される伝導管
1は、アルゴンガス等の不活性ガスが流入され、大気側
へ流出するエア・タイトの補助チャンバー10を経て、
チャンバー4内へ送入され、同様出口側補助チャンバー
10を経て、チャンバー4外へ送出される。
Embodiment 2 will be explained using Figure 2.First, the inside of the chamber 4 is evacuated by the vacuum pump 8.The conduction pipe 1 to be processed is filled with an inert gas such as argon gas. After passing through the air-tight auxiliary chamber 10, which flows out to the atmosphere,
It is sent into the chamber 4, and similarly sent out of the chamber 4 through the outlet side auxiliary chamber 10.

負圧に保たれているチャンバー4内へ大気が侵入するの
を防止するためである。ここで、補助チャンバー10の
大気側およびチャンバー側出入口にスリーブを設けて、
その内径oI。
This is to prevent atmospheric air from entering the chamber 4 which is maintained at negative pressure. Here, sleeves are provided at the atmosphere side and chamber side entrances and exits of the auxiliary chamber 10,
Its inner diameter oI.

0□、0..0.、を調整することにより、アルゴンガ
スの流れに対するコンダクタンスを調節でき、アルゴン
ガスの大気中への放出量■0□およびチャンバー4−へ
の流入量VIIを調節できる。
0□, 0. .. 0. By adjusting , the conductance with respect to the flow of argon gas can be adjusted, and the amount of argon gas released into the atmosphere ■0□ and the amount of inflow VII into the chamber 4- can be adjusted.

チャンバー4には伝熱管の法線に30〜60°傾けて2
基のプラズマガンが配置され、溶射に伴って、アルゴン
ガス等の不活性ガスが注入される。このガスはフィルタ
ー5を通過し、浄化され、一部はコントロールバルブC
v、を介し、真空ポンプ8により排気され、残部はコン
トロールバルブCV 2を介し、循環用フィン9により
、再びチャンバー4へ戻される。
In chamber 4, there are two
A base plasma gun is installed, and inert gas such as argon gas is injected during thermal spraying. This gas passes through the filter 5 and is purified, and a portion of the gas passes through the control valve C.
v, and is evacuated by the vacuum pump 8, and the remainder is returned to the chamber 4 via the control valve CV2 and the circulation fin 9.

実施例1および2において、均一にプラズマ溶射するた
め、伝熱管およびフィンプレートはチャンバー外部から
回転と送りとを与えられるが、管およびフィンプレート
端部をあらかじめ加工することによって、各々の管およ
びフィンプレート間の接続が可能となり連続して被加工
材供給、溶射が実現できる。
In Examples 1 and 2, in order to perform plasma spraying uniformly, the heat transfer tubes and fin plates are rotated and fed from outside the chamber, but by processing the ends of the tubes and fin plates in advance, each tube and fin plate Connection between plates is possible, allowing continuous supply of workpiece materials and thermal spraying.

以下、実施例1および実施例2により製造された被膜の
特性を説明する。
The characteristics of the coatings produced in Example 1 and Example 2 will be described below.

母材と被膜との密着力を測定した。材料試験用の治具を
それぞれ母材および被膜と接着剤を用いて接着した後、
材料試験機で密着力を測定した。第3図は母材と被膜と
の密着力の測定結果を示す。本実施例は密着力が約70
0kg/cm2 と比較例の300 kg/ cm”前
後の値に比べはるかに高いことがわかる。なお、強度の
向上は700 kg/ cm’止りであるが、これは測
定用の接着剤が700 kg/ cI11’の能力であ
るため、これ以上の強度があっても、そこで破断してし
まうためである。より強力な接着材が出現すれば、さら
にに高い密着力であることが確認できる。
The adhesion between the base material and the coating was measured. After bonding the material testing jig to the base material and coating using adhesive,
Adhesion was measured using a material testing machine. FIG. 3 shows the measurement results of the adhesion between the base material and the coating. In this example, the adhesion strength is approximately 70
0 kg/cm2, which is much higher than the value of around 300 kg/cm' in the comparative example.The improvement in strength is only 700 kg/cm', but this is because the adhesive used for measurement was 700 kg. / cI11', so even if it had a strength higher than this, it would break at that point.If a stronger adhesive material were to emerge, it would be confirmed that the adhesive strength would be even higher.

次に、放熱効果を測定した。その結果を第4図に示す。Next, the heat dissipation effect was measured. The results are shown in FIG.

図中■は本実施例により製造した伝熱管(母材はチタン
、溶射材はチタン)、■は通常の大気中溶射法により製
造した伝熱管(母材はチタン、溶射材はアルミニウム)
、モして■は機械加工により所定の奥床のキャビティを
設けた伝熱管であり、ざらに■は比較のための表面平滑
な伝熱管である。
In the figure, ■ is a heat exchanger tube manufactured according to this example (base material is titanium, sprayed material is titanium), ■ is a heat exchanger tube manufactured by normal atmospheric spraying method (base material is titanium, sprayed material is aluminum)
, Moto ■ is a heat exchanger tube with a predetermined depth cavity provided by machining, and Rough ■ is a heat exchanger tube with a smooth surface for comparison.

■は、機械加工のため均一であるが、奥床のキャビティ
の数が限られその数だけ核沸騰するため、その分、■に
比べて放熱効率が良くなる。
(2) is uniform due to mechanical processing, but the number of cavities in the back floor is limited and nucleate boiling occurs for that number, so the heat dissipation efficiency is improved compared to (2).

■は、■の奥床キャビティの他にキャビティを形成する
奥床空隙の内側やローフイン管の口を一定狭口としてい
る溶射頭まで細かいキャビティが形成されるため■に比
べ格段に放熱効率が良くなる。
■ In addition to the back floor cavity in ■, a fine cavity is formed inside the back floor gap that forms the cavity and up to the spray head where the mouth of the loaf-in pipe is kept narrow, so the heat dissipation efficiency is much better than in ■. Become.

■は■とほぼ同じ原理であるが、母材と同じチタンを無
酸化で溶射するため熱伝導が■に比べて非常に改善でき
、さらに空隙率も制御でき、また均一で最適な奥床空間
を形成できるため、第4図のように非常に性能が良くな
る。
■ is almost the same principle as ■, but since titanium, which is the same as the base material, is sprayed without oxidation, heat conduction can be greatly improved compared to ■, and the porosity can also be controlled, and a uniform and optimal deep floor space can be created. As shown in FIG. 4, the performance is very good.

プレート式蒸発器のフィンプレートの結果も、上記の多
管式管外蒸発型伝熱管とほぼ同じ結果がでている。
The results for the fin plate of the plate type evaporator are almost the same as for the above-mentioned multi-tube type extra-tube evaporation type heat exchanger tube.

フィン先端側に肉盛部を形成し、フィン間隔を狭め、気
泡発生の容易な開口間隔にするとともに、その下方部に
奥床のキャビティを設け、気泡発生を安定化している。
A built-up part is formed on the fin tip side to narrow the fin spacing and create an opening interval that facilitates bubble generation, and a deep cavity is provided below it to stabilize bubble generation.

さらに第5図から肉盛部は不要物の巻込みのない優れた
被膜であることがわかる。なお、溶射材はチタンである
Furthermore, from FIG. 5, it can be seen that the built-up portion is an excellent coating without any unnecessary material being rolled up. Note that the thermal spray material is titanium.

[効  果] プラズマ溶射加工されている伝熱管およびフィンプレー
トのフィン部からプラズマガンまでの空間を無酸化雰囲
気に保っているため、被膜中への酸化物の巻込み、被膜
の酸化がほとんどなく、密着強度が大きく耐久性があり
かつ放熱効率の秀れた被膜が得られる。さらに、チタン
、アルミニウム又はこれらの合金等の活性金属を溶射材
として用いることが可能である。
[Effects] Since the space from the fins of the plasma sprayed heat exchanger tube and fin plate to the plasma gun is maintained in an oxidation-free atmosphere, there is almost no entrainment of oxides into the coating or oxidation of the coating. A coating with high adhesion strength, durability, and excellent heat dissipation efficiency can be obtained. Furthermore, active metals such as titanium, aluminum or alloys thereof can be used as spray materials.

また、プラズマ溶射に伴ない発生する不要物を吸引除去
しているため、被膜中への不要物の巻込みがほとんどな
く、密着強度が大きく、耐久性があり、かつ放熱効率の
秀れた被膜が得られる。
In addition, since the unnecessary materials generated during plasma spraying are removed by suction, there is almost no unnecessary material caught in the coating, resulting in a coating with high adhesion strength, durability, and excellent heat dissipation efficiency. is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の実施例を表わす図、第3図は
本実施例により製造された被膜等の密着力を表わす図、
第4図は本実施例により大写真、第6図は伝熱管のフィ
ン部のプラズマ溶射法を示す図である。 1・・・伝熱管(被加工品)2・・・プラズマガン3・
・・管保持具     4・・・チャンバー5・・・フ
ィルター    6・−・排気ファン7・・・コントロ
ール・バルブ 8・・・真空ポンプ    9・・・循環用ファン10
・・・補助チャンバー  11・・・フィン部12・・
・被膜 第1図 VO+ 第2図 第3図 皮膜厚さ体面) 第4図 然 5FL  遠 (W/イ) 第5図
FIG. 1 and FIG. 2 are diagrams showing examples of the present invention, and FIG. 3 is a diagram showing the adhesion strength of the coating etc. manufactured by this example.
FIG. 4 is a large-scale photograph according to this embodiment, and FIG. 6 is a diagram showing the plasma spraying method of the fin portion of the heat exchanger tube. 1... Heat exchanger tube (workpiece) 2... Plasma gun 3.
...Pipe holder 4...Chamber 5...Filter 6...Exhaust fan 7...Control valve 8...Vacuum pump 9...Circulation fan 10
...Auxiliary chamber 11...Fin part 12...
・Coating Figure 1 VO+ Figure 2 Figure 3 Film thickness Body surface) Figure 4 Natural 5FL Far (W/A) Figure 5

Claims (1)

【特許請求の範囲】 1、プラズマ溶射加工されている伝熱管およびフィンプ
レートのフィン部からプラズマガンまでの空間を無酸素
雰囲気に保ち、該空間からプラズマ溶射に伴ない発生す
る不要物を吸引除去しながらプラズマ溶射加工する多管
式蒸発器の伝熱管およびプレート式蒸発器のフィンプレ
ートの製造方法。 2、チタン、チタン合金、アルミニウムまたはアルミウ
ム合金もしくはステンレス鋼をプラズマ溶射により肉盛
り加工することを特徴とする特許請求の範囲第1項に記
載の多管式蒸発器の伝熱管およびプレート式蒸発器のフ
ィンプレートの製造方法。 3、プラズマ溶射加工される伝熱管またはフィンプレー
トを無酸化雰囲気に保たれた容器中でプラズマ溶射加工
することを特徴とする特許請求の範囲第1項または第2
項に記載の多管式蒸発器の伝熱管およびプレート式蒸発
器のフィンプレートの製造方法。 4、プラズマ溶射に伴ない発生する不要物の吸引除去を
フィルターおよびファンを用いて行うことを特徴とする
特許請求の範囲第1項、第2項または第3項に記載の多
管式蒸発器の伝熱管およびプレート式蒸発器のフィンプ レートの製造方法。
[Claims] 1. Maintain an oxygen-free atmosphere in the space between the heat exchanger tube and the fin portion of the fin plate being subjected to plasma spraying and the plasma gun, and remove unnecessary substances generated during plasma spraying from the space by suctioning. A method for manufacturing heat exchanger tubes for multi-tube evaporators and fin plates for plate-type evaporators using plasma spray processing. 2. The heat exchanger tube and plate type evaporator of the multi-tube evaporator according to claim 1, characterized in that titanium, titanium alloy, aluminum, aluminum alloy, or stainless steel is overlaid by plasma spraying. fin plate manufacturing method. 3. Claims 1 or 2, characterized in that the heat exchanger tube or fin plate to be plasma sprayed is plasma sprayed in a container maintained in a non-oxidizing atmosphere.
A method for manufacturing a heat exchanger tube for a multi-tubular evaporator and a fin plate for a plate-type evaporator as described in 2. 4. The multi-tube evaporator according to claim 1, 2 or 3, wherein the suction and removal of unnecessary substances generated in association with plasma spraying is performed using a filter and a fan. Method for manufacturing heat exchanger tubes and fin plates for plate-type evaporators.
JP62051002A 1987-03-05 1987-03-05 Production of heat-transfer tube of multi-tubular evaporator and finned plate of plate evaporator Pending JPS63216956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62051002A JPS63216956A (en) 1987-03-05 1987-03-05 Production of heat-transfer tube of multi-tubular evaporator and finned plate of plate evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62051002A JPS63216956A (en) 1987-03-05 1987-03-05 Production of heat-transfer tube of multi-tubular evaporator and finned plate of plate evaporator

Publications (1)

Publication Number Publication Date
JPS63216956A true JPS63216956A (en) 1988-09-09

Family

ID=12874568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62051002A Pending JPS63216956A (en) 1987-03-05 1987-03-05 Production of heat-transfer tube of multi-tubular evaporator and finned plate of plate evaporator

Country Status (1)

Country Link
JP (1) JPS63216956A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033031A1 (en) * 1997-01-29 1998-07-30 Deutsches Zentrum für Luft- und Raumfahrt e.V. Heat exchanger tube, and method for the production of same
EP1154217A3 (en) * 2000-05-09 2005-10-12 Deutsches Zentrum für Luft- und Raumfahrt e.V. Device for transporting liquids by using capillary forces and process for manufacturing a capillary structure layer for such a device
CN102226663A (en) * 2011-04-21 2011-10-26 上海板换机械设备有限公司 Abrasion-resistant flow guide device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033031A1 (en) * 1997-01-29 1998-07-30 Deutsches Zentrum für Luft- und Raumfahrt e.V. Heat exchanger tube, and method for the production of same
EP1154217A3 (en) * 2000-05-09 2005-10-12 Deutsches Zentrum für Luft- und Raumfahrt e.V. Device for transporting liquids by using capillary forces and process for manufacturing a capillary structure layer for such a device
CN102226663A (en) * 2011-04-21 2011-10-26 上海板换机械设备有限公司 Abrasion-resistant flow guide device

Similar Documents

Publication Publication Date Title
JP3895277B2 (en) Sputtering target bonded to a sputtering target or backing plate with less generation of particles, and method of manufacturing the same
US4328257A (en) System and method for plasma coating
JP5162621B2 (en) Temperature control device, cooling device, and method of manufacturing temperature control device
US20080216602A1 (en) Coating process for manufacture or reprocessing of sputter targets and x-ray anodes
CN104046981A (en) Corrosion resistant aluminum coating on plasma chamber components
CN101983258A (en) Manufacture of pipes
JPS5852023B2 (en) Thermospray method for the production of aluminum porous boiling surfaces
JP2009161846A (en) Method for manufacturing inner member of plasma treatment vessel
JP2022180456A (en) Sputtering target product and method for manufacturing recycled article thereof
JPS63216956A (en) Production of heat-transfer tube of multi-tubular evaporator and finned plate of plate evaporator
CN104372333B (en) Gas nozzle cold-spraying method capable of repairing corners and special clamping device thereof
JPH02125866A (en) Device for applying alloy plating by vapor deposition
JP5168543B2 (en) Inside the plasma processing vessel
CN109267005A (en) A kind of W-N nano composite structure path cutter painting layer and preparation method thereof
CN206574680U (en) Cooling gas feed block and processing chamber housing
TW201534763A (en) Manufacturing method of member used in chamber carrying out dry etching
JPH0472051A (en) Formation of sprayed deposit on internal surface of cylinder bore of cylinder block
JP2701476B2 (en) Manufacturing method of lithium anode
CN210151204U (en) Plasma spraying target surface impurity removal system
CN110129752A (en) Zirconium alloy tube surface treatment method and device
JPH11229181A (en) Method and apparatus for plating inner face of cylinder
JPH07316774A (en) Low-pressure plasma thermal spraying method
US11920782B2 (en) Streamlined vaporizer cores
JPS6012655A (en) X-ray generator
JPS6342369A (en) Sputtering treatment device