JPS6321673A - Discharging device - Google Patents

Discharging device

Info

Publication number
JPS6321673A
JPS6321673A JP16457386A JP16457386A JPS6321673A JP S6321673 A JPS6321673 A JP S6321673A JP 16457386 A JP16457386 A JP 16457386A JP 16457386 A JP16457386 A JP 16457386A JP S6321673 A JPS6321673 A JP S6321673A
Authority
JP
Japan
Prior art keywords
dielectric
electrodes
electrode
voltage
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16457386A
Other languages
Japanese (ja)
Inventor
Yukio Nagase
幸雄 永瀬
Yoshihiko Hirose
広瀬 吉彦
Hiroshi Satomura
里村 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16457386A priority Critical patent/JPS6321673A/en
Priority to EP87300799A priority patent/EP0232136B1/en
Priority to US07/008,382 priority patent/US4783716A/en
Priority to DE19873782179 priority patent/DE3782179T2/en
Publication of JPS6321673A publication Critical patent/JPS6321673A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

PURPOSE:To speedily vaporize water sticking on the surface and to easily start discharging by providing an electrode exposed on a dielectric where two electrodes are embedded and a heat generating body with a high resistance value, and applying an AC or DC voltage to generate heat. CONSTITUTION:A discharging device 1 has at least two buried electrodes 11 and 12 buried in the dielectric 10 and the bare electrode 13 provided on the surface of the dielectric 10. The electrodes 11 and 12 are electrodes for AC voltage application which cause discharging, and the electrode 13 is applied with a bias voltage for extracting ions generated by the discharging toward a member 2 to be electrified. The heat generating body 20 is buried in the dielectric 10 and applied with the AC or DC voltage. When an voltage higher than a specific voltage is applied to between the electrodes 11 and 12 by an AC power source 14, discharging is carried out in a single area shown by 15. The electrode 13 is applied with the bias voltage, so the ions are extracted toward the member 2. The heat generating body 20 raises the temperature of the dielectric 10 speedily to improve dehumidification effect.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は放電技術の分野において利用され、特に電子写
真複写機の感光体等を帯電・除電するだめの放電装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is utilized in the field of discharge technology, and particularly relates to a discharge device for charging and neutralizing photoreceptors of electrophotographic copying machines.

(従来の技術) この種の放電装置としては、誘電体を挟むように設けら
れた電極間に交流電圧を印加して一方の電極の近傍に放
電を行なわせて正・負イオンを生成し、このイオンのう
ち所定極性のイオンを、該一方の電極と被帯電部材との
間に印加したバイアス電圧で形成される電界によって被
帯電部材に向けて抽出し、該部材に付着させる帯電装置
か、例えば米国特許第4,155,093号明細書に示
されるように公知である。
(Prior Art) This type of discharge device applies an alternating current voltage between electrodes disposed to sandwich a dielectric material to generate a discharge near one electrode to generate positive and negative ions. A charging device that extracts ions of a predetermined polarity among these ions toward the charged member using an electric field formed by a bias voltage applied between the one electrode and the charged member, and attaches them to the charged member; It is known, for example, as shown in US Pat. No. 4,155,093.

この方法では、放電が行なわれる電極は露出しており、
放電はこの露出した電極の近傍に強く行なわれるため、
該電極が放電に起因するプラズマエツチング作用、酸化
作用などによって容易に腐食する。このような腐食が発
生すると放電にムラか生じ、従って除・帯電作用が不均
一となるので、実用上耐久性に問題があった。
In this method, the electrodes where the discharge takes place are exposed;
Since the discharge occurs strongly near this exposed electrode,
The electrodes are easily corroded by plasma etching, oxidation, etc. caused by discharge. When such corrosion occurs, the discharge becomes uneven, resulting in uneven charge removal and charging effects, which poses a problem in practical durability.

そこで、本件出願人は上述の耐久性向上を目的として、
誘電体と、該誘電体に埋設された少なくとも2泗の電極
と、裸出した電極とを有し、埋設電極は、それらの間に
交流電圧を印加したときに所定の放電開始電圧て、誘電
体の表面の一部の近傍に放電か発生する位置に配置され
、一方、裸出電極は、前記表面の一部またはその近傍の
位置てあって、いずれの埋設電極との間の放電開始電圧
も前記所定の放電開始電圧よりも高くなる位置に設けら
れた構成の放電装置を特願昭61−18954号として
案出した。
Therefore, with the aim of improving the above-mentioned durability, the applicant has
It has a dielectric material, at least two electrodes buried in the dielectric material, and an exposed electrode, and the buried electrode has a predetermined discharge starting voltage when an alternating current voltage is applied between them, and the dielectric The bare electrode is placed at a position near a part of the surface of the body where a discharge occurs, while the exposed electrode is located at or near a part of the surface and has a discharge starting voltage between it and any buried electrode. In Japanese Patent Application No. 61-18954, a discharge device was devised in which the discharge device was installed at a position higher than the predetermined discharge starting voltage.

上述案により、放電による電極腐食の耐久性は著しく向
上したか表面ての吸湿という問題がある。すなわち、放
電装置は使用していないと誘電体及び電極の面に空気中
の水分が付着するため、電源か投入されても電極及び誘
電体表面の湿度か下らないかぎり放電を起さないという
欠点を有している。このため、大気の湿度が高い時や、
寒冷時に装置が結露を生じた際には、放電することは非
常に難しい。
Although the above-mentioned proposal significantly improves the durability against electrode corrosion due to discharge, there is a problem that the surface absorbs moisture. In other words, if the discharge device is not in use, moisture in the air will adhere to the surfaces of the dielectric and electrodes, so even if the power is turned on, discharge will not occur unless the humidity on the surfaces of the electrodes and dielectric decreases. have. For this reason, when the atmospheric humidity is high,
When a device forms condensation in cold weather, it is very difficult to discharge the device.

かかる問題を解決するために、放電装置の近傍に発熱体
を設けて放電装置全体を昇温させ、誘電体及び電極の湿
気を無くすことか考えられる。しかしながら外部に設け
られた発熱体からの熱の伝導効率は非常に低く、放電装
置の昇温には多くの時間か必要とされ、例えば複写装置
のような電源投入後直ちに作動を行ないたい装置には不
向きである。
In order to solve this problem, it is conceivable to provide a heating element near the discharge device to raise the temperature of the entire discharge device and eliminate moisture from the dielectric and electrodes. However, the heat conduction efficiency from the external heating element is very low, and it takes a long time to raise the temperature of the discharge device. is not suitable.

(問題点を解決するための手段) 本発明は、上述のごとくの従来の問題を解決するために
成されたものであり、本発明の放電装置は、 交流電圧印加用の電極を少なくとも2個埋設せられる誘
電体にバイアス電圧印加用の裸出電極を設け、発熱体を
上記誘電体に埋設もしくは誘電体の外表面に直接接面し
て形成すること、により構成される。
(Means for Solving the Problems) The present invention has been made to solve the conventional problems as described above, and the discharge device of the present invention includes at least two electrodes for applying an alternating voltage. It is constructed by providing an exposed electrode for applying a bias voltage on a dielectric to be buried, and forming a heating element either buried in the dielectric or directly in contact with the outer surface of the dielectric.

(実施例) 以下、添付図面にもとづいて本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail based on the accompanying drawings.

第1図は本発明の実施例による放電装置の第一実施例の
断面図である。
FIG. 1 is a sectional view of a first embodiment of a discharge device according to an embodiment of the present invention.

本実施例の放電装置1は、誘電体lO内に埋設された少
なくとも2個の埋設電極11.12と、上記誘電体10
の表面に設けられた裸出電極13とを有している。上記
2個の埋設電極11.12は、放電を発生させるための
交流電圧印加用電極であり、裸出電極13は放電により
生成されたイオンを被帯電部材2に向は抽出するための
バイアス電圧か印加される電極である。さらに上記誘電
体10には、高抵抗値材料からなる発熱体20が埋設さ
れている。
The discharge device 1 of this embodiment includes at least two buried electrodes 11 and 12 buried in the dielectric 10, and the dielectric 10.
It has a bare electrode 13 provided on the surface of the electrode. The two buried electrodes 11 and 12 are electrodes for applying an alternating current voltage to generate a discharge, and the exposed electrode 13 is a bias voltage for extracting ions generated by the discharge toward the charged member 2. or the electrode to which it is applied. Further, a heating element 20 made of a high resistance material is embedded in the dielectric 10.

以下、上記の誘電体10、埋設電極11.12裸出電極
13そして発熱体20について、それらの材質を含めて
詳述する。
The dielectric 10, buried electrodes 11, 12, exposed electrodes 13, and heating element 20 will be described in detail below, including their materials.

誘電体10は耐放電性の高い無機誘電材料、例えばガラ
ス、セラミック、 SiO2,MgO,At20iなど
の酸化物、または窒化シリコン(SiJ+) 、窒化ア
ルミニウム(AIN)などの窒化物でてきており。
The dielectric 10 is made of an inorganic dielectric material with high discharge resistance, such as glass, ceramic, oxides such as SiO2, MgO, and At20i, or nitrides such as silicon nitride (SiJ+) and aluminum nitride (AIN).

本実施例では矩形の断面を有する長尺の部材である。In this embodiment, it is a long member having a rectangular cross section.

誘電体10に埋設されている電極11 、12は、図で
誘電体の底面(被除・帯電部材2に対向する面)に平行
に、かつそれから等距離で配置されている。これは必須
ではないか、製造上好ましい。埋設電極11.12の埋
設位置は、それらの間に交流電圧を印加したときに所定
の放電開始電圧で誘電体10の表面の一部の近傍に放電
か発生する位置に設定されている。これらの電極の材料
としては、AI、Cr、Au、Niなどを用い得る。こ
こで注目すべきは、本発明ではこれらの電極は埋設され
露出しておらず、その腐食は発生しないので上記のよう
な材料を使用しても高耐久性を維持できることである。
The electrodes 11 and 12 embedded in the dielectric 10 are arranged parallel to the bottom surface of the dielectric (the surface facing the target/charging member 2) and equidistant therefrom in the figure. This is not essential or preferred for manufacturing purposes. The buried positions of the buried electrodes 11 and 12 are set so that when an alternating current voltage is applied between them, a discharge occurs near a part of the surface of the dielectric 10 at a predetermined discharge starting voltage. As materials for these electrodes, AI, Cr, Au, Ni, etc. can be used. What should be noted here is that in the present invention, these electrodes are buried and not exposed, and corrosion does not occur, so that high durability can be maintained even when the above materials are used.

埋設電極間の距離は絶縁耐圧を考慮して、1jzm以上
、特に3〜200g、mとすることが好ましい。
The distance between the buried electrodes is preferably 1 jzm or more, particularly 3 to 200 g.m, in consideration of dielectric strength.

誘電体10は本実施例では一体のものとしたが、誘電体
10および/または埋設電極11の上方の面または下方
の面て接合された2層の誘電体としてもよい。この場合
それぞれの層の材料は同一ても異なってもよい。特に、
誘電体層を2層とした場合、裏面で放電の生じる誘電体
層を耐放電性の高い無機材料等を用いて誘電体材料の寿
命を保証し、反対側の誘電体材料としては有機誘電体を
使用してもよい。一体構成、2層構成いずれの場合ても
、埋設電極の下部の誘電体の厚さは、1ルm以上、50
0ルm以下、特に3ルm以上200 p、tx以下か好
ましい。裸出電極13は本実施例では前記交流電圧によ
る放電が発生する放電装置lの底面に固定される。この
電極13の材料としては、耐腐食性、耐酸化性の高い導
電性金属、例えばTi 、W、Cr、Te、Mo、Fe
、co、Ni、Au、Ptなどの高融点金属またはこれ
らの金属を含む合金、もしくは酸化物などが使用される
。その厚さは0.1〜100 gm、好ましく 0.2
〜207za+で、幅は1μm以上、好ましくは10〜
500μ麿である。裸出電極の位置は前記放電発生領域
15の端部近傍てあって、いずれの埋設電極(11及び
12)との間に放電開始を生ずる交流印加電圧か前記所
定の放電開始電圧よりも高くなる位置である。
Although the dielectric 10 is integrated in this embodiment, it may be a two-layer dielectric that is joined to the upper surface or lower surface of the dielectric 10 and/or the buried electrode 11. In this case, the materials of each layer may be the same or different. especially,
When the dielectric layer is made of two layers, the dielectric layer on the back side where discharge occurs is made of an inorganic material with high discharge resistance to guarantee the life of the dielectric material, and the dielectric material on the other side is an organic dielectric material. may be used. In either case of an integrated structure or a two-layer structure, the thickness of the dielectric material under the buried electrode is 1 lm or more, 50 m or more.
It is preferably 0 lm or less, particularly 3 lm or more and 200 p, tx or less. In this embodiment, the bare electrode 13 is fixed to the bottom surface of the discharge device 1 where discharge by the alternating current voltage occurs. The material of this electrode 13 may be a conductive metal with high corrosion resistance and oxidation resistance, such as Ti, W, Cr, Te, Mo, or Fe.
, co, Ni, Au, Pt, alloys containing these metals, or oxides are used. Its thickness is 0.1-100 gm, preferably 0.2
~207za+, and the width is 1 μm or more, preferably 10~
It is 500 μm. The position of the exposed electrode is near the end of the discharge generation area 15, and the AC applied voltage that causes discharge initiation between it and any of the buried electrodes (11 and 12) is higher than the predetermined discharge initiation voltage. It's the location.

ここて放電領域の近傍とはその外部および内部を含む近
傍であり、外部の場合か好ましいか、内部であっても放
電領域端部近傍てあれば、機能的に満足てきる。
Here, the vicinity of the discharge area refers to the vicinity including the outside and inside thereof, and it is preferable to be outside, or even if it is inside, it is functionally satisfactory if it is near the end of the discharge area.

埋設された発熱体20は、埋設電極とは異なる材料でマ
ンガニン、 (:、JNiCr、Ta、Ti、SiC等
の高抵抗率の材料を用いて蒸着、エッチンク処理等によ
り形成されており、その抵抗値は、放電装置の熱容量及
び印加電圧の高低によっても異なるが数Ωから数百Ωの
間で設定される。そして、埋設電極11.12にかかる
交流電圧とも、裸出電極13にかかるバイアス電圧とも
関係の無い交流電圧もしくは直流電圧か印加されている
The buried heating element 20 is made of a material different from that of the buried electrode, such as manganin, JNiCr, Ta, Ti, SiC, etc., and is formed by vapor deposition, etching, etc. The value is set between several ohms and several hundred ohms, although it varies depending on the heat capacity of the discharge device and the level of the applied voltage.Also, the AC voltage applied to the buried electrodes 11 and 12, and the bias voltage applied to the exposed electrode 13. An unrelated AC or DC voltage is being applied.

以上のととくの本実施例ては、次のように放電が行なわ
れる。なお、本実施例の放電装置lは、誘電体層または
感光体層17そして導電性基体18から成る接際・帯電
部材2を除電または帯電するために使用可能であるか、
除・帯電原理は同様であるので、帯電を行う場合につい
てのみ説明する。
In this particular embodiment described above, discharge is performed as follows. It should be noted that the discharge device l of this embodiment can be used to neutralize or charge the contact/charging member 2 consisting of the dielectric layer or photoreceptor layer 17 and the conductive substrate 18.
Since the principles of electrification removal and charging are the same, only the case where electrification is performed will be explained.

埋設電極11と埋設電極12どの間に交流電源14によ
って所定の放電開始電圧以上の交流電圧が印加されると
、これによって図示の放電装置lの底面(交流電圧が印
加される電極11と同12とを結ぶ線にほぼ平行な面)
の電極間近傍に対向する部分を中心して、参照符号15
て示す単一領域において放電が行われ、正・負のイオン
が交互に生成される。しかるに、裸出電極13にはバイ
アス電圧が印加されているために上記イオンのうちの所
望の極性のイオンは被帯電部材2に向けて抽出され、該
被帯電部材2は帯電される。
When an AC voltage higher than a predetermined discharge starting voltage is applied between the buried electrode 11 and the buried electrode 12 by the AC power supply 14, this causes )
Reference numeral 15 is centered on the portion facing the vicinity of the electrodes.
A discharge occurs in a single region shown as , and positive and negative ions are generated alternately. However, since a bias voltage is applied to the bare electrode 13, ions of a desired polarity among the ions are extracted toward the member to be charged 2, and the member to be charged 2 is charged.

尚、抽出されるイオンの極性は印加されるバイアス電圧
の極性によって決定される。
Note that the polarity of the extracted ions is determined by the polarity of the applied bias voltage.

これと共に、上記発熱体20には電圧が印加されており
、該発熱体20はその抵抗値か高いのて発熱作用を生じ
る。そして発熱体20は周囲か全面的に誘電体10に接
触しているのて、その熱伝導効率は非常に高く、誘電体
10すなわち放電装置lは速やかに昇温し除湿効果をあ
げる。かくして、放電作用は何の支障もなく遂行される
At the same time, a voltage is applied to the heating element 20, and the heating element 20 generates heat due to its high resistance value. Since the heating element 20 is entirely in contact with the dielectric 10, its heat conduction efficiency is very high, and the temperature of the dielectric 10, that is, the discharge device 1, is quickly increased to provide a dehumidifying effect. The discharge action is thus carried out without any hindrance.

第2図に示される第二実施例は、発熱体が埋設電極と同
一面にあることか特徴となっている。
The second embodiment shown in FIG. 2 is characterized in that the heating element is on the same plane as the buried electrode.

両者か同一面にあるために、製造時に同時に形成てきる
という利点かある。またその結実装置を薄くてきるとい
う使用価値をも生み出す。上記製造上の利点をさらに生
かすならば、発熱体と埋設電極とを同一材料となるよう
に選択することである。
Since both are on the same surface, there is an advantage that they can be formed at the same time during manufacturing. It also creates the value of using it by making the fruiting device thinner. To further utilize the above manufacturing advantages, the heating element and the buried electrode are selected to be made of the same material.

第3図及び第4図にはそれぞれ第三及び第四実施例が示
されている。両者の場合、発熱体22゜23は誘電体1
0の外表面上に形成されている点に特徴かある。その際
発熱体22.23は、接着剤等信の物質を介さずに直接
誘電体10に接面して形成されている。前者(第3図)
にあっては裸出電極13側の面に、そして後者(第4図
)にあってはその反対側の面に形成されている。発熱体
22.23はマンガニン、 C,W、NiCr、Ta、
Ti、SiO等の材料で蒸着後エツチングして形成した
り、溶剤で熔いた熱硬化性樹脂内にカーボン、金属粉体
等を混入したいわゆる導電性塗料を用いてシルク印刷等
の各種の印刷技術を用いても形成可能である。そして、
第3図、第4図に示したものは特に接着剤等を介するこ
となく発熱体を誘電体表面に接触させて設けているので
、発熱体からの熱の伝導効率も良好である。
Third and fourth embodiments are shown in FIGS. 3 and 4, respectively. In both cases, the heating elements 22 and 23 are the dielectric 1
It is distinctive in that it is formed on the outer surface of 0. In this case, the heating elements 22, 23 are formed directly in contact with the dielectric 10 without intervening any adhesive material or the like. The former (Figure 3)
In the latter case, it is formed on the surface on the bare electrode 13 side, and in the latter case (FIG. 4), it is formed on the surface on the opposite side. The heating element 22.23 is made of manganin, C, W, NiCr, Ta,
Various printing techniques such as silk printing using so-called conductive paints, which are formed by vapor deposition and etching using materials such as Ti and SiO, or by mixing carbon, metal powder, etc. into a thermosetting resin melted in a solvent. It can also be formed using and,
In the case shown in FIGS. 3 and 4, the heating element is provided in contact with the dielectric surface without using an adhesive or the like, so that the heat conduction efficiency from the heating element is also good.

(発明の効果) 以上のように、本発明の放電装置は、少なくとも2個の
電極を埋設した誘電体に裸出した電極と高抵抗値をもつ
発熱体を設けこの発熱体に交流もしくは直流の電圧を印
加して発熱させることとしたので、熱が速くかつ効率よ
く誘電体に伝達されて放電装置表面温度を瞬時に昇温す
ることが可能となり、表面に付着した水分をすばやく蒸
発させ、放電作用を容易に開始することができるという
効果を得る。
(Effects of the Invention) As described above, the discharge device of the present invention is provided with a dielectric body in which at least two electrodes are embedded, a bare electrode and a heating element having a high resistance value, and a heating element with an AC or DC current applied to the heating element. Since we decided to generate heat by applying a voltage, the heat is quickly and efficiently transferred to the dielectric, making it possible to instantly raise the surface temperature of the discharge device, quickly evaporating moisture adhering to the surface, and discharging. The effect is that the action can be started easily.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はいづれも本発明の実施例装置を示す概要構成断面
図であり、第1図は第一実施例、第2図は第二実施例、
第3図は第三実施例、第4図は第四実施例を示す。 l・・・・・・・・・・・・・・・・・・・・・放電装
置10・・・・・・・・・・・・・・・・・・・・・誘
電体11.12・・・・・・・・・・・・・・・埋設電
極13・・・・・・・・・・・・・・・・・・・・・裸
出電極20.21,22.23・・・・・・発熱体特許
出願人       キャノン株式会社代理人   弁
理士   藤 岡    徹第1図 第2図 第3図 第4図
Each of the drawings is a schematic cross-sectional view showing a device according to an embodiment of the present invention, and FIG. 1 shows the first embodiment, FIG. 2 shows the second embodiment,
FIG. 3 shows a third embodiment, and FIG. 4 shows a fourth embodiment. l・・・・・・・・・・・・・・・・・・Discharge device 10・・・・・・・・・・・・・・・・・・Dielectric 11. 12...... Buried electrode 13... Bare electrode 20.21, 22.23 ... Heating element patent applicant Canon Co., Ltd. Agent Patent attorney Toru Fujioka Figure 1 Figure 2 Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)交流電圧印加用の電極が少なくとも2個埋設せら
れる誘電体にバイアス電圧印加用の裸出電極を設け、発
熱体を上記誘電体に埋設もしくは誘電体の外表面に直接
接面して形成することとした放電装置。
(1) An exposed electrode for bias voltage application is provided on a dielectric body in which at least two electrodes for applying AC voltage are buried, and a heating element is buried in the dielectric body or directly in contact with the outer surface of the dielectric body. A discharge device was formed.
(2)発熱体は、誘電体の外表面に直接接面して形成せ
られ、埋設電極とは異なる材料でなることを特徴とする
特許請求の範囲第(1)項記載の放電装置。
(2) The discharge device according to claim (1), wherein the heating element is formed in direct contact with the outer surface of the dielectric and is made of a material different from that of the buried electrode.
(3)発熱体は、誘電体に埋設せられ、埋設電極と同一
材料でなることを特徴とする特許請求の範囲第(1)項
記載の放電装置。
(3) The discharge device according to claim (1), wherein the heating element is embedded in the dielectric and made of the same material as the embedded electrode.
JP16457386A 1986-01-30 1986-07-15 Discharging device Pending JPS6321673A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16457386A JPS6321673A (en) 1986-07-15 1986-07-15 Discharging device
EP87300799A EP0232136B1 (en) 1986-01-30 1987-01-29 Charging or discharging device
US07/008,382 US4783716A (en) 1986-01-30 1987-01-29 Charging or discharging device
DE19873782179 DE3782179T2 (en) 1986-01-30 1987-01-29 LOADING OR UNLOADING DEVICE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16457386A JPS6321673A (en) 1986-07-15 1986-07-15 Discharging device

Publications (1)

Publication Number Publication Date
JPS6321673A true JPS6321673A (en) 1988-01-29

Family

ID=15795736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16457386A Pending JPS6321673A (en) 1986-01-30 1986-07-15 Discharging device

Country Status (1)

Country Link
JP (1) JPS6321673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7801464B2 (en) 2007-08-06 2010-09-21 Sharp Kabushiki Kaisha Ion generating device with a discharge electrode on a dielectric body coated by a protective layer made of metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7801464B2 (en) 2007-08-06 2010-09-21 Sharp Kabushiki Kaisha Ion generating device with a discharge electrode on a dielectric body coated by a protective layer made of metal

Similar Documents

Publication Publication Date Title
US5151845A (en) Electrostatic chuck
US4783716A (en) Charging or discharging device
EP1291931A3 (en) A piezoelectric thin-film element and a manufacturing method thereof
JPS62141578A (en) Electrostatic discharging and charging method
JPH11317302A (en) Positive temperature coefficient thermistor element and heating device using the same
JPS6321673A (en) Discharging device
JPH08107236A (en) Microbridge heater
JP4033508B2 (en) Electrostatic chuck
JPH053894B2 (en)
JPS63129362A (en) Discharging device
JPS6375762A (en) Electric discharge device
EP0232136B1 (en) Charging or discharging device
JP2585030B2 (en) Mass filter
JP2002014070A (en) Thermal type sensor
JPS63132270A (en) Discharging device
JPS63129363A (en) Discharging device
JPS63136061A (en) Electrifying device
JPS63131157A (en) Electrostatic discharging device
JPH0721669B2 (en) Removal / charging method
JP2003172720A (en) Gas sensor and manufacturing method therefor
JPH0795204B2 (en) Discharge device
JPS63136060A (en) Electrifying device
JPH08264269A (en) Heater for sheet material
JPS63132268A (en) Discharging device
JPS63141078A (en) Electrostatic charging device