JPS63213377A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPS63213377A
JPS63213377A JP62045145A JP4514587A JPS63213377A JP S63213377 A JPS63213377 A JP S63213377A JP 62045145 A JP62045145 A JP 62045145A JP 4514587 A JP4514587 A JP 4514587A JP S63213377 A JPS63213377 A JP S63213377A
Authority
JP
Japan
Prior art keywords
crystal
light emitting
conductivity type
substrate
znse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62045145A
Other languages
Japanese (ja)
Inventor
Masaru Kawachi
河内 勝
Masasue Okajima
岡島 正季
Keijiro Hirahara
平原 奎治郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62045145A priority Critical patent/JPS63213377A/en
Publication of JPS63213377A publication Critical patent/JPS63213377A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of group II and group VI of the periodic system

Abstract

PURPOSE:To restrain the absorption into the inside of a crystal, and obtain an excellent LED for blue light, by forming, on a ZnSe substrate crystal, a ZnSSeTe layer whose forbidden bandwidth is narrower than that of the ZnSe crystal, and forming a generation junction. CONSTITUTION:The title semiconductor light emitting element comprises the following stacked in order on the ZnSe single crystal substrate 11; a first conductivity type ZnSxSe1-x-yTey(0<x<1,0<y<1) crystal layer 12 and a second conductivity type ZnSex'Se1-x'-y'Tey(0<x'<1, 0<y'<1) crystal layer 13. The forbidden bandwidth of the first conductivity type ZnSSeTe crystal layer 12 is made narrower than that of the ZnSe single crystal substrate 11. Therefore light absorption into the substrate inside can be reduced. Further, as for the mixed crystal composition of P-N junction, the forbidden bandwidth of P-type is made larger than that of N-type by changing the values of x, y and x', y'. Therefore, the internal absorption of a surface layer can be restrained to the utmost. Thereby, a blue-light emitting element having excellent characteristics and high luminous efficiency can be obtained.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は青色の半導体発光素子に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a blue semiconductor light emitting device.

(従来の技術) 青色発光素子を得るためのff51の条件は、用いる半
導体の禁制帯幅Eにが2.6evt!:越えることであ
る。この条件を満たす半導体結晶としてはTI −Vl
族、化合物半導体であるZnS (E(=3.5ev)
、 ZnSe(E区=2.7ev)或いはこれらの結晶
がある。これらは直接遷移型であるため高い発光効率が
期待される。従来数も良く用いられているのはZ n 
S eである。これは、ZnSe結晶を基板として、 
TI型およびp型のZnSe層を 相成長させ、pn接
合を形成し、発光素子を得ている。
(Prior Art) The condition for ff51 to obtain a blue light emitting element is that the forbidden band width E of the semiconductor used is 2.6evt! : It is to overcome. A semiconductor crystal that satisfies this condition is TI −Vl
group, compound semiconductor ZnS (E (=3.5ev)
, ZnSe (E section = 2.7ev) or crystals thereof. Since these are direct transition type, high luminous efficiency is expected. The conventional number that is often used is Z n
It is Se. This uses ZnSe crystal as a substrate,
TI type and p type ZnSe layers are phase grown to form a pn junction and a light emitting device is obtained.

ところが、このように成長させた発光素子に順方向に電
流を流すと、青色の光を発するが、その発光波長が、 
ZnSe基板の吸収@ (〜480nm)に近いので結
晶内で吸収される割合が多くなってしまう。
However, when a current is passed in the forward direction to a light emitting device grown in this way, it emits blue light, but the emission wavelength is
Since the absorption is close to that of the ZnSe substrate (up to 480 nm), the proportion of absorption within the crystal increases.

以上のことをより具体的に第4図を参照して説明する。The above will be explained in more detail with reference to FIG.

第4図はn型ZnSe基板41に、MOCVD法により
n型層nSe層42.p型ZnSe層43を順次成長形
成した発光素子を示し、44はpn接合である・ この様な従来法による発光素子のpn接合44に順方向
に電流を流すと青色の光を発する。その進路を矢印で示
しである。pn接合7I4より下方向に出た光45は1
度ZnSe基板41に入ると吸収されてしまい、結局発
光部分から外部へ出て眼に感するのはpn接合44から
上方に向って出た光46だけになる。しかし、上方に向
った光46もその一部は表面層内部吸収47があり、外
へ出る光48は一部分のみである。
FIG. 4 shows an n-type layer nSe layer 42. A light emitting device is shown in which a p-type ZnSe layer 43 is sequentially grown, and 44 is a pn junction. When a current is passed in the forward direction through the pn junction 44 of such a conventional light emitting device, blue light is emitted. The course is indicated by an arrow. The light 45 emitted downward from the pn junction 7I4 is 1
When the light enters the ZnSe substrate 41, it is absorbed, and in the end, only the light 46 emitted upward from the pn junction 44 exits from the light emitting part and is felt by the eyes. However, part of the upwardly directed light 46 is absorbed inside the surface layer 47, and only part of the light 48 goes out.

このような訳で外部発光効率が極めて低く、十分な輝度
が得られないという欠点があった。
For this reason, the external light emitting efficiency was extremely low, and there was a drawback that sufficient brightness could not be obtained.

(発明が解決しようとする問題点) 以上のように従来のZnSe発光素子は、バンド端近傍
の青色発光の再吸収が大きくなり、発光効率の低下をも
たらすのが実状である。
(Problems to be Solved by the Invention) As described above, in the conventional ZnSe light emitting device, reabsorption of blue light near the band edge increases, resulting in a decrease in luminous efficiency.

本発明はこのような問題を解決した高効率青色LEDの
構造を提供することを目的とする。
An object of the present invention is to provide a highly efficient blue LED structure that solves these problems.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、ZnSe基板結晶上にこの結晶の禁制帯幅よ
り小さい例えばZnSe基板層を形成し、発光接合を形
成することにより、結晶内部への吸収が抑えられ、良好
な青色LEDが得られることを特徴とする。
(Means for Solving the Problems) The present invention suppresses absorption inside the crystal by forming, for example, a ZnSe substrate layer smaller than the forbidden band width of the crystal on a ZnSe substrate crystal and forming a light emitting junction. It is characterized in that a good blue LED can be obtained.

(作用) ZnSe、ZnS 青色LEDの製造には種々の方法が
知られている。これらは結晶基板と第−感電型の半導体
結晶層および第二導電型の半導体結晶層からなり、すべ
て同一物質で構成されている。
(Operation) Various methods are known for manufacturing ZnSe, ZnS blue LEDs. These are composed of a crystal substrate, a first conductivity type semiconductor crystal layer, and a second conductivity type semiconductor crystal layer, all of which are made of the same material.

このように同一物質で構成された発光素子ではPn接合
より発した光は基板吸収や表面層内部吸収により失なわ
れる割合は非常に高くなる。従って、本発明によれば基
板結晶より禁制帯幅の小さい混晶組成にすることで、基
板内部への光吸収を少なくでき、さらにpn接合での混
晶組成もXt’/およびxI、 ylの値を変化させn
型よりp型の禁制帯幅を大きくすることで表面層内部吸
収を極力抑えられ、上記で述べたような問題は無くなり
、素子特性的に優れた高い発光効率を有する青色発光素
子が得られる。
In light emitting elements constructed of the same material as described above, the proportion of light emitted from the Pn junction is lost due to substrate absorption or internal absorption in the surface layer is very high. Therefore, according to the present invention, light absorption into the interior of the substrate can be reduced by making the mixed crystal composition smaller than the forbidden band width than the substrate crystal, and furthermore, the mixed crystal composition at the pn junction can be changed to Xt'/ and xI, yl. Change the value n
By making the forbidden band width of the p-type larger than that of the p-type, internal absorption in the surface layer can be suppressed as much as possible, the above-mentioned problems are eliminated, and a blue light-emitting element with excellent device characteristics and high luminous efficiency can be obtained.

(実施例) 以下、本発明の詳細な説明する。第1図は本発明の一実
施例の青色発光素子を示す。図において11はn型Zn
Se基板結晶であり、この上に原料としてジメチル亜鉛
(DMZ)、ジエチルテルルy−(DES)、  ジメ
チルセレン(DMSe)およびジエチルテルル(DET
e)を用いたMOCVD法によりn型Zn5ySe、−
y−yTey結晶層12を成長させ、その上にn型層の
禁制布幅より大きいp型層 n S x′s el−1
1’x′ T e、/結晶層13をやはりMOCVD法
でエピタキシャル成長させた。この時、x、yおよびx
′、y′値はZnSe基板の格子定数にほぼ整合させた
(Example) The present invention will be described in detail below. FIG. 1 shows a blue light emitting device according to an embodiment of the present invention. In the figure, 11 is n-type Zn
Se substrate crystal, on which dimethylzinc (DMZ), diethyltellurium (DES), dimethylselenium (DMSe) and diethyltellurium (DET) are deposited as raw materials.
e) by MOCVD method using n-type Zn5ySe, -
A y-yTey crystal layer 12 is grown, and a p-type layer n S x's el-1 whose width is larger than the forbidden cloth width of the n-type layer is grown on it.
The 1'x' Te,/crystalline layer 13 was also epitaxially grown using the MOCVD method. At this time, x, y and x
', y' values were approximately matched to the lattice constant of the ZnSe substrate.

第2図はこのようなn−VI族混晶を用いた発光素子に
おける光の出方を模式的に示したものである。いまpn
接合に順方向に電流を流すと、混晶の組成比によって混
晶の吸収端に近い青色の光を発する。
FIG. 2 schematically shows how light is emitted from a light emitting device using such an n-VI group mixed crystal. Now pn
When a current is passed through the junction in the forward direction, blue light near the absorption edge of the mixed crystal is emitted depending on the composition ratio of the mixed crystal.

pn接合21より下方向に出た光23は基板ZnSe2
2で一部は吸収されるも大部分は反射されて上方へ向い
、外部へ放出される。また、pn接合21から上方に向
って出た光24は表面層内部吸収をほとんど受けずに大
部分が外に出てくる。以上のようにpn接合21から出
た光は有効に外部へ取り、出させることが出来る。
The light 23 emitted downward from the pn junction 21 is the substrate ZnSe2.
2, some of it is absorbed, but most of it is reflected upward and emitted to the outside. Further, the light 24 emitted upward from the pn junction 21 is hardly absorbed within the surface layer and most of it comes out. As described above, the light emitted from the pn junction 21 can be effectively taken out and emitted.

この発光素子のELスペクトルを第3図(a)に示す、
比較として従来の条件で構成したZnSe発光素子の場
合のスペクトルを(b)に示す。
The EL spectrum of this light emitting element is shown in FIG. 3(a).
For comparison, the spectrum of a ZnSe light emitting device configured under conventional conditions is shown in (b).

これによって明らかなように本発明による場合、各結晶
層での光吸収が抑えられ1発光効率の高い良好な青色発
光素子が得られた。
As is clear from this, in the case of the present invention, light absorption in each crystal layer was suppressed, and a good blue light emitting element with high luminous efficiency was obtained.

本発明は上記実施例で述べた成長法としてもMOCVD
法に限らず、他の気相成長法やMBE法或いは液相成長
法を利用することが可能である。
The present invention also uses MOCVD as the growth method described in the above embodiments.
It is possible to use other vapor phase growth methods, MBE methods, or liquid phase growth methods.

その他1本発明はその趣旨を逸脱しない範囲で種々変形
して実施することができる。
Other 1 The present invention can be implemented with various modifications without departing from the spirit thereof.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、基板Zn5a、n型Z n Sつ
5at−x−yTey (0<X<1 、 O<y<1
)およびp型ZnS、x’5c1−yix′T6x′ 
(0<x′<1 + O<x′< 1 )により構成し
かつ各層の界面で格子定数をほぼ整合させた材料および
構造を用いることにより、高い効率の青色発光素子を得
ることができる。
As explained above, the substrate Zn5a, the n-type ZnS5at-x-yTey (0<X<1, O<y<1
) and p-type ZnS, x'5c1-yix'T6x'
A highly efficient blue light-emitting device can be obtained by using a material and structure that is configured by (0<x'<1 + O<x'<1) and whose lattice constants are substantially matched at the interfaces of each layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のpn接合型発光素子および
禁制帯幅を示した模式図、第2図はその光の出方を説明
するための図、第3図は本発明と従来法で成長させた発
光素子のELスペクトルを示した図、第4図は従来法の
pn接合型発光素子およびその光の出方を説明した図で
ある。 11・・・n型Zn5a基板結晶 12−p型Zn5SsTe結晶層 13−p型Zn5SeTa結晶層 2l−pn接合22
・・・n型ZnSe基板結晶 23、24・・・pn接合より出た光 41・・・n型ZnSe基板結晶 42・・・n型ZnSe結品層 43・・・p型ZnSe結品層  44・・・pn接合
45〜48・・・pn接合より出た光 代理人 弁理士 則 近 憲 佑 同  竹花喜久男 Y制辛+@ <ev> 第1図 第2図 49on“E閣よ、。。。 第3図 第4図
FIG. 1 is a schematic diagram showing a pn junction type light emitting device and a forbidden band width according to an embodiment of the present invention, FIG. 2 is a diagram for explaining how light is emitted, and FIG. 3 is a diagram showing the present invention and conventional FIG. 4 is a diagram showing the EL spectrum of a light emitting device grown by the method, and FIG. 4 is a diagram illustrating a conventional pn junction type light emitting device and how light is emitted from it. 11...n-type Zn5a substrate crystal 12-p-type Zn5SsTe crystal layer 13-p-type Zn5SeTa crystal layer 2l-pn junction 22
...N-type ZnSe substrate crystals 23, 24...Light emitted from the pn junction 41...N-type ZnSe substrate crystal 42...N-type ZnSe crystal layer 43...P-type ZnSe crystal layer 44 ...pn junction 45-48...Light agent from pn junction Patent attorney Nori Chika Ken Yudo Takehana Kikuo Y control + @ <ev> Figure 1 Figure 2 49 on "E-kaku." Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)ZnSe単結晶基板上に第一導電型 ZnS_xSe_1_−_x_−_y(0<x<1、0
<y<1)結晶層および第二導電型ZnS_x_′Se
_1_−_x_′_−_y_′Te_y_′(0<x′
<1<、0<y′<1)結晶層が順次積層されて構成さ
れてなるる半導体発光素子において、前記第一導電型Z
nSSeTe結晶層の禁制帯幅がZnSe単結晶基板の
それよりも小さいことを特徴とする半導体発光素子。
(1) First conductivity type ZnS_xSe_1_-_x_-_y (0<x<1, 0
<y<1) Crystal layer and second conductivity type ZnS_x_'Se
_1_−_x_′_−_y_′Te_y_′(0<x′
<1<, 0<y'<1) In the semiconductor light emitting device configured by sequentially stacking crystal layers, the first conductivity type Z
A semiconductor light emitting device characterized in that a forbidden band width of an nSSeTe crystal layer is smaller than that of a ZnSe single crystal substrate.
(2)前記第一導電型ZnSSeTe結晶層の禁制帯幅
が第二導電型ZnSSeTe結晶層のそれよりも小さい
ことである特許請求の範囲第1項記載の半導体発光素子
(2) The semiconductor light emitting device according to claim 1, wherein the forbidden band width of the first conductivity type ZnSSeTe crystal layer is smaller than that of the second conductivity type ZnSSeTe crystal layer.
(3)前記第一導電型ZnSSeTe結晶層および第二
導電型ZnSSeTe結晶層がZnSe単結晶基板に格
子整合していることを特徴とする特許請求の範囲第1項
記載の半導体発光素子。
(3) The semiconductor light emitting device according to claim 1, wherein the first conductivity type ZnSSeTe crystal layer and the second conductivity type ZnSSeTe crystal layer are lattice matched to a ZnSe single crystal substrate.
JP62045145A 1987-03-02 1987-03-02 Semiconductor light emitting element Pending JPS63213377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62045145A JPS63213377A (en) 1987-03-02 1987-03-02 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62045145A JPS63213377A (en) 1987-03-02 1987-03-02 Semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JPS63213377A true JPS63213377A (en) 1988-09-06

Family

ID=12711111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62045145A Pending JPS63213377A (en) 1987-03-02 1987-03-02 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPS63213377A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246175A (en) * 1989-03-17 1990-10-01 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light-emitting element
US5113233A (en) * 1988-09-02 1992-05-12 Sharp Kabushiki Kaisha Compound semiconductor luminescent device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113233A (en) * 1988-09-02 1992-05-12 Sharp Kabushiki Kaisha Compound semiconductor luminescent device
US5616937A (en) * 1988-09-02 1997-04-01 Sharp Kabushiki Kaisha Compound semiconductor luminescent device
JPH02246175A (en) * 1989-03-17 1990-10-01 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light-emitting element

Similar Documents

Publication Publication Date Title
US5646419A (en) n-type wide bandgap semiconductors grown on a p-type layer to form hole injection pn heterojunctions and methods of fabricating the same
JP3643665B2 (en) Semiconductor light emitting device
JPH0246779A (en) Pn junction type light emitting diode using silicon carbide semiconductor
KR100305572B1 (en) Light emitting diodes and manufacturing method
JPH0897468A (en) Semiconductor light emitting device
JP3700609B2 (en) COMPOUND SEMICONDUCTOR LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, LAMP AND LIGHT SOURCE
JPH0268968A (en) Compound semiconductor light-emitting device
US5140385A (en) Light emitting element and method of manufacture
JPH05167101A (en) Semiconductor light emitting element
US5043774A (en) Light-emitting semiconductor device
US4296425A (en) Luminescent diode having multiple hetero junctions
JP4285837B2 (en) AlGaInP light emitting device with window layer
KR20200083894A (en) Multi-wavelength light-emitting diode epitaxial structure
JPH0864870A (en) Semiconductor light emitting element
JPS63213377A (en) Semiconductor light emitting element
JPS61144078A (en) Semiconductor light-emitting element
JP4402214B2 (en) AlGaInP light emitting diode
JP2597624B2 (en) Semiconductor light emitting device
JPH077849B2 (en) Semiconductor light emitting element
JP2670523B2 (en) Light emitting device manufacturing method
JP3747867B2 (en) Pn junction type compound semiconductor light emitting device, manufacturing method thereof, lamp and light source
JPH01777A (en) semiconductor light emitting device
KR100592395B1 (en) A algainp semiconductor device
JPH0728052B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP4298859B2 (en) AlGaInP light emitting diode