JPS6321284Y2 - - Google Patents

Info

Publication number
JPS6321284Y2
JPS6321284Y2 JP1982058739U JP5873982U JPS6321284Y2 JP S6321284 Y2 JPS6321284 Y2 JP S6321284Y2 JP 1982058739 U JP1982058739 U JP 1982058739U JP 5873982 U JP5873982 U JP 5873982U JP S6321284 Y2 JPS6321284 Y2 JP S6321284Y2
Authority
JP
Japan
Prior art keywords
heat
organic solvent
heat exchanger
medium
solvent vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982058739U
Other languages
Japanese (ja)
Other versions
JPS58165480U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1982058739U priority Critical patent/JPS58165480U/en
Publication of JPS58165480U publication Critical patent/JPS58165480U/en
Application granted granted Critical
Publication of JPS6321284Y2 publication Critical patent/JPS6321284Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【考案の詳細な説明】 本考案は蒸発、あるいは蒸留操作等にあたり発
生した有機溶剤蒸気の潜熱を回収する装置に関す
る。
[Detailed Description of the Invention] The present invention relates to an apparatus for recovering the latent heat of organic solvent vapor generated during evaporation or distillation operations.

従来、溶液の濃縮、または溶剤の回収を行う蒸
発操作、あるいは混合溶剤より各成分を分離する
蒸留操作等において、蒸発缶、あるいは蒸留塔で
発生する有機溶剤蒸気の潜熱を回収し熱経済をは
かる方法として、発生した有機溶剤蒸気を液膜流
下式熱交換器のシエル側に導びき、これを熱源と
して管内を流下する熱媒(水、あるいはフロン
等)を加熱蒸発させ、更に発生した熱媒蒸気を機
械式圧縮機で圧縮しエンタルピを上昇させて熱源
として再使用するヒートポンプ式の熱回収装置が
提案実施される。
Conventionally, in evaporation operations to concentrate solutions or recover solvents, or distillation operations to separate components from mixed solvents, thermal economy is achieved by recovering the latent heat of the organic solvent vapor generated in the evaporator or distillation column. The method involves guiding the generated organic solvent vapor to the shell side of a falling film heat exchanger, using this as a heat source to heat and evaporate the heat medium (water, fluorocarbon, etc.) flowing down the tube, and then A heat pump type heat recovery device that compresses steam using a mechanical compressor to increase enthalpy and reuse it as a heat source is proposed and implemented.

ところで、ヒートポンプ式熱回収装置の成積係
数を大きくするためには、熱交換器における溶剤
蒸気凝縮温度(加熱側温度)と熱媒蒸気温度(受
熱側温度)との温度差をできるかぎり小さくする
必要がある。しかし、温度差を小さく設定して
も、そのため熱交換器の伝熱面積が大きくなれば
設備費が高価となりヒートポンプとしての経済性
がなくなる。従つて、ヒートポンプに使用される
熱交換器は小温度差での熱交換が可能で、且つ高
い伝熱係数が得られなければならない。このよう
な見地から考へると液膜流下式加熱缶は凝縮と蒸
発との温度差が2〜3℃と小さくても熱交換が可
能であるためヒートポンプ用の熱交換器として有
利である。しかし乍ら、有機溶剤蒸気の潜熱を回
収する場合、伝熱管内側は熱媒が管内壁を薄膜状
で流下し比較的高い境膜伝熱係数が得られるが、
管外側を流れる有機溶剤は熱伝導率が小さいため
境膜伝熱係数が小さくその値が総括伝熱係数の律
速となるので、熱回収効率を向上させるためには
凝縮した有機溶剤が流下する伝熱管外側の境膜伝
熱係数を大きくすることが重要な要素となる。
By the way, in order to increase the product coefficient of a heat pump type heat recovery device, the temperature difference between the solvent vapor condensation temperature (heating side temperature) and the heat medium vapor temperature (heat receiving side temperature) in the heat exchanger must be made as small as possible. There is a need. However, even if the temperature difference is set small, if the heat transfer area of the heat exchanger becomes large, the equipment cost becomes high and the heat pump becomes uneconomical. Therefore, a heat exchanger used in a heat pump must be capable of exchanging heat with a small temperature difference and must have a high heat transfer coefficient. From this point of view, the liquid film falling type heating can is advantageous as a heat exchanger for heat pumps because heat exchange is possible even when the temperature difference between condensation and evaporation is as small as 2 to 3°C. However, when recovering the latent heat of organic solvent vapor, the heating medium flows in a thin film form on the inner wall of the heat transfer tube, resulting in a relatively high film heat transfer coefficient.
Since the organic solvent flowing on the outside of the tube has a low thermal conductivity, the film heat transfer coefficient is small and its value determines the overall heat transfer coefficient. Therefore, in order to improve heat recovery efficiency, the condensed organic solvent flows downward. An important factor is to increase the film heat transfer coefficient on the outside of the heat tube.

本考案は、このような点に着目してなされたも
ので、本考案は蒸発缶、あるいは蒸留塔等で発生
した有機溶剤蒸気を、シエル側を上下に区分して
独立した複数個の区画部を形成し各区画部毎に有
機溶剤蒸気導入口、および凝縮液排出口を配設し
た液膜流下式熱交換器のシエル側に導入し、該液
膜流下式熱交換器の伝熱管に導入された熱媒を加
熱蒸発させ、発生した熱媒蒸気を機械式圧縮機で
昇圧、昇温するよう構成したことを特徴とするも
ので、きわめて効率のすぐれたヒートポンプ式有
機溶剤蒸気の熱回収装置を提供することを目的と
する。
The present invention was developed with attention to these points, and the present invention divides the organic solvent vapor generated in an evaporator or distillation column into a plurality of independent compartments by dividing the shell side into upper and lower parts. The liquid film is introduced into the shell side of a falling-film heat exchanger, which has an organic solvent vapor inlet and a condensate outlet in each compartment, and then introduced into the heat transfer tubes of the falling-film heat exchanger. This is an extremely efficient heat pump type organic solvent vapor heat recovery device, which is characterized by being configured to heat and evaporate the generated heat medium and raise the pressure and temperature of the generated heat medium vapor using a mechanical compressor. The purpose is to provide

以下、本考案を実施例につき図面にもとづいて
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments and drawings.

1は本考案に使用する液膜流下式熱交換器で、
その内部には管板2,3により両端を支持された
多数の伝熱管4が配設され、そのシエル側は仕切
板5,6により区分され3個の区画部7,8,9
が形成され、各区画部毎にそれぞれ蒸気導入口1
0,11,12、および凝縮液排出口13,1
4,15が設けられる。第2図は仕切板の取付態
様を示す図面で仕切板5,6の外周面は液膜流下
式熱交器1の内壁面1aに内接し、仕切板と、こ
れに挿通された伝熱管4との隙間はO−リング1
6を介し完全にシールされ伝熱管外側面を流下す
る凝縮液を仕切板上に捕集し凝縮液排出口より外
部に排出することにより下部区画部の伝熱管外側
面を更新するよう構成される。尚、17はパツキ
ング押へで、仕切板と共に図示しないタイロツド
により固定される。また本実施例においてはシー
ル部材としてOリングを用いたが、グランドパツ
キング等他のシール部材を用いてもよい。
1 is a liquid film falling heat exchanger used in this invention,
A large number of heat exchanger tubes 4 supported at both ends by tube plates 2 and 3 are disposed inside the tube, and the shell side thereof is divided by partition plates 5 and 6 into three compartments 7, 8, and 9.
is formed, and each compartment has one steam inlet
0, 11, 12, and condensate outlet 13, 1
4 and 15 are provided. FIG. 2 is a drawing showing how the partition plates are installed, and the outer circumferential surfaces of the partition plates 5 and 6 are inscribed in the inner wall surface 1a of the falling liquid film heat exchanger 1, and the partition plates and the heat transfer tubes 4 inserted therein are The gap between O-ring 1
6, the condensate flowing down the outside surface of the heat transfer tube is collected on the partition plate and discharged to the outside from the condensate discharge port, thereby renewing the outside surface of the heat transfer tube in the lower section. . Note that 17 is a packing pusher which is fixed together with the partition plate by a tie rod (not shown). Further, in this embodiment, an O-ring is used as the sealing member, but other sealing members such as gland packing may be used.

18,19,20はそれぞれ熱媒導入口、熱媒
排出口、および熱媒循環ポンプで、21は熱媒液
分配器、22は熱媒蒸気排出口である。23は気
液分離器、24はターボ式圧縮機、25は熱交換
器を示す。
18, 19, and 20 are a heat medium inlet, a heat medium outlet, and a heat medium circulation pump, respectively; 21 is a heat medium liquid distributor; and 22 is a heat medium vapor outlet. 23 is a gas-liquid separator, 24 is a turbo compressor, and 25 is a heat exchanger.

以上の各機器により構成される本考案装置の作
用につき説明すると、熱媒導入口18より導入さ
れた熱媒は液分配器21により管板2上に均等に
分配され、分配された熱媒は伝熱管4の内壁面に
沿つて薄膜状となつて流下しつつ、管26を介し
て蒸気導入口10,11,12より導入される図
示しない蒸発缶、あるいは蒸留塔等よりの有機溶
剤蒸気と熱交換し、加熱され沸騰した熱媒は液溜
部27に噴出し液分を分離し、熱媒蒸気は管28
を介して気液分離器23に導入され、更に含まれ
るミストを分離したのち管29を介してターボ式
圧縮機24により吸引、圧縮される。
To explain the operation of the device of the present invention composed of the above-mentioned devices, the heat medium introduced from the heat medium inlet 18 is evenly distributed on the tube plate 2 by the liquid distributor 21, and the distributed heat medium is Organic solvent vapor from an evaporator (not shown) or a distillation column, etc., is introduced from the steam inlets 10, 11, 12 through the tube 26 while flowing down in the form of a thin film along the inner wall surface of the heat transfer tube 4. After heat exchange, the heated and boiled heating medium is ejected into the liquid reservoir 27 and the liquid is separated, and the heating medium vapor is passed through the pipe 28.
The mist is introduced into the gas-liquid separator 23 via a pipe 29, and after separating the mist contained therein, it is sucked and compressed by a turbo compressor 24 via a pipe 29.

一方、蒸気導入口10,11,12より導入さ
れた有機溶剤蒸気は、前記したよう区画部7,
8,9内で伝熱管4内を流下する熱媒と熱交換
し、液化した有機溶剤凝縮液は凝縮液排出口1
3,14,15より管30,31,32を介し取
出される。このようにして伝熱管4内を流下する
熱媒に潜熱を与えて液化し凝縮液排出口より取出
された有機溶剤凝縮液は図示しない他の熱交換器
を介し更にその顕熱を回収、冷却して系外に取出
される。
On the other hand, the organic solvent vapor introduced through the steam inlets 10, 11, and 12 is transferred to the partition section 7, as described above.
The organic solvent condensate that is liquefied by exchanging heat with the heat medium flowing down inside the heat transfer tube 4 in the condensate discharge port 1
3, 14, 15 through pipes 30, 31, 32. In this way, the heat medium flowing down inside the heat transfer tube 4 is given latent heat and liquefied, and the organic solvent condensate taken out from the condensate discharge port is further cooled by recovering its sensible heat through another heat exchanger (not shown). and taken out of the system.

更に前記したように、有機溶剤蒸気の潜熱を受
け気化した熱媒蒸気はターボ式圧縮機により吸
引、圧縮されエンタルピを高めたのち管33を介
し熱交換器25に導入され、ここで伝熱壁を介し
て他の流体と熱交換し潜熱を失なつて液化した熱
媒は管34を介し気液分離器23に導入され、こ
こで分離されたミスト液と共に管35を通り管3
6で、排出口19から排出される熱媒と合流し循
環ポンプ20により管37を介し導入口18へ送
られ循環再使用される。
Further, as described above, the heat medium vapor that has received the latent heat of the organic solvent vapor and has been vaporized is sucked and compressed by the turbo compressor to increase its enthalpy, and is then introduced into the heat exchanger 25 through the pipe 33, where it is passed through the heat transfer wall. The heating medium, which is liquefied by exchanging heat with other fluids and losing latent heat, is introduced into the gas-liquid separator 23 through the pipe 34, and passes through the pipe 35 together with the separated mist liquid therein to the pipe 3.
At 6, the heat medium is combined with the heat medium discharged from the discharge port 19, and is sent to the inlet port 18 via the pipe 37 by the circulation pump 20, where it is circulated and reused.

以上の操作のくり返しで蒸発缶、あるいは蒸留
等で発生した有機溶剤蒸気の潜熱を効率よく回収
再使用することができる。
By repeating the above operations, the latent heat of the organic solvent vapor generated in the evaporator or distillation can be efficiently recovered and reused.

尚、上記の説明における熱交換器25とは一般
にいう加熱器(蒸発装置、あるいは蒸留装置の加
熱缶等を含む)を意味し多管式、プレート式等
種々の型式のものが用いられる。又、熱媒として
水を使用する場合、場合によつては管33−熱交
換器25−管34のラインを除きターボ圧縮機2
4の吐出口から直接管38を介しオープンスチー
ムとして取出し使用してもよい。この場合、取出
した蒸気量に相当する水(熱媒)は管39から供
給する。
The heat exchanger 25 in the above description generally refers to a heater (including a heating can of an evaporator or a distillation apparatus), and various types such as a multi-tube type and a plate type are used. In addition, when water is used as a heat medium, depending on the case, the turbo compressor 2 may be
The steam may be taken out directly from the discharge port 4 through the pipe 38 and used as open steam. In this case, water (heating medium) corresponding to the amount of steam taken out is supplied from the pipe 39.

又、上記実施例において機械式圧縮機としてタ
ーボ式圧縮機を使用したがロータリーブロワー
等、他の型式の機械式圧縮機を使用してもよい。
又、本考案で使用する液膜流下式熱交換器として
シエル側を3個に区分したが、2個に区分しても
よく、更に4個以上に区分すればより効率は向上
する。
Further, although a turbo compressor is used as the mechanical compressor in the above embodiment, other types of mechanical compressors such as a rotary blower may be used.
Further, although the shell side of the liquid film falling type heat exchanger used in the present invention is divided into three parts, it may be divided into two parts, and the efficiency will be further improved if it is further divided into four or more parts.

又、第3図に示すようシエル側を区分し区画部
を形成すると共に、更に各区画部毎に伝熱管を分
割し、各区画部間に液分配器40、および熱媒蒸
気分散器41を設け、上部の区画部における伝熱
管内を流下する熱媒を下部の伝熱管に再分散する
よう構成すれば効率は更に向上する。
In addition, as shown in FIG. 3, the shell side is divided to form compartments, and the heat transfer tube is further divided into each compartment, and a liquid distributor 40 and a heat medium vapor distributor 41 are installed between each compartment. Efficiency can be further improved if the heating medium flowing down in the heat exchanger tubes in the upper compartment is redistributed to the lower heat exchanger tubes.

以上の説明で明らかなように、本考案装置は、
シエル側を複数個に区分した液膜流下式熱交換器
を用いて各区画部毎に液化した有機溶剤凝縮液を
器外に取出すため、その総括伝熱係数は大きくな
る。
As is clear from the above explanation, the device of the present invention is
Since the liquid film falling heat exchanger is divided into a plurality of sections on the shell side and the liquefied organic solvent condensate is taken out of the chamber in each section, the overall heat transfer coefficient becomes large.

即ち、熱交換器において蒸気が凝縮する場合凝
縮面における境膜伝熱係数は流体の諸性質、状
態、伝熱面の形状等の多くの諸因子に支配される
が、他の諸因子が一定の場合垂直管における蒸気
の凝縮時の境膜伝熱係数は一般に(1/L)1/4〔Lは 伝熱管の長さ〕に比例するもので、例えば伝熱管
の長さが1/3になるとその凝縮面における境膜伝
熱係数は約32%増加する。本考案に使用する液膜
流下式熱交換器は仕切板により伝熱管を仕切るこ
とにより各区画部がそれぞれ独立した形で熱交換
を行うので、一区画部で熱交換に使用される伝熱
管長さは仕切間の伝熱管長さとなるため、それだ
け境膜伝熱係数が大きくなり総括伝熱係数も向上
する。
In other words, when steam condenses in a heat exchanger, the film heat transfer coefficient on the condensing surface is controlled by many factors such as the properties and conditions of the fluid, the shape of the heat transfer surface, etc., but other factors are constant. In the case of , the film heat transfer coefficient during condensation of steam in a vertical tube is generally proportional to (1/L) 1/4 [L is the length of the heat exchanger tube]. For example, if the length of the heat exchanger tube is 1/3 , the film heat transfer coefficient on the condensing surface increases by about 32%. In the liquid film falling type heat exchanger used in this invention, the heat exchanger tubes are partitioned by partition plates so that each section exchanges heat independently, so the length of the heat exchanger tube used for heat exchange in one section is Since the length is the length of the heat transfer tube between the partitions, the film heat transfer coefficient increases accordingly, and the overall heat transfer coefficient also improves.

従つて有機溶剤蒸気と熱媒との平均温度差は小
さく高温の熱媒蒸気が得られるため圧縮機の所要
動力を低減し、また装置を小型化することができ
るので本考案装置によればきわめて効率よく、且
つ経済的に熱回収を行うことができる。
Therefore, the average temperature difference between the organic solvent vapor and the heating medium is small and high-temperature heating medium vapor can be obtained, reducing the power required for the compressor and making it possible to downsize the device. Heat can be recovered efficiently and economically.

尚、本考案装置の対象となる有機溶剤としては
単一成分溶剤のほか、多成分溶剤は勿論、水分を
含む有機溶剤にも適用できる。
It should be noted that the organic solvent to which the present invention can be applied is not only a single-component solvent but also a multi-component solvent as well as an organic solvent containing water.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例の構成を説明する図
面、第2図は仕切板の取付態様を示す第1図の要
部拡大図、第3図は他の実施例における液膜流下
式加熱器の構成を示す図面である。 2,2a,3,42,43……管板、4,4
a,4b……伝熱管、5,6……仕切板、7,
8,9……区画部、10,10a,11,11
a,12,12a……蒸気導入口、13,13
a,14,14a,15……凝縮液排出口、16
……O−リング、17……パツキング押え、1
8,18a……熱媒導入口、19……熱媒排出
口、20……循環ポンプ、21,21a,40…
…液分配器、22……熱媒蒸気排出口、23……
気液分離器、24……ターボ式圧縮機、25……
熱交換器、41……熱媒蒸気分散器。
Fig. 1 is a drawing explaining the configuration of an embodiment of the present invention, Fig. 2 is an enlarged view of the main part of Fig. 1 showing how the partition plate is attached, and Fig. 3 is a liquid film falling type heating in another embodiment. It is a drawing showing the configuration of the vessel. 2, 2a, 3, 42, 43...Tube sheet, 4, 4
a, 4b... Heat exchanger tube, 5, 6... Partition plate, 7,
8, 9... section, 10, 10a, 11, 11
a, 12, 12a...steam inlet, 13, 13
a, 14, 14a, 15... Condensate outlet, 16
... O-ring, 17 ... Packing foot, 1
8, 18a... Heat medium inlet, 19... Heat medium outlet, 20... Circulation pump, 21, 21a, 40...
...Liquid distributor, 22...Heating medium vapor outlet, 23...
Gas-liquid separator, 24... Turbo compressor, 25...
Heat exchanger, 41... heat medium vapor disperser.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 蒸発缶、あるいは蒸留塔等で発生した有機溶剤
蒸気を、シエル側を上下に区分して独立した複数
個の区画部を形成し各区画部毎に有機溶剤蒸気導
入口、および凝縮液排出口を配設した液膜流下式
熱交換器のシエル側に導入し、該液膜流下式熱交
換器の伝熱管に導入された熱媒を加熱蒸発させ、
発生した熱媒蒸気を機械式圧縮機で昇圧、昇温す
るよう構成したことを特徴とするヒートポンプ式
有機溶剤蒸気熱回収装置。
The organic solvent vapor generated in the evaporator or distillation column is divided into upper and lower parts on the shell side to form multiple independent compartments, and each compartment is equipped with an organic solvent vapor inlet and a condensate outlet. Introducing the heating medium into the shell side of the disposed falling liquid film heat exchanger and heating and evaporating the heat medium introduced into the heat transfer tube of the falling liquid film heat exchanger,
A heat pump type organic solvent vapor heat recovery device characterized by being configured to increase the pressure and temperature of generated heat medium vapor using a mechanical compressor.
JP1982058739U 1982-04-21 1982-04-21 Heat pump type organic solvent vapor heat recovery equipment Granted JPS58165480U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1982058739U JPS58165480U (en) 1982-04-21 1982-04-21 Heat pump type organic solvent vapor heat recovery equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1982058739U JPS58165480U (en) 1982-04-21 1982-04-21 Heat pump type organic solvent vapor heat recovery equipment

Publications (2)

Publication Number Publication Date
JPS58165480U JPS58165480U (en) 1983-11-04
JPS6321284Y2 true JPS6321284Y2 (en) 1988-06-13

Family

ID=30069107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1982058739U Granted JPS58165480U (en) 1982-04-21 1982-04-21 Heat pump type organic solvent vapor heat recovery equipment

Country Status (1)

Country Link
JP (1) JPS58165480U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51138582A (en) * 1975-05-27 1976-11-30 Chuo Kakoki Kk Auto-compression type distillation apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51138582A (en) * 1975-05-27 1976-11-30 Chuo Kakoki Kk Auto-compression type distillation apparatus

Also Published As

Publication number Publication date
JPS58165480U (en) 1983-11-04

Similar Documents

Publication Publication Date Title
US6138470A (en) Portable liquid desiccant dehumidifier
US4595459A (en) Desalinization apparatus
US3243359A (en) Closed-circuit thermal power plant with waste-heat utilization in a distillation plant
TWI834895B (en) Process for distilling a crude composition in a rectification plant including an indirect heat pump and a rectification plant
EP0485375B1 (en) Method and apparatus for evaporation of liquids
US3259181A (en) Heat exchange system having interme-diate fluent material receiving and discharging heat
US2185595A (en) Distillation method and apparatus
CN205699506U (en) A kind of electronics acid pickle electron-level phosphoric acid recycling and processing device
GB1312292A (en) Evaporators
KR860001490B1 (en) A system and method for distilling brine to obtain fresh water
US4645569A (en) Process for producing anhydrous ethanol
CA1279482C (en) Air conditioning process and apparatus therefor
WO1991000760A1 (en) Process and apparatus for cooling a fluid
JPS6321284Y2 (en)
WO1991000772A1 (en) Air conditioning process and apparatus
US3619379A (en) Centrifugal, multieffect distillation apparatus
WO1988004193A1 (en) Liquid purification system
JPS61500506A (en) Method and device for utilizing freezing heat of water as a heat source for heat pumps
CN105692744A (en) Medical multi-effect water distiller
JP3184501B2 (en) Internal heat exchange distillation column
JPH027601Y2 (en)
Milligan et al. Distillation and solvent recovery
US3630263A (en) Evaporation of liquor
FI81967B (en) OVER ANALYZING FOR SEPARATION OF OAKING CONDITIONERS GASER AND AONGA.
JPS5821554B2 (en) distillation equipment