JPS63210916A - Electrochromic material and electrochromic element - Google Patents

Electrochromic material and electrochromic element

Info

Publication number
JPS63210916A
JPS63210916A JP62046114A JP4611487A JPS63210916A JP S63210916 A JPS63210916 A JP S63210916A JP 62046114 A JP62046114 A JP 62046114A JP 4611487 A JP4611487 A JP 4611487A JP S63210916 A JPS63210916 A JP S63210916A
Authority
JP
Japan
Prior art keywords
oxide
film
color
coloring
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62046114A
Other languages
Japanese (ja)
Inventor
Takeshi Owaki
健史 大脇
Tadayoshi Ito
忠義 伊藤
Kengo Ishiyama
石山 謙吾
Yasunori Taga
康訓 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP62046114A priority Critical patent/JPS63210916A/en
Publication of JPS63210916A publication Critical patent/JPS63210916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To obtain a total solid EC element having superior transmittance for visible rays, as well as superior response for color charge/discharge, and storage characteristics by constituting the EC element of Ir, Ir oxide or hydroxide, and an oxide of tervalent metal such as Al2O3, Cr2O3, Bi2O3, Y2O3. CONSTITUTION:A tervalent metal oxide having insulating characteristic such as Al2O3, Cr2O3, Bi2O3, La2O3, is used as a receptor for dispersing extremely fine Ir, Ir oxide or hydroxide in place of conventionally used electroconductive material such as SnO2, ZnO2, or ITO. By this constitution, the response for color charge/discharge is improved by improving the transmittance for visible rays and allowing the reversible reaction of color charge/discharge to proceed smoothly. Moreover, since an insulating receptor is used, the insulation resistance of the EC element is increased to 10<10>OMEGA/cm<2> from several kOMEGA/cm<2> of that using conventional electroconductive SnO2, etc., accordingly, the amt. of leakage of electric current is reduced remarkably, and necessary time for color discharge when the element is allowed to stand while turning the circuit OFF after color charge is prolonged, and the storage characteristic is also improved remarkably.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化発色型エレクトロクロミック材料および防
眩ミラー等に応用可能な当該材料を利用した全固体エレ
クトロクロミック素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an oxidative color-forming electrochromic material and an all-solid-state electrochromic device using the material, which can be applied to anti-glare mirrors and the like.

〔従来技術〕[Prior art]

電気信号により光学的性質を制御する光学機能素子のう
ち現在量も広く普及しているものに液晶表示素子(LC
)がある、しかし1表示素子として利用する場合、像の
二重写り、視認性の悪さ等の欠点が以前から指摘されて
いた。一方LC素子の可視光透重過制御性を利用しいわ
ゆる調光膜として応用しようとする動きも活発であり9
反射鏡と組み合わせた液晶防眩ミラーがすでに実用化さ
れている。この場合、前述の像の二重写り、視認性の悪
さに加え、液晶そのものの可視光透過率が低く、非防眩
時に反射率が低く暗いとの不具合が指摘されてきた。
Among the optical functional elements whose optical properties are controlled by electrical signals, liquid crystal display elements (LC) are currently widely used.
), but when used as a single display element, drawbacks such as double images and poor visibility have long been pointed out. On the other hand, there is also an active movement to utilize the visible light transmission weight controllability of LC elements and apply them as so-called light control films9.
Liquid crystal anti-glare mirrors combined with reflective mirrors have already been put into practical use. In this case, in addition to the above-mentioned double image and poor visibility, problems have been pointed out that the visible light transmittance of the liquid crystal itself is low, and the reflectance is low and dark when not anti-glare.

一方電気信号により調光機能を示す光学機能素子の一つ
にエレクトロクロミック(EC)素子がある。電気化学
反応により着色・消色を繰り返すEC素子の歴史は非常
に古い。しかし今日現在。
On the other hand, an electrochromic (EC) element is one of the optical functional elements that exhibits a dimming function using an electrical signal. EC elements, which repeat coloring and decoloring through electrochemical reactions, have a very long history. But as of today.

溶液型素子は実用化されているが、全固体型EC素子は
実用化には至っていない。しかし、全固体型EC素子も
その後の改良研究により長寿命化。
Although solution-type devices have been put into practical use, all-solid-state EC devices have not yet been put into practical use. However, all-solid-state EC elements also had a longer lifespan through subsequent improvement research.

安定化が行われ、EC防眩ミラーとして実用化の試みが
なされている。全固体EC防眩ミラーはEC防眩ミラー
に比べ像の二重写りもなく視認性も良好であるが、応答
性が悪い、全固体ECを構成する膜の着色により非防眩
時のミラー反射率がLCミラーに比べ必ずしも高くはな
らない、また。
It has been stabilized and attempts are being made to put it into practical use as an EC anti-glare mirror. Compared to EC anti-glare mirrors, all-solid EC anti-glare mirrors have better visibility with no double images, but they have poor responsiveness and the coloring of the film that makes up all-solid EC causes mirror reflection when not anti-glare. The ratio is not necessarily higher than that of an LC mirror.

メモリー性が悪い、すなわち着色後放置すると短時間に
消色してしまう等の欠点があった。これらの特性を左右
する要因は膜を構成する酸化発色型エレクトロクコミッ
ク層の特性にある。通常この酸化発色型EC層として最
も広く利用されている材料にイリジウム(Ir)がある
。このIr化合物膜の作製法としては従来、陽極酸化法
9反応性蒸着法1反応性イオンブレーティング法5反応
性スパッタ法等が用いられている。可視光透過率。
There were drawbacks such as poor memory properties, that is, the color would fade in a short time if left undisturbed after coloring. The factors that influence these properties are the properties of the oxidative color-forming electrocomic layer that constitutes the film. Iridium (Ir) is usually the most widely used material for this oxidation coloring type EC layer. Conventionally, methods for producing this Ir compound film include anodic oxidation, reactive vapor deposition, reactive ion blasting, and reactive sputtering. Visible light transmittance.

着色・消色応答性、メモリー性ともに陽極酸化法で作製
したIr酸化物または水酸化物が最も優れている。しか
し陽極酸化法そのものが大面積基板への処理に不適であ
り、また、全固体ECセルを構成する還元発色層、誘電
体層を物理的成膜法(蒸着、スパッタ、イオンブレーテ
ィング等)により作製する都合上2.生産性、コストの
面からもIr化合物(つまり酸化物または水酸化物)を
物理的手法により作製することが強く望まれていた。
Ir oxide or hydroxide produced by anodizing is the best in both coloring/decoloring response and memory properties. However, the anodic oxidation method itself is unsuitable for processing large-area substrates, and the reduction coloring layer and dielectric layer that make up the all-solid-state EC cell are formed using physical film-forming methods (evaporation, sputtering, ion blating, etc.). 2. Due to manufacturing reasons. From the viewpoint of productivity and cost, it has been strongly desired to produce Ir compounds (that is, oxides or hydroxides) by physical methods.

しかし物理的手法により作製したIr酸化物または水酸
化物膜は種々の手法を駆使しても着色・消色応答性が不
充分で高い可視光透過率も得られず。
However, Ir oxide or hydroxide films prepared by physical methods have insufficient coloring/decoloring response and cannot obtain high visible light transmittance even if various methods are used.

メモリー性も劣っていた。また、特開昭61.−123
819号では、物理的手法によってIrの酸化物または
水酸化物を酸化亜鉛(ZnO)、酸化スズ(Snow)
またはI T O(Indiu+w−Tin−Oxid
e)等の導電性物質中に分散させたEC材料を作製し、
これを用いたEC素子を作製している。しかし、このE
C素子もメーモリー性にやや劣っており、上記特性のす
べてを満足させるものではなかった。
Memory performance was also poor. Also, JP-A-61. -123
In No. 819, Ir oxides or hydroxides are converted into zinc oxide (ZnO), tin oxide (Snow) by physical methods.
or I T O (Indiu+w-Tin-Oxid
e) Create an EC material dispersed in a conductive substance such as
An EC device using this is being manufactured. However, this E
The C element also had somewhat poor memory properties, and did not satisfy all of the above characteristics.

〔発明の目的〕[Purpose of the invention]

本発明は物理的成膜法により可視光透過率9着色・消色
応答性、メモリー性のいずれにおいても優れている全固
体EC素子を得るためにEC素子を構成する酸化型発色
層の改良を目的とする。上記特性のうち、特に、メモリ
ー性の向上を図るために鋭意努力を重ねた。その中で1
本発明者等はIrの酸化物または水酸化物を分散させる
受容体として導電性のSnO□やZnO□やITOに代
えて絶縁性を有するA/zC++crzO:++Bfz
03等の3価金属の酸化物に着目した。そして、該酸化
物中にIrの酸化物を分散させた酸化発色層を用いたE
C素子を作製した。その結果、該EC素子は上記特性の
すべてにおいて優れていることが確かめられた。
The present invention aims to improve the oxidized coloring layer constituting the EC device in order to obtain an all-solid-state EC device with excellent visible light transmittance (9) in both coloring/decoloring response and memory performance using a physical film-forming method. purpose. Among the above characteristics, we have made extensive efforts to improve memory performance in particular. Among them, 1
The present inventors used insulating A/zC++crzO:++Bfz instead of conductive SnO□, ZnO□, or ITO as a receptor for dispersing Ir oxides or hydroxides.
We focused on oxides of trivalent metals such as 03. Then, E
A C element was manufactured. As a result, it was confirmed that the EC element was excellent in all of the above characteristics.

〔発明の説明〕[Description of the invention]

本発明は、lrならびにIrの酸化物または水酸化物と
A120z+ Crz(h+ BizOz等の3価の金
属の酸化物とからなることを特徴とする酸化発色型エレ
クトロクロミック材料および該エレクトロクロミック材
料を用いた全固体エレクトロクロミック素子に関するも
のである。
The present invention provides an oxidative color-forming electrochromic material characterized by comprising an oxide or hydroxide of lr and Ir and an oxide of a trivalent metal such as A120z+Crz(h+BizOz), and an electrochromic material using the electrochromic material. This relates to all-solid-state electrochromic devices.

本発明は極めて微細な1rならびにIrの酸化物または
水酸化物を分散させる受容体としてこれまで用いられて
きたSnO□、 ZnO□またはITO等の導電性物質
に代えて絶縁性を有するAl2O3,Cr 2o13i
zoi、LatOi等の3価金属の酸化物を用いること
により可視光透過性を高め1次式に示す着色・消色可逆
反応をスムーズに進むようにして1着色・消色応答性を
向上させた。また、絶縁性の受容体をr r (OH)
 ll+x (OH)−(透明) ;: I r (OH) fi+* + X e−(ダ
ークブルー) 使用したためEC素子の絶縁抵抗が導電性のSnO□等
を用いた場合の数にΩ/ cnlから10”Ω/dと大
きくなり電流の漏れ量が著しく減少し9着色後。
The present invention uses insulating Al2O3, Cr instead of conductive substances such as SnO□, ZnO□ or ITO, which have been used hitherto as receptors for dispersing extremely fine 1r and Ir oxides or hydroxides. 2o13i
By using oxides of trivalent metals such as zoi and LatOi, the visible light transmittance is increased and the reversible coloring and decoloring reaction shown in the linear equation proceeds smoothly, thereby improving the coloring and decoloring responsiveness. In addition, the insulating receptor is r r (OH)
ll+x (OH)- (transparent) ;: I r (OH) fi+* + After coloring 9, the current leakage amount was significantly reduced as it increased to 10”Ω/d.

回路を遮断し放置した場合の消色までの時間が長くなり
、メモリー性が著しく向上した。したがって、全固体E
C膜の防眩ミラー等への応用・実用化の可能性が高まっ
た。
When the circuit is cut off and the color is left unused, it takes longer to erase the color, and the memory performance has been significantly improved. Therefore, the total solid E
The possibility of application and practical use of the C film to anti-glare mirrors has increased.

以下本発明の実施態様について説明する。Embodiments of the present invention will be described below.

本発明の実施態様にかかる全固体EC素子(反射型)の
断面構造を第1図により説明する。基板11は通常透明
なガラスまたは樹脂であり、その形状は平面板または曲
面板であっても良く、電気信号によりその光学特性の変
化する酸化発色型EC層13.還元発色型EC層15お
よび誘電体層14を保持するとともに表示面としての役
割を有する。層12および層16は電気信号を印加する
電極である。反射型の場合1層12が透明導電膜であり
1層16は反射鏡を兼ねた電極膜である。
The cross-sectional structure of an all-solid-state EC element (reflection type) according to an embodiment of the present invention will be explained with reference to FIG. The substrate 11 is usually transparent glass or resin, and its shape may be a flat plate or a curved plate, and includes an oxidation coloring type EC layer 13 whose optical properties change according to an electric signal. It holds the reduction coloring type EC layer 15 and the dielectric layer 14 and also serves as a display surface. Layer 12 and layer 16 are electrodes that apply electrical signals. In the case of a reflective type, one layer 12 is a transparent conductive film, and one layer 16 is an electrode film that also serves as a reflecting mirror.

また、透過型の場合層は9層16と共に透明導電膜から
成る。ここで6透明導電膜を形成する材料としてはI 
T O(Indium−Tin−Oxide)+ A 
T O(Antimony−Tin−Oxide)、 
 Z A O(Zinc−Aluminium−Oxi
de)等を使用することができる。また反射膜を形成す
る材料としては通常光学反射率の高いAe、Ag、In
、Sn等の金属または合金を使用することができる。酸
化発色型EC層13としてはfrizが用いられ1通常
その膜厚は100人〜2000人程度である。また、還
元発色型EC層15としてはWO3lMo0=、 Vz
Os、Re0z等が用いられ、その膜厚は通常2000
人〜10000人程度である。
Further, in the case of a transmission type, the nine layers 16 are made of a transparent conductive film. Here, the material for forming the 6 transparent conductive film is I.
T O (Indium-Tin-Oxide) + A
T O (Antimony-Tin-Oxide),
Z A O (Zinc-Aluminum-Oxi
de) etc. can be used. In addition, the materials for forming the reflective film are usually Ae, Ag, and In, which have high optical reflectance.
, Sn, or other metals or alloys can be used. Friz is used as the oxidation coloring type EC layer 13, and its film thickness is usually about 100 to 2000 layers. Further, as the reduction coloring type EC layer 15, WO3lMo0=, Vz
Os, Re0z, etc. are used, and the film thickness is usually 2000 mm.
Approximately 10,000 to 10,000 people.

さらに誘電体層14としてはTaz05+SiO2,T
i0z+NbzOs+Ah03+Zrot、Hf0z+
YzOs等が用いられその膜厚は大吉2000人〜10
000人程度である。第1図に示すEC素子で電極12
.16間に印加される電界により誘電体層14中に含ま
れる11□0が電気分解し H+およびOH−を生ずる
。このH”およびOH−とECJi15およびEC層1
3との酸化・還元反応によってEC層15.13を形成
する材料の吸光特性が変化し1着色・消色等の可視光透
過率制御が行われる。ちなみに反射型EC膜を防眩ミラ
ーとして利用する場合1着色により防眩状態となり消色
により非防眩状態となる。
Further, as the dielectric layer 14, Taz05+SiO2,T
i0z+NbzOs+Ah03+Zrot, Hf0z+
YzOs etc. are used and the film thickness is Daikichi 2000 ~ 10
Approximately 000 people. The electrode 12 of the EC element shown in FIG.
.. Due to the electric field applied between the dielectric layers 16 and 16, 11□0 contained in the dielectric layer 14 is electrolyzed to generate H+ and OH-. This H" and OH- and ECJi15 and EC layer 1
The light absorption characteristics of the material forming the EC layer 15.13 change due to the oxidation/reduction reaction with the EC layer 15, 13, and visible light transmittance control such as coloring and decoloring is performed. Incidentally, when the reflective EC film is used as an anti-glare mirror, it becomes an anti-glare state when it is colored with one color, and becomes a non-glare state when it is decolored.

本発明の実施態様にかかる酸化発色物質であるIrなら
びにlrの酸化物または水酸化物の受容体としては、可
視域で透明なA1z03.CrtOz+RitOs+L
aJs+5CJ1等の3価の金属酸化物を用いる。これ
らはいずれも絶縁体である。
As the receptor for the oxide or hydroxide of Ir and lr, which are oxidized color-forming substances according to the embodiments of the present invention, A1z03. CrtOz+RitOs+L
A trivalent metal oxide such as aJs+5CJ1 is used. All of these are insulators.

一方1rは通常、金属、酸化物または水酸化物の状態と
考えられるが、可視域で物理的手法により透明にするこ
とはかなり困難である。また、エレクトロクロミック膜
として機能させる為には少なくとも酸化物または水酸化
物の形で200Å以上の膜厚が必要である。着色・消色
時のλ=500nm(視感度が最も高い)に於ける分光
反射率比(コントラスト比)を大きく得ようとすればI
r酸化物または水酸化物の厚さを増加させることが必要
であるが逆に消色時の分光反射率の低下を招(、ところ
が本発明の上記受容体中にIrを分散させることにより
9等量のIr酸化物または水酸化物だけから成る膜に比
べ可視光透過率を向上させることができる。
On the other hand, 1r is usually considered to be in the state of metal, oxide, or hydroxide, but it is quite difficult to make it transparent in the visible range by physical methods. Further, in order to function as an electrochromic film, it is necessary to have a film thickness of at least 200 Å in the form of an oxide or hydroxide. If you want to obtain a large spectral reflectance ratio (contrast ratio) at λ = 500 nm (highest visibility) during coloring and decoloring, I
It is necessary to increase the thickness of the r oxide or hydroxide, but this results in a decrease in the spectral reflectance during decolorization (however, by dispersing Ir in the receptor of the present invention, Visible light transmittance can be improved compared to a film made of only an equal amount of Ir oxide or hydroxide.

本発明の実施態様の酸化発色型EC層はIrを金属、酸
化物、水酸化物の形で上記受容体の中に5〜50at%
分散させたものである。Ir1lが50at%より多い
と着色量が増大し、光の透過率が著しく悪くなる。逆に
5at%以下であると実用上必要な着色量が得られなく
なる。また9層の厚さは200〜2000人の範囲で選
ばれる。2000人より厚いと酸化発色現象がイオンの
拡散反応によって律速されるため、その応答性が低下し
、  ゛実用上致命的な欠陥となる。また、200人よ
り薄いとlr量が少なくなって実用上必要とされる着色
量が得られなくなるとともに、酸化発色過程における膜
の損傷が激しく実用的な耐久性を失うこととなる。
The oxidative color-forming EC layer of the embodiment of the present invention contains 5 to 50 at% Ir in the form of metal, oxide, or hydroxide in the receptor.
It is dispersed. When Ir1l is more than 50 at%, the amount of coloring increases and the light transmittance becomes significantly worse. On the other hand, if it is less than 5 at%, it will not be possible to obtain a practically necessary amount of coloring. The thickness of the nine layers is selected within the range of 200 to 2,000 people. If it is thicker than 2,000 mm, the rate of oxidation color development is determined by the ion diffusion reaction, resulting in a decrease in responsiveness, which is a fatal defect in practical use. On the other hand, if the thickness is less than 200, the amount of lr decreases, making it impossible to obtain the amount of coloring required for practical use, and the film is severely damaged during the oxidative coloring process, resulting in a loss of practical durability.

実際にはIr量と膜厚とは相互に関連し、上記範囲内で
それぞれ最適値が決定される。すなわち。
In reality, the amount of Ir and the film thickness are mutually related, and their respective optimum values are determined within the above ranges. Namely.

膜厚が大で着色量が著しく大きくなった場合にはIr量
を減らして調整する必要があり、逆に膜厚を薄くした場
合はIr量を増やして着色量を大きくする必要がある。
If the film thickness is large and the amount of coloring becomes significantly large, it is necessary to reduce the amount of Ir for adjustment, and conversely, when the film thickness is made thin, it is necessary to increase the amount of Ir to increase the amount of coloring.

本発明の実施態様のlr等と3価金属酸化物との複合酸
化発色層の形成は通常の物理的成膜法によって行うこと
ができる。Irは金属、酸化物または水酸化物の形での
入手は通常難しく、物理的手法以外では分散膜を形成さ
せることは困難である。物理的成膜法としては5例えば
金属1rターゲツトまたは蒸発源であるペレットとA7
.O,、BizOz+crzO:+1azOt+5Cz
O++YzO:+等の酸化物ターゲ・ノドまたはペレッ
トとを0□またはH20雰囲気中で同時スパッタ法、同
時蒸着法または同時イオンブレーティング法等により形
成することができる。膜中のIr量はIrターゲットま
たはベレ・ノドおよび酸化物ターゲットまたはペレット
への投入電力を制御することにより調整できる。さらに
複合酸化発色膜の厚さ方向にIr量を変化させることも
成膜過程でのIrおよび酸化物ターゲットまたはペレッ
トへの投入電力を変化させることにより可能となる。ま
たIrと上記酸化物との複合ターゲットまたはペレット
を用いれば同時成膜法を用いなくともスパッタ法、蒸着
法、イオンブレーティング法により所定のIrを含有す
る複合酸化発色層を形成できる。
Formation of the composite oxidation color forming layer of lr etc. and trivalent metal oxide in the embodiment of the present invention can be performed by a normal physical film forming method. Ir is usually difficult to obtain in the form of metal, oxide, or hydroxide, and it is difficult to form a dispersed film using other than physical methods. As a physical film forming method, for example, a metal 1r target or a pellet as an evaporation source and A7 are used.
.. O,, BizOz+crzO:+1azOt+5Cz
An oxide target such as O++YzO:+ or pellets can be formed by a simultaneous sputtering method, a simultaneous vapor deposition method, a simultaneous ion blating method, etc. in an 0□ or H20 atmosphere. The amount of Ir in the film can be adjusted by controlling the power input to the Ir target or beret and the oxide target or pellet. Furthermore, it is possible to change the amount of Ir in the thickness direction of the composite oxide coloring film by changing the power input to Ir and the oxide target or pellet during the film formation process. Furthermore, if a composite target or pellets of Ir and the above-mentioned oxides is used, a composite oxide coloring layer containing a predetermined amount of Ir can be formed by sputtering, vapor deposition, or ion-blating without using a simultaneous film-forming method.

〔実施例〕〔Example〕

本実施例の複合酸化発色膜の作製は金属1rとAZzO
:++BizO:+CrzO:+、5CzOtla20
t+YzOz等の酸化物とを0□雰囲気中で室温基板(
コーニングガラス階7059)上に反応性スパッタ法ま
たは反応性共蒸着法により行った。複合膜の組成はIr
ターゲットまたは蒸発源であるペレットおよび^Z20
3.BiZO3+ Cr20315czO)、 La2
O3+ y2o3クーゲットまたは蒸発源への投入電力
を調整し行った。膜厚は触針法により測り1組成はX線
マイクロアナライザーおよびオージェ分析により定量し
た。このようにして作製した膜の分光透過率は通常の分
光光度計により測定した。またIrターゲットおよびA
l20yターゲツトへの投入電力を成膜時間とともに連
続的または断続的に変化させることにより本発明の複合
酸化発色膜の厚さ方向に対しIrの分布を自在に制御で
きる。
The composite oxidation coloring film of this example was prepared using metal 1r and AZzO.
:++BizO:+CrzO:+, 5CzOtla20
t + oxide such as YzOz on a room temperature substrate (
It was carried out on Corning Glass Floor 7059) by reactive sputtering or reactive co-evaporation. The composition of the composite film is Ir
Pellets and ^Z20 that are targets or evaporation sources
3. BiZO3+ Cr20315czO), La2
The power input to the O3+ y2o3 cuget or evaporation source was adjusted. The film thickness was measured by a stylus method, and the composition was determined by an X-ray microanalyzer and Auger analysis. The spectral transmittance of the film thus produced was measured using a conventional spectrophotometer. Also, Ir target and A
By continuously or intermittently changing the power input to the l20y target with the film forming time, the distribution of Ir in the thickness direction of the composite oxidation color forming film of the present invention can be freely controlled.

一本実施例の複合酸化発色膜のEC特性は第1図にその
断面構造を示す反射型全固体EC素子の形で評価した。
The EC characteristics of the composite oxidation color forming film of this example were evaluated in the form of a reflective all-solid-state EC device whose cross-sectional structure is shown in FIG.

まず透明ガラス基板11上に透明導電膜12としてIT
Oを約2000人の厚さに真空蒸着し、続いて本発明の
複合酸化発色膜13を上述の方法で200−2000人
の厚さに形成し。
First, IT is applied as a transparent conductive film 12 on a transparent glass substrate 11.
O was vacuum-deposited to a thickness of about 2000 nm, and then the composite oxide coloring film 13 of the present invention was formed to a thickness of 200 to 2000 nm by the method described above.

さらに誘電体層14としてTazOsを約4000人の
厚さに真空蒸着し、還元発色膜15として一〇。
Furthermore, TazOs was vacuum-deposited as a dielectric layer 14 to a thickness of about 4,000 mm, and a reduction coloring film 15 was formed as a layer of 10 mm.

を約4000人の厚さに真空蒸着し、最後に反射鏡兼電
極としてA1を約4000人蒸着し1反射型全固体EC
素子とした。なお、 Ta205+WOz膜はいずれも
酸化物ペレットを用い電子ビーム加熱。
was vacuum-deposited to a thickness of approximately 4000 mm, and finally A1 was evaporated to a thickness of approximately 4000 mm as a reflector and electrode to form a reflective all-solid-state EC.
It was named Element. Note that both Ta205+WOz films were heated by electron beam using oxide pellets.

真空蒸着法により作製した。なお酸化発色層13゜誘電
体層14.還元発色層15の積層順を上記実施例と逆に
して素子を形成することは当然可能で事実同一の効果が
得られた。また素子作製中基板の加熱は行わなかった。
Manufactured by vacuum evaporation method. Note that the oxidized coloring layer 13.dielectric layer 14. It is of course possible to form an element by reversing the stacking order of the reduction color forming layer 15 from that of the above embodiment, and in fact the same effect could be obtained. Further, the substrate was not heated during device fabrication.

本実施例のEC素子の着消色特性は以下の手順で評価し
た。
The coloring and fading characteristics of the EC element of this example were evaluated using the following procedure.

第1図に示す素子の透明導電膜12とA1反射膜16と
の間に±1.5ボルトの直流電圧を0.211zの周期
で500回印加し、活性化後着色時および消色時の分光
反射率を測定しそれらの比から以下の式で定義されるコ
ントラスト比を求めた。
A DC voltage of ±1.5 volts was applied 500 times at a period of 0.211z between the transparent conductive film 12 and the A1 reflective film 16 of the device shown in FIG. The spectral reflectance was measured and the contrast ratio defined by the following formula was determined from the ratio thereof.

コントラスト比=logC消色時反射率/着色時反射率
) また着色・消色応答性は±1.5ボルトの印加周期を0
.511z(1抄着色/1秒消色)と変化させコントラ
スト比を評価した。さらに素子のメモリー性は1.5ボ
ルトを5秒間印加し着色させた後、電極12.16間を
開放し初期着色量の80%迄自然消色する迄の時間τを
計測した。τの長い程メモリー性は良好となる。
Contrast ratio = logC reflectance when decoloring/reflectance when coloring
.. 511z (coloring for 1 paper/decoloring for 1 second) and evaluated the contrast ratio. Furthermore, the memory property of the device was determined by applying 1.5 volts for 5 seconds to color the device, then opening the gap between the electrodes 12 and 16, and measuring the time τ until the color naturally faded to 80% of the initial coloring amount. The longer τ is, the better the memory performance is.

表は以下に示す実施例1〜21.比較例1〜4で作製し
た酸化発色膜の着色・消色応答性等の特性を調べた結果
を示したものである。
The table shows Examples 1 to 21 shown below. This figure shows the results of examining the characteristics of the oxidized coloring films prepared in Comparative Examples 1 to 4, such as coloring and decoloring responsiveness.

実施例1〜3: IrターゲットとA403ターゲツト
を用いて0□雰囲気中で同時ス バッタ法により成膜した。膜厚 は700人一定とし、投入電力 を調整して膜中のIr量を変化 させた。
Examples 1 to 3: Films were formed by simultaneous sputtering in a 0□ atmosphere using an Ir target and an A403 target. The film thickness was kept constant for 700 people, and the amount of Ir in the film was varied by adjusting the input power.

実施例4〜6:I「ペレットとAlO3ペレットを用い
て02雰囲気中で同時蒸着法 によって成膜した。膜厚は70 0人一定とし、投入電力を調整 し、Ir量を変化させた。
Examples 4 to 6: Films were formed by simultaneous evaporation in an 02 atmosphere using I pellets and AlO3 pellets.The film thickness was kept constant at 700, the input power was adjusted, and the amount of Ir was varied.

実施例7〜16:IrターゲットとBtzOz+Crz
Oz、LazO+tSczOz またはY2O3ターゲ
ットとを用いて02雰囲気中で 同時スパッタ法によって成膜し た。膜厚は700人一定とし。
Examples 7-16: Ir target and BtzOz+Crz
A film was formed by simultaneous sputtering in a 02 atmosphere using Oz, LazO+tSczOz or Y2O3 targets. The film thickness is fixed at 700 people.

各酸化物について投入電力を調 整し、膜中のtr量を変化させ た。Check the input power for each oxide. and change the amount of tr in the film. Ta.

実施例17〜19:IrターゲットとAl0−sターゲ
ットを用いて0□雰囲気中で同 時スパッタ法によって成膜した。
Examples 17 to 19: Films were formed by simultaneous sputtering in an atmosphere of 0□ using an Ir target and an Al0-s target.

膜中のIr量を7.2at%一定と し膜厚を変化させた。The amount of Ir in the film is kept constant at 7.2 at%. The film thickness was changed.

実施例20〜21:Irターゲットとへ!0.夕一ゲン
トを用いて02雰囲気中で同 時スパッタ法によって成膜した。
Examples 20-21: To Ir target! 0. A film was formed by simultaneous sputtering using Yuichi Ghent in an 02 atmosphere.

膜厚を700人一定とし、投入 電力を変化させ、膜中のIrl を第2図に示すように厚さ方向 に変化させた。Injected with a constant film thickness of 700 people. By changing the power, Irl in the membrane in the thickness direction as shown in Figure 2. changed to.

比較例1〜2:ターゲットをIrとし、0□雰囲気中で
スパッタしIrとIrの 酸化物からなる膜を形成させた。
Comparative Examples 1 and 2: Using Ir as a target, sputtering was performed in an atmosphere of 0□ to form a film made of Ir and an oxide of Ir.

比較例3〜4:ターゲットをIrとZnOまたはSnO
2とし、02雰囲気中で同時ス パッタし、 ZnO等の中に]rと Irの酸化物を分散させた膜を 形成した。
Comparative Examples 3 to 4: Ir and ZnO or SnO as targets
2 and simultaneously sputtered in a 02 atmosphere to form a film in which oxides of r and Ir were dispersed in ZnO or the like.

これらの実施例、比較例の結果から、酸化発色型EC材
として3価金属の酸化物中に[rの酸化物も分散させた
ものを用いるとIrの酸化物のみからなるもの、あるい
はZnOやSnO□中にIrの酸化物を分散させたもの
と比較して可視光透過率。
From the results of these Examples and Comparative Examples, it is clear that if an oxidative color-forming EC material in which an oxide of [r is also dispersed in an oxide of a trivalent metal is used, a material consisting only of an oxide of Ir, or a material consisting of only an oxide of Ir, or a material such as ZnO or Visible light transmittance compared to that of Ir oxide dispersed in SnO□.

コントラスト比ならびにメモリー性ともに優れているこ
とが明らかである。
It is clear that both the contrast ratio and memory properties are excellent.

なお、第1図に示す層構造を逆にしてEC素子を作製す
ること、また、透過型とし調光機能膜として利用できる
ことは当然である。
It goes without saying that the layer structure shown in FIG. 1 can be reversed to produce an EC element, and that it can also be made into a transmissive type and used as a light control function film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で用いた反射型全固体EC素子の断面構
造を示す説明図である。また、第2図は本発明の実施例
20.21で作製した複合酸化発色膜中のIrの分布状
態を示した説明図である。 11・・・ガラス基板、12・・・透明導電膜。 13・・・酸化発色膜、14・・・誘電体膜。
FIG. 1 is an explanatory diagram showing the cross-sectional structure of the reflective all-solid-state EC element used in the present invention. Moreover, FIG. 2 is an explanatory diagram showing the distribution state of Ir in the composite oxidation coloring film produced in Examples 20 and 21 of the present invention. 11...Glass substrate, 12...Transparent conductive film. 13... Oxidation coloring film, 14... Dielectric film.

Claims (3)

【特許請求の範囲】[Claims] (1)イリジウムおよびイリジウムの酸化物または水酸
化物とAl_2O_3、Cr_2O_3、Bi_2O_
3、Y_2O_3等の3価金属の酸化物とからなること
を特徴とする酸化発色型エレクトロクロミック材料。
(1) Iridium and iridium oxide or hydroxide and Al_2O_3, Cr_2O_3, Bi_2O_
3. An oxidative color-forming electrochromic material comprising an oxide of a trivalent metal such as Y_2O_3.
(2)前記イリジウムならびにイリジウムの酸化物また
は水酸化物および3価金属の酸化物が物理的成膜法によ
って形成された膜によって構成されたことを特徴とする
特許請求の範囲第(1)項記載の酸化発色型エレクトロ
クロミック材料。
(2) Claim (1) characterized in that the iridium, the iridium oxide or hydroxide, and the trivalent metal oxide are constituted by a film formed by a physical film forming method. The oxidative color-forming electrochromic material described above.
(3)一対の電極間に酸化発色型エレクトロクロミック
層と誘電体からなる絶縁層と還元発色型エレクトロクロ
ミック層とを順次積層してなる全固体エレクトロクロミ
ック素子において、酸化発色型エレクトロクロミック層
がイリジウムまたはイリジウムの酸化物または水酸化物
とAl_2O_3、Cr_2O_3、Bi_2O_3、
Y_2O_3等の3価金属の酸化物とからなることを特
徴とする全固体エレクトロクロミック素子。
(3) In an all-solid-state electrochromic device in which an oxidative color-forming electrochromic layer, an insulating layer made of a dielectric, and a reduction color-forming electrochromic layer are sequentially laminated between a pair of electrodes, the oxidative color-forming electrochromic layer is made of iridium. or iridium oxide or hydroxide and Al_2O_3, Cr_2O_3, Bi_2O_3,
An all-solid-state electrochromic device comprising an oxide of a trivalent metal such as Y_2O_3.
JP62046114A 1987-02-27 1987-02-27 Electrochromic material and electrochromic element Pending JPS63210916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62046114A JPS63210916A (en) 1987-02-27 1987-02-27 Electrochromic material and electrochromic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62046114A JPS63210916A (en) 1987-02-27 1987-02-27 Electrochromic material and electrochromic element

Publications (1)

Publication Number Publication Date
JPS63210916A true JPS63210916A (en) 1988-09-01

Family

ID=12737973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62046114A Pending JPS63210916A (en) 1987-02-27 1987-02-27 Electrochromic material and electrochromic element

Country Status (1)

Country Link
JP (1) JPS63210916A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1986043A3 (en) * 2001-09-26 2009-06-10 ChromoGenics AB Electrochromic film and device comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228628A (en) * 1983-06-10 1984-12-22 Canon Inc Entirely solid electrochromic element
JPS60263125A (en) * 1984-06-11 1985-12-26 Nippon Kogaku Kk <Nikon> Electrochromic display device
JPS61241732A (en) * 1985-04-18 1986-10-28 Nippon Kogaku Kk <Nikon> Two-color type electrochromic element
JPS61296380A (en) * 1985-06-26 1986-12-27 株式会社ニコン Manufacture of electrolytic acid thin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228628A (en) * 1983-06-10 1984-12-22 Canon Inc Entirely solid electrochromic element
JPS60263125A (en) * 1984-06-11 1985-12-26 Nippon Kogaku Kk <Nikon> Electrochromic display device
JPS61241732A (en) * 1985-04-18 1986-10-28 Nippon Kogaku Kk <Nikon> Two-color type electrochromic element
JPS61296380A (en) * 1985-06-26 1986-12-27 株式会社ニコン Manufacture of electrolytic acid thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1986043A3 (en) * 2001-09-26 2009-06-10 ChromoGenics AB Electrochromic film and device comprising the same

Similar Documents

Publication Publication Date Title
US4652090A (en) Dispersed iridium based complementary electrochromic device
US4938571A (en) Solid state electrochromic light modulator
JP3380549B2 (en) Electrochromic device with refractive index matching structure
US4824221A (en) Electrochromic device
JP3353905B2 (en) Electrochromic glass
US5189550A (en) Ion-beam based deposition of coatings for electrochromic devices
US5011582A (en) Method for producing electrochromic device with application of AC voltage between the electrode layers
JPH08505242A (en) Electrochromic device
JPH10206902A (en) Electrochemical device and its production
TW201935110A (en) Electrochromic devices
US5051274A (en) Ion-beam based deposition of coatings for electrochromic devices
US4294520A (en) Electrochromic display device
US4416517A (en) Electrochromic devices including a mica layer electrolyte
US4225216A (en) Tungsten niobate electrochromic device
CA1111537A (en) Electrochromic devices
JP5005854B2 (en) Electrochemical devices
USRE34469E (en) Solid state electrochromic light modulator
US5111328A (en) Electromagnetic radiation modulating device
US5253101A (en) Electrochromic material and method of making an electrochromic material
GB2081922A (en) Electrochromic device
JPS63210916A (en) Electrochromic material and electrochromic element
JPH0682840A (en) Antidazzle mirror
US4632516A (en) Electrochromic element
JPS63210915A (en) Electrochromic material and electrochromic element
CN220305598U (en) All-solid-state electrochromic glass and all-solid-state electrochromic device