JPS63210810A - Teleconversion lens - Google Patents

Teleconversion lens

Info

Publication number
JPS63210810A
JPS63210810A JP4270987A JP4270987A JPS63210810A JP S63210810 A JPS63210810 A JP S63210810A JP 4270987 A JP4270987 A JP 4270987A JP 4270987 A JP4270987 A JP 4270987A JP S63210810 A JPS63210810 A JP S63210810A
Authority
JP
Japan
Prior art keywords
lens
object side
radius
master
directed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4270987A
Other languages
Japanese (ja)
Inventor
Hiroshi Miyamae
宮前 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP4270987A priority Critical patent/JPS63210810A/en
Publication of JPS63210810A publication Critical patent/JPS63210810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To provide a large magnification with simple constitution and to decrease difficulty in working by consisting a 1st lens of a positive meniscus lens the convex surface of which is directed to the object side and the 2nd lens of a biconcave single lens or planoconcave lens the strongly concave surface of which is directed to the image side and constituting these lenses in such a manner as to satisfy respective specific conditions. CONSTITUTION:This teleconversion lens which constitutes an afocal system as a whole and is placed on the object side of a master lens is disposed, successively from the object side, with the 1st lens having the positive refracting power and the 2nd lens having the negative refracting power, apart at an air spacing provided therebetween. The 1st lens is the positive meniscus lens the concave surface of which is directed to the object side and the 2nd lens is the biconcave single lens or planoconcave lens the strongly concave surface of which is directed to the image side. These lenses satisfy the respective conditions expressed by equation I. In formula, (f) is a focal length; (n) is a refractive index; (v) is an Abbe number; (r) is a radius of curvature; R is the effective radius of the 1st lens. While the lens has the magnification as large as 1.5-1.7 with the simple constitution of 2-groups 2 elements, the lens is small in size and the aberrations thereof are corrected to a level satisfactory for practicable use even when mounted on the master lens.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、テレコンバージョンレンズ、特に極めて簡
単な構成を有しながら倍率の大きいテレコンバージョン
レンズに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a teleconversion lens, and particularly to a teleconversion lens that has an extremely simple configuration and has a high magnification.

(従来技術) 撮影レンズやファインダーの物体側に置かれ、物体側か
ら順に正の屈折力を有するレンズ成分と負の屈折力を有
するレンズ成分とが、適当な空気間隔をへだてて配置さ
れる形式のテレコンバージョンレンズは従来からよく知
られている。このようなテレコンバージョンレンズをマ
スターレンズに装着すればFナンバーを変化させること
なく、手軽に全系焦点距離を長くすることが出来る為大
変便利なものである。
(Prior art) A format in which a lens component having a positive refractive power and a lens component having a negative refractive power are placed on the object side of a photographic lens or finder, and are arranged in order from the object side with an appropriate air gap between them. Teleconversion lenses have been well known for a long time. If such a teleconversion lens is attached to the master lens, the focal length of the entire system can be easily increased without changing the F-number, which is very convenient.

この種のテレコンバージョンレンズの中で、特に各レン
ズ成分を1枚構成として、比較的低コストにしたものと
しては、■特公昭38−25090号公報■特公昭61
−12250号公報■特公昭60−165610公報■
米国特許4496223号公報等に記載されたものが公
知である。しかし■〜■はいづれも倍率が1.3×から
1.4×と小さく、特に広角のマスターレンズに装着す
るにはその望遠化効果が不十分であり、■は倍率は比較
的大きいが、いずれも、非球面を用いており、加工上の
困難を有していた。
Among this type of teleconversion lenses, one that has each lens component as a single lens and is relatively low cost is listed in Japanese Patent Publication No. 38-25090.■ Japanese Patent Publication No. 61
-12250 Publication ■Special Publication No. 165610 of Showa 60■
Those described in US Pat. No. 4,496,223 and the like are known. However, ■ - ■ all have small magnifications of 1.3x to 1.4x, and their telephoto effect is insufficient especially when attached to a wide-angle master lens, and ■ has a relatively large magnification, but All of them used aspherical surfaces and were difficult to process.

(この発明が解決しようとする問題点)本発明の目的は
、各レンズ成分を1枚構成として極めて簡単な構成を有
するにもかかわらず1倍率が1.5〜1.7×と大きく
、加工上も困難の少ない、安価でしかもコンパクトなテ
レコンバージョンレンズを得ようとするものである。
(Problems to be Solved by the Invention) The object of the present invention is to have a very simple structure in which each lens component is made up of one lens, but which has a large magnification of 1.5 to 1.7x, The objective is to obtain an inexpensive and compact teleconversion lens with few difficulties.

(問題を解決するための手段) この発明のテレコンバージョンレンズは、全体としてア
フォーカル系を構成し−、マスターレンズの物体側に置
かれるテレコンバージョンレンズにおいて、物体側から
順に、正の屈折力を有する第1レンズと負の屈折力を有
する第2レンズとが空気間隔を隔てて配置され、第1レ
ンズは物体側に凸を向けたメニスカス正レンズ、第2レ
ンズは像側に強い凹を向けた両凹単レンズ又は平凹レン
ズであって、 fエ :第1レンズの焦点距離 nl :第1レンズの屈折率 ν1 :第1レンズのアツベ数 ν2 :第2レンズのアツベ数 r工、:第1レンズの物体側の面の曲率半径r、2:第
2:第1レンズの面の曲率半径r21:第2レンズの物
体側の面の曲率半径r、2:第2:ンズの像側の面の曲
率半径R:第1レンズの有効半径 とするとき、以下の各条件を満足することを特徴とする
(Means for Solving the Problem) The teleconversion lens of the present invention constitutes an afocal system as a whole, and in the teleconversion lens placed on the object side of the master lens, positive refractive power is applied in order from the object side. A first lens with a negative refractive power and a second lens with a negative refractive power are arranged with an air gap between them. A biconcave single lens or a plano-concave lens, f: focal length of the first lens nl: refractive index of the first lens ν1: Atsube number ν2 of the first lens: Atsube number r of the second lens; Radius of curvature r of the object side surface of the first lens, 2: Radius of curvature of the surface of the second lens on the object side r21: Radius of curvature r of the object side surface of the second lens, 2: Radius of curvature of the object side surface of the second lens Radius of curvature R of the surface: When defined as the effective radius of the first lens, it is characterized by satisfying the following conditions.

1.0 < f、/R< 1.4     ・・・・・
・(1)1.0 <(r11+rtt)/(rut−r
12) < 1.8−(2)1.5 〈 シ1/シz 
 <  2−7         ・・・・・・  (
3)1.55<  nl              
・・・・・・ (4)(作用) 本発明の基本的構成を図を用い説明する。第9図(a)
において、第1レンズ及び第2レンズをそれぞれ1及び
2の薄肉レンズで表わし、それらの主点間距離をd、第
2レンズの(後側)主点からマスターレンズの入射11
f3までの距離をΔとする。第1レンズ及び第2レンズ
の焦点距離をそれぞれf□(〉0)、f、(<0)とす
ると全系がアフォーカルとなる条件は明らかに f□+ f、=d        (a)テレコンバー
タ−の倍率すなわち角倍率m(>0)は m=   (ft/ L)            (
b)(a)、(b)から f、=(m/(m−1))d         (c)
f 2= (−1/ (m−1)) d       
 (d)となる。−力筒9図(b)においてマスターレ
ンズの入射瞳を通る近軸光線が第1レンズを高さhlで
通過すると仮定し、マスターレンズの画角を2ωとする
と h1=tanω〔mΔ+d )     (e)が導か
れる。
1.0 < f, /R < 1.4...
・(1) 1.0 <(r11+rtt)/(rut-r
12) < 1.8-(2) 1.5 < shi1/shiz
< 2-7 ・・・・・・ (
3) 1.55<nl
(4) (Operation) The basic configuration of the present invention will be explained using the drawings. Figure 9(a)
In , the first lens and the second lens are represented by 1 and 2 thin lenses, respectively, the distance between their principal points is d, and the incidence 11 of the master lens from the (rear) principal point of the second lens is
Let the distance to f3 be Δ. If the focal lengths of the first lens and second lens are respectively f□ (>0), f, (<0), then the condition for the entire system to be afocal is clearly f□ + f, = d (a) Teleconverter The magnification of −, that is, the angular magnification m (>0) is m = (ft/L) (
b) (a), (b) to f, = (m/(m-1)) d (c)
f2= (-1/ (m-1)) d
(d). - Power tube 9 In Figure (b), assuming that the paraxial ray passing through the entrance pupil of the master lens passes through the first lens at a height hl, and the angle of view of the master lens is 2ω, then h1=tanω[mΔ+d) (e ) is guided.

第9図(a)において、マスターレンズの入射瞳の最周
辺を通る近軸軸上光線が第1レンズを通過する高さをh
l とし、マスターレンズの入射瞳の半径をPとすると h1= mh、= mP      (f)となるから
ケラレの影響を除くと前玉半径RはR=h、+h1=m
(Δtanω+P)+dtanc+>  (g)と表わ
される。上記のことからテレコンバージョンレンズの前
玉半径はマスターレンズの入射瞳位置Δ、入射瞳半径P
、マスターレンズの画角ω。
In Fig. 9(a), the height h at which the paraxial axial ray passing through the outermost periphery of the entrance pupil of the master lens passes through the first lens is h.
If the radius of the entrance pupil of the master lens is P, then h1 = mh, = mP (f), so excluding the influence of vignetting, the radius R of the front lens is R = h, +h1 = m
(Δtanω+P)+dtanc+>(g). From the above, the front lens radius of the teleconversion lens is the entrance pupil position Δ of the master lens, and the entrance pupil radius P.
, the angle of view ω of the master lens.

テレコンバージョンレンズの倍率mによってほぼ決まっ
てしまうことになる。特に1倍率が大きくなると、それ
に線形な関係で前玉径が大きくなってゆくことが分る。
It is almost determined by the magnification m of the teleconversion lens. In particular, it can be seen that as the magnification increases, the diameter of the front lens increases in a linear relationship.

上記の解析は各レンズの主点位置での主光線の高さに着
目しているが実際にはレンズのベンディング状態によっ
て主光線が各レンズを切る高さは異なってくる。第2図
に示すように第1レンズがメニスカス形状であれば両凸
形状の場合よりもレンズの有効径は小さくできコンパク
トなレンズ系を得ることができる。
The above analysis focuses on the height of the principal ray at the position of the principal point of each lens, but in reality, the height at which the principal ray cuts through each lens differs depending on the bending state of the lens. As shown in FIG. 2, when the first lens has a meniscus shape, the effective diameter of the lens can be made smaller than when the first lens has a biconvex shape, and a compact lens system can be obtained.

さて、(Q)(d)式からテレコンバージョンレンズの
全長をみじかくしようとすると、各レンズの屈折力を強
くしなければならないことが分かる。しかし、各レンズ
の屈折力をあまり強くしすぎると、各群での収差発生量
が大きくなり、全系での収差補正が困難となり、マスタ
ーレンズに装着したときの性能が悪化する。
Now, from equations (Q) and (d), it can be seen that in order to shorten the total length of the teleconversion lens, it is necessary to increase the refractive power of each lens. However, if the refractive power of each lens is made too strong, the amount of aberration generated in each group increases, making it difficult to correct aberrations in the entire system, and the performance when attached to the master lens deteriorates.

条件(1)はこのように、系の全長を短く保ちながら、
なおかつ、2群2枚構成という簡素な構成で諸収差の補
正を十分に行なうための基本的な条件である。各レンズ
に比較的強い屈折力を与えると第9図(b)中、主光線
が第1レンズを射出する傾角β1は大きくなる。それに
判って収差補正を有利にするため第1レンズの各面が屈
折力を分担しようとして第1レンズの形状もメニスカス
の度合を強めてゆき前述したように第1レンズの有効径
は小さくできる。
Condition (1) is thus set while keeping the total length of the system short.
Furthermore, this is a basic condition for sufficiently correcting various aberrations with a simple configuration of two elements in two groups. When a relatively strong refractive power is given to each lens, the inclination angle β1 at which the chief ray exits the first lens increases as shown in FIG. 9(b). Knowing this, in order to make aberration correction advantageous, each surface of the first lens tries to share the refractive power, so that the shape of the first lens becomes more meniscus, and the effective diameter of the first lens can be made smaller as described above.

この条件が上限をこえると、全長dが長くなるばかりか
前玉径も大きくなり、コンパクトなテレコンバージ目ン
レンズを達成することが困難となる。下限をこえると、
以下の各条件によっても諸収差の補正が困難となる1本
発明の様な構成では、特に第1レンズで発生する非点収
差が大きくなり、球欠像面湾曲に対し子午像面湾曲が大
きくアンダーに倒れ勝ちとなり、第2レンズにおいて、
この傾向を打ち消そうとすると負の歪曲収差が大きくな
ってしまう。
If this condition exceeds the upper limit, not only the overall length d becomes long but also the diameter of the front lens becomes large, making it difficult to achieve a compact teleconvergence lens. When the lower limit is exceeded,
The following conditions also make it difficult to correct various aberrations.1 In a configuration like the present invention, the astigmatism occurring in the first lens becomes large, and the meridional field curvature is large compared to the truncated field curvature. I fell under and won, and in the second lens,
If an attempt is made to cancel this tendency, negative distortion will increase.

条件(2)は条件(1)を補助し第1レンズのベンディ
ングを適当に行なうことによって第1レンズの有効径を
極力小さく保ちつつ、第1レンズで発生する非点収差を
できる限り抑えた形状にするための条件である。
Condition (2) is a shape that supports condition (1) and appropriately bends the first lens to keep the effective diameter of the first lens as small as possible while suppressing astigmatism occurring in the first lens as much as possible. This is the condition for making it.

条件(2)の上限をこえ、凸平レンズに近くなると前玉
径が大きくなり、第1レンズの像側面で非点収差の発生
が大きくなり子午像面がアンダーとなる。下限をこえる
と前玉径には有利だが物体側の面で外向性のコマ収差の
発生が著しくなる。
When the upper limit of condition (2) is exceeded and the lens approaches a convex plano lens, the diameter of the front lens becomes large, and astigmatism occurs on the image side surface of the first lens, causing the meridional image surface to be undersized. If the lower limit is exceeded, it is advantageous for the diameter of the front lens, but outward coma aberration becomes noticeable on the object-side surface.

次に色収差について考える。Next, let's consider chromatic aberration.

第9図(a)において第1レンズ1のアツベ数をシ4.
第2レンズ2のアツベ数をν2とすると。
In FIG. 9(a), the Atsube number of the first lens 1 is 4.
Let the Abbe number of the second lens 2 be ν2.

軸上色収差の発生が全系でOになる条件は、よく知られ
ている様に −1−+n =0      (i) f□ν1   Lν2 である。(b)(f)式を代入して整理するとこの条件
は シ1/シ2 = m         (j)と書きか
えられる6一方、倍率の色収差の発生が全系でOになる
条件は −L」−十」1ゝ−=  o     (k)h fl  ν1  fl νり であるが(b)、(f)(c)式およびり、=Δtan
ω を用いると結局 d(1) □=ta +   a− が導かれる。一般に(i)と(e)を同時に満たすこと
は不可能であるが m〈シ、/V、 < m + (d/Δ)  (01)
の条件が満たされていれば軸上、倍率共に色収差を補正
することがほぼ可能となる0本発明ではm=1.5〜1
.7を1指しており d/Δ=0.5〜1.0程度である。
As is well known, the condition for the occurrence of longitudinal chromatic aberration to be O in the entire system is -1-+n = 0 (i) f□v1 Lv2. By substituting equations (b) and (f) and rearranging, this condition can be rewritten as shi1/shi2 = m (j).6 On the other hand, the condition for the occurrence of chromatic aberration of magnification to be O in the entire system is -L. −1ゝ1ゝ−= o (k)h fl ν1 fl ν, but (b), (f), (c) and equations, =Δtan
Using ω, d(1) □=ta + a− is finally derived. Generally speaking, it is impossible to satisfy (i) and (e) at the same time, but m<shi, /V, < m + (d/Δ) (01)
If the following conditions are met, it is almost possible to correct chromatic aberration both on axis and in magnification. In the present invention, m = 1.5 to 1.
.. 7 is 1, and d/Δ is approximately 0.5 to 1.0.

(実施例) 以下この発明の実施例を示す、先ずこの発明の実施例を
装着すべきマスターレンズの例を以下に示す。表1は小
型ビデオカメラ用撮影レンズの例、表2は同じくリレ一
式ファインダーの例である。
(Example) Examples of the present invention will be described below. First, an example of a master lens to which the embodiment of the present invention is to be mounted will be shown below. Table 1 shows an example of a photographing lens for a small video camera, and Table 2 shows an example of a relay set finder.

表1  マスターレンズA 焦点距離f =9.502 バックフォーカスfe=2.180 画角2ω=47.6@ &            r          d
          nシ       ν 41  
   17.978 0.77 1.69680 55
.52      g、536 5.65 3     24.253 1.93 1.84666
 23.84       −37.613  6.0
05       −8.241  0.75  1.
84666  23.86        16.80
9  0.43?      −398,7492,8
01,6968055,58−7,9040,11 918,4023,251,6968055,510−
12,9743,62 表2  マスターレンズB 焦点距離 f =−371,517 バツクフオーカス fe=−554,229画角 2ω
=41.0”  ファインダー倍率阿=0.65瞳径 
DE=4.4 Na      r     d     nal  
     5.275 1.90 1.77250 4
9.62     20.098 0,85 3    −24.041 0.80 1.75520
 27.54     4.573 0.92 5     9.510 2.60 1.77250 
49.66       −12.063  13.2
0?        −27,1783,101,77
25049,68−10,75566,20 918,9052,501,7725049,610−
58,4903,10 11−28,2750,901,7552027,51
214,3927,80 1342,8002,501,7725049,614
−28,19059,68 1550,9722,001,7725049,616
−99,0405,80 1733,9504,301,7130053,918
−10,2630,801,8051825,419−
28,447 以下、上記のマスターレンズに装着するこの発明の実施
例をあげる。
Table 1 Master lens A Focal length f = 9.502 Back focus fe = 2.180 Angle of view 2ω = 47.6 @ & r d
nshi ν 41
17.978 0.77 1.69680 55
.. 52 g, 536 5.65 3 24.253 1.93 1.84666
23.84 -37.613 6.0
05 -8.241 0.75 1.
84666 23.86 16.80
9 0.43? -398,7492,8
01,6968055,58-7,9040,11 918,4023,251,6968055,510-
12,9743,62 Table 2 Master lens B Focal length f = -371,517 Back focus fe = -554,229 Angle of view 2ω
=41.0” Finder magnification =0.65 Pupil diameter
DE=4.4 Na r d nal
5.275 1.90 1.77250 4
9.62 20.098 0,85 3 -24.041 0.80 1.75520
27.54 4.573 0.92 5 9.510 2.60 1.77250
49.66 -12.063 13.2
0? -27,1783,101,77
25049,68-10,75566,20 918,9052,501,7725049,610-
58,4903,10 11-28,2750,901,7552027,51
214,3927,80 1342,8002,501,7725049,614
-28,19059,68 1550,9722,001,7725049,616
-99,0405,80 1733,9504,301,7130053,918
-10,2630,801,8051825,419-
28,447 Hereinafter, examples of the present invention attached to the above-mentioned master lens will be given.

第1実施例(マスターレンズA用) 倍率 m=1.5 傘はマスターレンズAとの取付間隔 面尚   r     d     nシ  νdl 
      22,402   8.10  1.65
844  50.92      94.240   
7.453         co     1.00
  1.80518  25.44       23
.014   $11.00R=34.0    f1
=42.72     f、/R=1.256第2実施
例(マスターレンズA用) 倍率 m=1.7 傘はマスターレンズAとの取付間隔 面Na      r       d       
nシ   シシ1    23.028 12.00 
1.62299 58.22   109.119  
9.00 3   −84.331  1.00 1.80518
 25.44       28.257  −11.
00R=39.9   f1=44.47    f、
/R=1.115=1.535    ’=2.29 r12−rix 第3実施例(マスターレンズB用) 倍率 m=1.5 傘はマスターレンズBとの取付間隔 面Ha    r     d     n4   v
41    12.918  6.20 1.6968
0 55.52   121.214  2.40 3   −101.097  0.70 1.7173
6 29,54    10.747  3.30 R=19.Of1=20.274   f、/R=1.
067r  +r =1.24   −」−=1.881 r11″″r11                ν
2第4実施例(マスターレンズB用) 倍率 m =1.7 拳はマスターレンズBとの取付間隔 面&         r          d  
        nシ     ν シ1    14
.923  9.00 1.62299 58.22 
   88.103  4.7 3   −57.479  0.8  1.84666
 23.84       17.944   4.5
R=24.7    f、=27.538    f□
/R=1.115(発明の効果) この発明のテレコンバージョンレンズは、実施例および
収差曲線図に見るように、2群2枚の極めて簡単な構成
で21.5〜1.7と大きい倍率を有するにもかかわら
ず、小型で、マスターリレンズに装着しても収差は実用
上十分な程度に補正されている。
1st example (for master lens A) Magnification m=1.5 The umbrella is attached to the master lens A at the installation distance r d n νdl
22,402 8.10 1.65
844 50.92 94.240
7.453 co 1.00
1.80518 25.44 23
.. 014 $11.00R=34.0 f1
=42.72 f, /R=1.256 Second example (for master lens A) Magnification m=1.7 Umbrella is attached to master lens A Na r d
nshishishishi1 23.028 12.00
1.62299 58.22 109.119
9.00 3 -84.331 1.00 1.80518
25.44 28.257 -11.
00R=39.9 f1=44.47 f,
/R=1.115=1.535'=2.29 r12-rix 3rd example (for master lens B) Magnification m=1.5 Umbrella is mounting distance surface with master lens BHar d n4 v
41 12.918 6.20 1.6968
0 55.52 121.214 2.40 3 -101.097 0.70 1.7173
6 29,54 10.747 3.30 R=19. Of1=20.274 f,/R=1.
067r +r =1.24 −”−=1.881 r11″″r11 ν
2 Fourth embodiment (for master lens B) Magnification m = 1.7 Fist is the mounting distance surface with master lens B & r d
nshi ν shi1 14
.. 923 9.00 1.62299 58.22
88.103 4.7 3 -57.479 0.8 1.84666
23.84 17.944 4.5
R=24.7 f, =27.538 f□
/R=1.115 (Effect of the invention) As seen in the examples and the aberration curve diagram, the teleconversion lens of this invention has a very simple configuration of two elements in two groups and a large magnification of 21.5 to 1.7. Despite this, it is small and its aberrations are corrected to a practically sufficient degree even when attached to a master lens.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ本発明のテレコンバージ
ョンレンズの実施例1および2の断面図、第3図および
第4図はそれぞれ本発明実施例1および2をマスターレ
ンズに装着した場合の収差曲線図、第5図および第6図
はそれぞれ本発明の実施例3および4の断面図、第7図
および第8図はそれぞれ本発明実施例3および4をマス
ターレンズに装着した場合の収差曲線図、第9図(a)
及び(b)はテレコンバージョンレンズの基本的構成の
説明図、第10図(a)、(b)は第1レンズのベンデ
ィングと有効径の関係の説明図、第11図ないし第12
図はそれぞれ本発明のテレコンバージョンレンズを装着
するべきマスターレンズ(A)および(B)の断面図、
第13図および第14図は、それぞれマスターレンズ(
A)および(B)の収差曲線図である。 特許出願人 小西六写真工業株式会社 出願人代理人 弁理士 佐藤 文男 (他2名) 第1図 第2図 Fl、65         uJW+7.0’   
      W−17,0’球面社         
非点数基         玉旧収左第3図 F 1.65          ymI5.oo  
      wm+5.0’銖面#丸t、      
 朴点Il燵       歪担収見第4図 2.2            u−14,0’   
       w=14.06球面収差       
 非P−収L        1曲1燻第7図 2.2           uJ* 12.4@II
/= 12.46球fI取募        畔屯収1
       F1線第8図 第9図(a) 第9図(b) 第10図(01第10If?1(b) F 1.65                 w−
23,8’球1収蓬        神点収1 第13図 2.2          117”20.5@球面服
駅       非に、IIILjLlす3.13” ω曽20.5” 盃曲投蔓
Figures 1 and 2 are cross-sectional views of Examples 1 and 2 of the teleconversion lens of the present invention, and Figures 3 and 4 show aberrations when Examples 1 and 2 of the present invention are attached to a master lens, respectively. The curve diagrams, FIGS. 5 and 6 are cross-sectional views of Examples 3 and 4 of the present invention, respectively, and FIGS. 7 and 8 are aberration curves when Examples 3 and 4 of the present invention are respectively attached to the master lens. Figure 9(a)
10(a) and (b) are explanatory diagrams of the relationship between the bending of the first lens and the effective diameter, and FIGS. 11 to 12
The figures are cross-sectional views of master lenses (A) and (B) to which the teleconversion lens of the present invention is to be attached, respectively;
Figures 13 and 14 show the master lens (
It is aberration curve diagram of A) and (B). Patent applicant Konishiroku Photo Industry Co., Ltd. Applicant agent Patent attorney Fumio Sato (and 2 others) Figure 1 Figure 2 Fl, 65 uJW+7.0'
W-17,0'Kyumensha
Non-score base Gyokuyuyu left figure 3 F 1.65 ymI5. oo
wm+5.0' surface #round t,
Pak point Il 燵 Distortion balance Fig. 4 2.2 u-14,0'
w=14.06 spherical aberration
Non-P-collection L 1 song 1 smoke Fig. 7 2.2 uJ* 12.4@II
/= 12.46 balls fI recruitment 1
F1 line Fig. 8 Fig. 9 (a) Fig. 9 (b) Fig. 10 (01 No. 10 If? 1 (b) F 1.65 w-
23,8' sphere 1 convergence divine point convergence 1 Fig. 13 2.2 117"20.5@spherical clothing station ni, IIILjLlsu 3.13"ωso20.5"

Claims (1)

【特許請求の範囲】 全体としてアフォーカル系を構成し、マスターレンズの
物体側に置かれるテレコンバージョンレンズにおいて、
物体側から順に、正の屈折力を有する第1レンズと負の
屈折力を有する第2レンズとが空気間隔を隔てて配置さ
れ、第1レンズは物体側に凸を向けたメニスカス正レン
ズ、第2レンズは像側に強い凹を向けた両凹単レンズ又
は平凹レンズであって、 f_1:第1レンズの焦点距離 n_1:第1レンズの屈折率 ν_1:第1レンズのアッベ数 ν_2:第2レンズのアッベ数 r_1_1:第1レンズの物体側の面の曲率半径 r_1_2:第1レンズの像側の面の曲率半径 r_2_1:第2レンズの物体側の面の曲率半径 r_2_2:第2レンズの像側の面の曲率半径 R:第1レンズの有効半径 とするとき、以下の各条件を満足することを特徴とする
テレコンバージョンレンズ。 1.0<f_1/R<1.4 1.0<(r_1_2+r_1_1)/(r_1_2−
r_1_1)<1.8 1.5<ν_1/ν_2<2.7 1.55<n_1
[Claims] In a teleconversion lens that constitutes an afocal system as a whole and is placed on the object side of a master lens,
In order from the object side, a first lens having a positive refractive power and a second lens having a negative refractive power are arranged with an air gap between them, and the first lens is a meniscus positive lens with a convexity facing the object side, The second lens is a biconcave single lens or a plano-concave lens with a strong concave side facing the image side, f_1: focal length of the first lens n_1: refractive index of the first lens ν_1: Abbe number of the first lens ν_2: second Abbe number of the lens r_1_1: Radius of curvature of the object-side surface of the first lens r_1_2: Radius of curvature of the image-side surface of the first lens r_2_1: Radius of curvature of the object-side surface of the second lens r_2_2: Image of the second lens A teleconversion lens characterized by satisfying the following conditions, where radius of curvature R of the side surface is the effective radius of the first lens. 1.0<f_1/R<1.4 1.0<(r_1_2+r_1_1)/(r_1_2-
r_1_1)<1.8 1.5<ν_1/ν_2<2.7 1.55<n_1
JP4270987A 1987-02-27 1987-02-27 Teleconversion lens Pending JPS63210810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4270987A JPS63210810A (en) 1987-02-27 1987-02-27 Teleconversion lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4270987A JPS63210810A (en) 1987-02-27 1987-02-27 Teleconversion lens

Publications (1)

Publication Number Publication Date
JPS63210810A true JPS63210810A (en) 1988-09-01

Family

ID=12643598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4270987A Pending JPS63210810A (en) 1987-02-27 1987-02-27 Teleconversion lens

Country Status (1)

Country Link
JP (1) JPS63210810A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0455809A (en) * 1990-06-25 1992-02-24 Fuji Photo Film Co Ltd Zoom lens device
EP1115020A2 (en) * 1999-12-15 2001-07-11 Nikon Corporation Front tele-converter, and front tele-converter having vibration-reduction function
US7136226B2 (en) 2002-12-24 2006-11-14 Nikon Corporation Front teleconverter lens system
KR20110027123A (en) * 2009-09-09 2011-03-16 삼성전자주식회사 Macro converter lens system and image pickup apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0455809A (en) * 1990-06-25 1992-02-24 Fuji Photo Film Co Ltd Zoom lens device
EP1115020A2 (en) * 1999-12-15 2001-07-11 Nikon Corporation Front tele-converter, and front tele-converter having vibration-reduction function
US6424465B2 (en) 1999-12-15 2002-07-23 Nikon Corporation Front tele-converter, and front tele-converter having vibration-reduction function
US6563644B2 (en) 1999-12-15 2003-05-13 Nikon Corporation Front tele-converter, and front tele-converter having vibration-reduction function
EP1115020A3 (en) * 1999-12-15 2004-01-28 Nikon Corporation Front tele-converter, and front tele-converter having vibration-reduction function
US7136226B2 (en) 2002-12-24 2006-11-14 Nikon Corporation Front teleconverter lens system
KR20110027123A (en) * 2009-09-09 2011-03-16 삼성전자주식회사 Macro converter lens system and image pickup apparatus

Similar Documents

Publication Publication Date Title
JP4051731B2 (en) High magnification zoom lens
JP3147167B2 (en) Zoom lens
JP2628633B2 (en) Compact zoom lens
JP6146870B2 (en) Zoom lens and imaging device
JP6146871B2 (en) Zoom lens and imaging device
JP5774055B2 (en) Zoom lens and imaging apparatus having the same
JP2005321426A (en) Zoom lens
JP4776796B2 (en) Zoom lens and optical apparatus using the same
JP3033141B2 (en) Compact zoom lens
JP3033137B2 (en) Compact zoom lens
JPH05150161A (en) Variable power lens
JP5959872B2 (en) Zoom lens and imaging apparatus having the same
JPH0627377A (en) Zoom lens
JP3063248B2 (en) Wide-angle zoom lens
JPS6119967B2 (en)
JP3085823B2 (en) Aspherical zoom lens and video camera using it
JP3301815B2 (en) Zoom lens
JP5078498B2 (en) Zoom lens and imaging apparatus having the same
JP3033148B2 (en) Compact zoom lens
JPH0961715A (en) High variable power zoom lens system
JPS63210810A (en) Teleconversion lens
JP4379957B2 (en) Rear focus zoom lens and optical apparatus using the same
JP4955875B2 (en) Zoom lens and optical apparatus having the same
JPH0634878A (en) Super wide-angle lens device
JP3744042B2 (en) Zoom lens