JPS63209749A - Reaction method using visco-elastic body - Google Patents

Reaction method using visco-elastic body

Info

Publication number
JPS63209749A
JPS63209749A JP62042040A JP4204087A JPS63209749A JP S63209749 A JPS63209749 A JP S63209749A JP 62042040 A JP62042040 A JP 62042040A JP 4204087 A JP4204087 A JP 4204087A JP S63209749 A JPS63209749 A JP S63209749A
Authority
JP
Japan
Prior art keywords
reaction
active groups
visco
elastic body
acidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62042040A
Other languages
Japanese (ja)
Other versions
JP2521079B2 (en
Inventor
Takeo Satake
佐竹 猛雄
Okitsugu Tsuji
辻 興亜
Masakazu Aoki
正和 青木
Hiroyuki Hoshino
廣行 星野
Isoo Shimizu
清水 五十雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SATAKE GIKEN KK
Eneos Corp
Original Assignee
SATAKE GIKEN KK
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SATAKE GIKEN KK, Nippon Petrochemicals Co Ltd filed Critical SATAKE GIKEN KK
Priority to JP62042040A priority Critical patent/JP2521079B2/en
Publication of JPS63209749A publication Critical patent/JPS63209749A/en
Application granted granted Critical
Publication of JP2521079B2 publication Critical patent/JP2521079B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/002Avoiding undesirable reactions or side-effects, e.g. avoiding explosions, or improving the yield by suppressing side-reactions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To make a reaction milder and to prevent a reaction apparatus from corrosion by kneading liquid contg. a material to be transformed by the reaction together with a visco-elastic body having acidic active groups under high shearing force while keeping the spinnability of the mixture. CONSTITUTION:A reaction of a material contained in a liquid wherein said material is transformed by the catalytic effect displayed by the active groups with a visco-elastic body having acidic active groups is carried out by kneading under high shearing force while keeping spinnability of the mixture. The acidic active groups are those having sulfuric acid residue, phosphoric acid residue, carbonic acid residue, etc., for examples, sulfuric acid groups, carbonic acid group, phosphoric ester group, etc. The material to be transformed by the reaction is in liquid form being contained in a solvent having no affinity to the visco-elastic body. In order to knead the mixture under high shearing force while keeping the spinnability, a kneading machine such as kneader, extruder, is used.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は粘弾性体を用いる反応方法に関するものである
。更に詳しくは、酸性活性基を有し、かつ変換対象物質
を含む液体に不溶性の粘弾性体を、高せん断力のかかる
条件下で曳糸性を示す状態に保ち、これに、前記酸性活
性基で反応変換される物質を含む含水液体を添加混練す
ることを特徴とする反応方法に関するものである。すな
わち、粘弾性体に含まれる酸性活性基の持つ酸触媒機能
を利用する新規な反応方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a reaction method using a viscoelastic body. More specifically, a viscoelastic body having an acidic active group and insoluble in a liquid containing a substance to be converted is maintained in a state exhibiting stringiness under conditions of high shear force, and then the acidic active group is This invention relates to a reaction method characterized by adding and kneading a water-containing liquid containing a substance to be reacted and converted. That is, the present invention relates to a novel reaction method that utilizes the acid catalytic function of acidic active groups contained in a viscoelastic body.

[従来の技術とその問題点コ 従来から、酸性活性を利用した反応方法は、化学工業上
広く行なわれてきた。例えば、反応触媒として、塩酸や
硫酸などの無機酸や、スルホン酸等の有機酸などの強酸
の他に、弱酸触媒としてカルボン酸などが使用されてき
た。しかし、反応活性を示す触媒自体が酸性物質である
ため、装置の腐食や保守などに問題があった。
[Prior art and its problems] Conventionally, reaction methods utilizing acidic activity have been widely used in the chemical industry. For example, as reaction catalysts, in addition to strong acids such as inorganic acids such as hydrochloric acid and sulfuric acid, and organic acids such as sulfonic acids, carboxylic acids and the like have been used as weak acid catalysts. However, since the catalyst itself that exhibits reaction activity is an acidic substance, there were problems with equipment corrosion and maintenance.

酸性物質の代わりに、いわゆる酸性イオン交換樹脂も、
それが同時に酸触媒機能を有するときは固体酸触媒とし
て用いられる。ここでいう酸性イオン交換樹脂とは、一
般的にスチレンジビニルベンゼン共重合体にスルホン基
を導入したものや、スチレンおよびジビニルベンゼンと
共にアクリル酸やメタクリル酸を共重合してカルボン酸
基を導入したものが例示される。これらの従来のイオン
交換樹脂の多くは何れも固体物質であり、反応触媒とし
て使用するために、重合方法を種々工夫し多孔質にする
ことによって、酸性活性基と反応対象物との接触の機会
を増加させ、反応効率を高めて使用されている。しかし
この場合、樹脂の細孔へ不純物か徐々に蓄積して、活性
中心である触媒活性基が反応物と接触し難くなることは
避けられない。固体樹脂の場合、反応効率や反応速度を
決定する主要な因子は固液接触の効率であるため、使用
形態が限定されるなどの問題点があった。
Instead of acidic substances, so-called acidic ion exchange resins can also be used.
When it also has an acid catalytic function, it is used as a solid acid catalyst. The acidic ion-exchange resins mentioned here are generally those in which sulfone groups have been introduced into a styrene divinylbenzene copolymer, or those in which carboxylic acid groups have been introduced by copolymerizing acrylic acid or methacrylic acid with styrene and divinylbenzene. is exemplified. Most of these conventional ion exchange resins are solid substances, and in order to use them as reaction catalysts, various polymerization methods are used to make them porous, which increases the chances of contact between the acidic active groups and the reaction target. It is used to increase reaction efficiency. However, in this case, it is inevitable that impurities will gradually accumulate in the pores of the resin, making it difficult for the catalytic active group, which is the active center, to come into contact with the reactant. In the case of solid resins, the main factor that determines reaction efficiency and reaction rate is the efficiency of solid-liquid contact, so there have been problems such as limited usage forms.

また、イオン交換樹脂中の酸性活性基からの水素イオン
の遊離を助け、反応効率を改善するために、ナトリウム
、カリウム、マグネシウム、カルシウムなどの少量の金
属イオンを反応系に添加することもなされているが、酸
性活性基それ自体は徐々に中和され賦活の必要性がある
In addition, small amounts of metal ions such as sodium, potassium, magnesium, and calcium have also been added to the reaction system to help liberate hydrogen ions from the acidic active groups in the ion exchange resin and improve reaction efficiency. However, the acidic active group itself is gradually neutralized and needs to be activated.

[問題点を解決するための手段] 本発明は、酸性活性基を有する粘弾性体を、該活性基が
発揮する触媒機能により反応変換される物質を含む液体
と共に、高せん断力のかがる条件下に曳糸性を示す状態
に保ちつつ混練することを特徴とする、粘弾性体を用い
る新規な反応方法を提供するものである。
[Means for Solving the Problems] The present invention provides a method in which a viscoelastic body having an acidic active group is subjected to a high shear force together with a liquid containing a substance that is reacted and converted by the catalytic function exerted by the active group. The object of the present invention is to provide a novel reaction method using a viscoelastic material, which is characterized by kneading while maintaining a state in which the material exhibits stringiness at the bottom.

本発明の酸性活性を示す酸性活性基は、硫酸、燐酸、炭
酸などの残基を有するものであり、例え゛ば、スルホン
酸基、カルボン酸基、燐酸エステル残基なとである。こ
れらの酸性活性基は、粘弾性体の種類に応じて、例えば
、従来から公知である反応を適宜に組み合せて粘弾性体
に導入することができる。また、反応によって導入する
他に、例えば、従来のイオン交換樹脂で行なわれるアク
リル酸、メタクリル酸など重合する物質を共重合して導
入してもよい。
The acidic active group exhibiting acidic activity of the present invention has a residue of sulfuric acid, phosphoric acid, carbonic acid, etc., such as a sulfonic acid group, a carboxylic acid group, and a phosphoric acid ester residue. These acidic active groups can be introduced into the viscoelastic body by, for example, appropriately combining conventionally known reactions depending on the type of the viscoelastic body. In addition to introducing by reaction, for example, a polymerizable substance such as acrylic acid or methacrylic acid may be copolymerized and introduced using conventional ion exchange resins.

曳糸性とは力のかからない状態では弾性を示すほど高粘
性の物質が、高せん断の条件下で混練されたときに、粘
性により糸を引きながら大きく変形することをいう。高
せん断力で混練されたとき曳糸性を示すような、弾性と
粘性とを兼ねそなえた性質を示すものを粘弾性体という
。本発明の粘弾性体は、高せん断の条件下で曳糸性を示
すものであればよい。このように、せん断力のかからな
い状態では弾性を示し、せん断力かかかる状態では粘性
を示すものの例としては、アスファルト、コールタール
ピッチ、ロジンなどのような天然物質、ポリビニルアル
コール、部分鹸化されたポリビニルアルコール、ポリビ
ニルブチラールのようなビニル樹脂など合成された樹脂
状物質がある。
Threadability refers to the fact that a substance that is so viscous that it exhibits elasticity when no force is applied, when kneaded under conditions of high shear, is greatly deformed by pulling the string due to its viscosity. A substance that exhibits properties that combine elasticity and viscosity, such as exhibiting stringiness when kneaded with high shear force, is called a viscoelastic substance. The viscoelastic body of the present invention may be one that exhibits stringiness under high shear conditions. Examples of materials that exhibit elasticity in the absence of shear force and viscosity in the presence of shear force include asphalt, coal tar pitch, natural substances such as rosin, polyvinyl alcohol, partially saponified polyvinyl There are synthetic resinous substances such as alcohol and vinyl resins such as polyvinyl butyral.

これらは何れも、高せん断力のかからない状態では見か
け上置体と見なせるほどの弾性を示すが、せん断力のか
かる状態では粘性を示すようになり、混練することによ
り曳糸性を示しながら大きく変形する。
In the absence of high shear force, these materials exhibit enough elasticity that they can be regarded as apparent objects, but in the presence of shear force, they become viscous, and when kneaded, they deform significantly while exhibiting stringiness. do.

また、混練された状態における曳糸性を更に良好に保つ
ために、軟化剤として溶剤を用いこれらを希釈すること
もできる。希釈剤として用いる溶剤は、長時間の混練で
蒸発飛散しないように沸点の高いものが好ましい。具体
的には、灯油、軽油、タービン油、重油などが例示され
る。
Further, in order to maintain even better stringability in the kneaded state, a solvent can be used as a softener to dilute these. The solvent used as the diluent is preferably one with a high boiling point so as not to evaporate and scatter during long-time kneading. Specifically, kerosene, light oil, turbine oil, heavy oil, etc. are exemplified.

本発明の粘弾性体は、酸性活性基を有する単独の粘弾性
体の他、酸性活性基を持たない粘弾性体と1昆合使用し
てもよい。
The viscoelastic body of the present invention may be used alone or in combination with a viscoelastic body that does not have an acidic active group.

反応変換対象物質は、本発明の粘弾性体に親和性のない
溶媒に含まれ液体状になっている。すなわち、液体の状
態で、例えば、エマルジョン、サスペンションの状態あ
るいは溶解した状態のものである。これらを含む溶媒は
、水、アルコール、ケトン、エーテルなどである。アル
コールは、メタノール、エタノール、イソプロパツール
などの低級アルコール、またはエチレングリコール、プ
ロピレングリコール、グリセリンなどの多価アルコール
が好ましい。ケトンは、アセトンやメチルエチルケトン
などのように炭素数の少ないものが好ましい。エーテル
としては、テトラヒドロフラン、ジオキサン、セロソル
ブなどがある。また、これらの含酸素炭化水素系溶媒の
他に、ジメチルホルムアミド、ジメチルスルホキシド、
スルホランなどのように含窒素、含硫黄系の極性溶媒で
、水によく溶解するものでもよい。これらは何れも高い
極性を持つものであり、酸性触媒活性を有する粘弾性体
に対して溶解性を持たないか、親和性のないものである
The substance to be reacted and transformed is contained in a solvent that has no affinity with the viscoelastic body of the present invention, and is in a liquid state. That is, it is in a liquid state, for example, an emulsion, a suspension, or a dissolved state. Solvents containing these include water, alcohol, ketone, ether, and the like. The alcohol is preferably a lower alcohol such as methanol, ethanol or isopropanol, or a polyhydric alcohol such as ethylene glycol, propylene glycol or glycerin. The ketone preferably has a small number of carbon atoms, such as acetone or methyl ethyl ketone. Ethers include tetrahydrofuran, dioxane, and cellosolve. In addition to these oxygen-containing hydrocarbon solvents, dimethylformamide, dimethyl sulfoxide,
A nitrogen-containing or sulfur-containing polar solvent such as sulfolane that is well soluble in water may also be used. All of these have high polarity and have no solubility or affinity for viscoelastic bodies having acidic catalytic activity.

本発明においては、酸性活性を有する粘弾性体は、高せ
ん断力条件下で混練されるため、常に大きな変形力を受
け、反応対象物質との接触面は常に更新される。これに
より反応効率は常に良好な状態に保たれる。更に本発明
の方法では、酸性活性基を活性化させるために、金属イ
オンを添加する必要もなく、賦活することもなく触媒活
性を示す。従って金属イオンによって中和された酸性活
性基を再び賦活する必要もなく、長期間安定した酸性活
性状態に保つことができる。
In the present invention, since the viscoelastic body having acidic activity is kneaded under high shear force conditions, it is constantly subjected to a large deformation force, and the contact surface with the reaction target substance is constantly renewed. This ensures that the reaction efficiency is always maintained at a good level. Furthermore, in the method of the present invention, there is no need to add metal ions to activate the acidic active groups, and the catalyst exhibits catalytic activity without activation. Therefore, there is no need to reactivate acidic active groups that have been neutralized by metal ions, and a stable acidic active state can be maintained for a long period of time.

本発明の変換対象物は、非親和性液体に含まれ混練され
て粘弾性体との接触により変換される。
The object to be converted according to the present invention is contained in a non-affinity liquid, kneaded, and converted by contacting with a viscoelastic body.

本発明の方法を実際に実施する場合、粘弾性体中の酸性
活性基に、吸着し不活性化する恐れのある金属カチオン
が共存することもある。この場合には、tめ反応対象物
を含む液体を処理し、イオンを除去しておくこともでき
る。これらの処理の方法としては、従来のイオン交換樹
脂による処理、イオンを不溶性の物質に変換して除く方
法などの従来の液体からイオンを除く技術が適宜選択で
きる。
When the method of the present invention is actually carried out, metal cations that may be adsorbed to the acidic active groups in the viscoelastic body and become inactivated may coexist. In this case, the liquid containing the second reaction target may be treated to remove ions. As methods for these treatments, conventional techniques for removing ions from a liquid can be selected as appropriate, such as treatment using a conventional ion exchange resin or a method for removing ions by converting them into an insoluble substance.

また、本発明の粘弾性体中の酸性活性基が、既に吸着金
属イオンで不活性化されているときには、例えば、鉱酸
で処理して該吸着金属イオンを洗浄除去する方法などで
活性化することもできる。
Furthermore, when the acidic active groups in the viscoelastic body of the present invention have already been inactivated by adsorbed metal ions, they can be activated by, for example, a method of treating with mineral acid to wash and remove the adsorbed metal ions. You can also do that.

゛ また、粘弾性体に含まれる酸触媒活性基は結合して
おり湧出しない。このために反応はほぼ中性の条件下で
行なうことができ、装置の腐食などの問題点もない。
゛ Also, the acid catalyst active groups contained in the viscoelastic body are bonded and do not come out. Therefore, the reaction can be carried out under substantially neutral conditions, and there are no problems such as corrosion of equipment.

高せん断力の条件下に曳糸性を示す状態に保って混練す
るためには、ニーダ−、エクストルーダー、バンバリー
ミキサ−などの目的に応じて通常の混練機を使用すれば
よい。また、これらの混練機には目的に応じて、適宜に
加熱や冷却できる構造を付与することもできる。
In order to knead while maintaining stringability under conditions of high shearing force, a conventional kneader such as a kneader, extruder, Banbury mixer, etc. may be used depending on the purpose. Furthermore, depending on the purpose, these kneaders can be provided with a structure capable of heating or cooling as appropriate.

[発明の効果] 本発明の方法によれば、従来過酷な条件を必要とした酸
性活性による反応が、常温常圧でしかも実際上はほぼ中
性という非常に穏和な条件で達成でき、装置の腐食を防
ぐことができる。
[Effects of the Invention] According to the method of the present invention, the reaction by acidic activity, which conventionally required harsh conditions, can be achieved under very mild conditions of room temperature and normal pressure, and is actually almost neutral. Can prevent corrosion.

以下に酸性活性反応として、カルボン酸エステルの加水
分解、アルコールとカルボン酸のエステル化反応および
アルデヒドの二量化であるアルドール縮合反応を例にと
り実施例によって説明する。
Examples of the acidic activation reaction will be described below, taking as examples hydrolysis of carboxylic acid ester, esterification reaction of alcohol and carboxylic acid, and aldol condensation reaction, which is dimerization of aldehyde.

[実施例] 参考例1ニアスフアルドのスルホン化 針入度60から80のストレートアスファルト400g
を、シクロヘキサン1.51に溶解して、温度を50か
ら55℃に保ち、30gの濃硫酸を徐々に加えてスルホ
ン化した。その後約2時間更に反応させ、反応終了後、
更にinのシクロヘキサンを加えて廃硫酸層を静置分離
し、洗浄水が中性になるまで洗浄した。その後、溶媒の
シクロヘキサンを減圧で蒸留分離し、スルホン化アスフ
ァルトを得た。スルホン化率は、スルホン酸含有量で3
.2重量%であった。
[Example] Reference Example 1 400 g of straight asphalt with Niasphald sulfonation penetration of 60 to 80
was dissolved in 1.5 l of cyclohexane and sulfonated by slowly adding 30 g of concentrated sulfuric acid while keeping the temperature at 50-55°C. After that, the reaction was continued for about 2 hours, and after the reaction was completed,
Furthermore, cyclohexane was added thereto, and the waste sulfuric acid layer was separated by standing and washed until the washing water became neutral. Thereafter, the solvent cyclohexane was distilled off under reduced pressure to obtain sulfonated asphalt. The sulfonation rate is 3 based on the sulfonic acid content.
.. It was 2% by weight.

参考例2:イソブチレン重合体のスルホン化インブチレ
ンの重合体である日本石油化学■製テトラックス3T(
粘度平均分子量30000) 400gを1.52のn
−ヘキサンに溶解し、温度を40から50℃に保って、
30%の発煙硫酸を徐々に加えてスルホン化した。発煙
硫酸はテトラックス3Tに対して、S03として5倍モ
ルになるように添加した。反応後は参考例1に準じて洗
浄処理を行なった。スルホン化率は65モル%であった
Reference example 2: Sulfonation of isobutylene polymer Tetrax 3T manufactured by Nippon Petrochemical Corporation, which is a polymer of imbutylene (
Viscosity average molecular weight 30000) 400g to 1.52n
- dissolved in hexane and keeping the temperature between 40 and 50 °C,
Sulfonation was carried out by gradually adding 30% oleum. Fuming sulfuric acid was added to Tetrax 3T in a 5-fold molar amount as S03. After the reaction, washing treatment was performed according to Reference Example 1. The sulfonation rate was 65 mol%.

実施例1:酢酸メチルの加水分解 270gのスルホン化アスファルトと30gの灯油と1
40gの水とを、容量1リツトルの二輪式ニーダ−で、
温度40から45℃に保って混練した。混練によって上
記混合物は比較的良好な曳糸性を示した。
Example 1: Hydrolysis of methyl acetate 270 g of sulfonated asphalt, 30 g of kerosene and 1
40g of water in a two-wheeled kneader with a capacity of 1 liter,
The mixture was kneaded while maintaining the temperature at 40 to 45°C. Upon kneading, the above mixture exhibited relatively good spinnability.

次に、15gの酢酸メチルおよび更に160gの水をニ
ーダ−に供給し混練した。水層中の酢酸メチルの減少量
および加水分解によって生成したメタノールの増加量を
分析して、加水分解率を調べた。その結果、酢酸メチル
の添加からの経過時間2.4.8.12時間における酢
酸メチルの加水分解率は、各々11.26.32.34
モル%であった。
Next, 15 g of methyl acetate and further 160 g of water were fed into a kneader and kneaded. The hydrolysis rate was determined by analyzing the decrease in methyl acetate in the aqueous layer and the increase in methanol produced by hydrolysis. As a result, the hydrolysis rates of methyl acetate at the elapsed time of 2, 4, 8, and 12 hours from the addition of methyl acetate were 11, 26, 32, and 34, respectively.
It was mol%.

実施例2:酢酸メチルの加水分解 実施例1で用いたスルホン化アスファルトと灯油の代わ
りに、300gのスルホン化テトラックス3Tを用いて
、酢酸メチルの加水分解を行なった。混合物と水とを混
練したときは、実施例1と同様に良好な曳糸性を示した
。反応開始後、2.4.8.12時時間口おける加水分
解率は、各々6.12.17.18モル%であった。
Example 2: Hydrolysis of Methyl Acetate Methyl acetate was hydrolyzed using 300 g of sulfonated Tetrax 3T instead of the sulfonated asphalt and kerosene used in Example 1. When the mixture and water were kneaded, similar to Example 1, good stringability was exhibited. The hydrolysis rates at 2, 4, 8, and 12 hours after the start of the reaction were 6, 12, 17, and 18 mol%, respectively.

実施例3ニステアリン酸メチルの加水分解130gのス
ルホン化アスファルト、140gのアスファルトおよび
30gの灯油からなる混合物と150gの水とを、容量
1リツトルの二軸式ニーダ−で、温度を45から50℃
に保って混練した。混練によって上記の混合物は良好な
曳糸性を示した。
Example 3 Hydrolysis of methyl nistearate A mixture of 130 g of sulfonated asphalt, 140 g of asphalt and 30 g of kerosene was mixed with 150 g of water in a 1 liter twin-screw kneader at a temperature of 45 to 50°C.
The mixture was kept at a constant temperature and kneaded. Upon kneading, the above mixture exhibited good spinnability.

次に、15gのステアリン酸メチルおよび更に200g
の水をニーダ−に供給し混練した。加水分解によって生
成し、水層に湧出したメタノールの増加量を分析して加
水分解率を調べた。その結果、ステアリン酸メチルの添
加からの経過時間、2.4.8.12時間におけるステ
アリン酸メチルの加水分解率は、各々、4.13.37
.49モル%であった。
Then 15g methyl stearate and a further 200g
of water was supplied to the kneader and kneaded. The rate of hydrolysis was determined by analyzing the increase in methanol produced by hydrolysis and flowing into the aqueous layer. As a result, the hydrolysis rate of methyl stearate at 2,4,8, and 12 hours after the addition of methyl stearate was 4,13,37, respectively.
.. It was 49 mol%.

実施例4:フタル酸ジメチルの加水分解ステアリン酸メ
チルの代わりにフタル酸ジメチルを用いて、実施例3と
同様に、フタル酸ジメチルの加水分解を行なった。その
結果、フタル酸ジメチルの添加からの経過時間8時間後
における、フタル酸ジメチルの加水分解率は55モル%
であった。
Example 4: Hydrolysis of dimethyl phthalate Dimethyl phthalate was hydrolyzed in the same manner as in Example 3, using dimethyl phthalate instead of methyl stearate. As a result, the hydrolysis rate of dimethyl phthalate was 55 mol% after 8 hours from the addition of dimethyl phthalate.
Met.

実施例5:酢酸メチルの加水分解 一実施例1て用いたスルホン化アスファルトと灯油の混
合物の代わりに、 (A)150gのスルホン化アスファルトおよび150
gの低針人度のタールピッチの混合物、(B)150g
のスルホン化アスファルト、110gのポリビニルブチ
ラール、および40gの軽油の混合物、 を用いて、実施例1と同様にして酢酸メチルの加水分解
を行なった。加水分解反応開始後8時間における加水分
解率は、各々、28および22モル%であった。
Example 5: Hydrolysis of Methyl Acetate - Instead of the mixture of sulfonated asphalt and kerosene used in Example 1, (A) 150 g of sulfonated asphalt and 150 g of sulfonated asphalt and kerosene were used.
g of low needle strength tar pitch mixture, (B) 150 g
Hydrolysis of methyl acetate was carried out in the same manner as in Example 1 using a mixture of sulfonated asphalt, 110 g of polyvinyl butyral, and 40 g of light oil. The hydrolysis rates 8 hours after the start of the hydrolysis reaction were 28 and 22 mol%, respectively.

実施例6:エステル化反応 300gのスルホン化テトラックスおよび140gの水
を二軸式のニーダ−にいれて、温度45℃て混練し、続
いて13gのメタノールおよび12gの酢酸を100g
の水に溶解し、ニーダ−に添加した。添加後4時間にお
いて、分離している水溶液中の酢酸メチルの生成量を測
定したところ37モル%のエステル化率であった。
Example 6: Esterification reaction 300g of sulfonated Tetrax and 140g of water were placed in a twin-screw kneader and kneaded at a temperature of 45°C, followed by 100g of 13g of methanol and 12g of acetic acid.
of water and added to a kneader. Four hours after the addition, the amount of methyl acetate produced in the separated aqueous solution was measured, and the esterification rate was 37 mol%.

実施例7:アセトアルデヒドの反応 実施例6と同様に、′水とスルホン化テトラックスとを
混練し、10重量%のアセトアルデヒド水溶液140g
を添加し混練した。添加後4時間口に、分離している水
溶液中のアルドールの生成量を測定したところ34モル
%の反応率であった。
Example 7: Reaction of acetaldehyde In the same manner as in Example 6, water and sulfonated tetrax were kneaded to form 140 g of a 10% by weight acetaldehyde aqueous solution.
was added and kneaded. Four hours after the addition, the amount of aldol produced in the separated aqueous solution was measured, and the reaction rate was 34 mol%.

Claims (1)

【特許請求の範囲】[Claims] (1)酸性活性基を有する粘弾性体を、該活性基が発揮
する触媒機能により反応変換される物質を含む液体と共
に、高せん断力のかかる条件下に曳糸性を示す状態に保
ちつつ混練することを特徴とする粘弾性体を用いる反応
方法。
(1) A viscoelastic material having acidic active groups is kneaded with a liquid containing a substance that is reacted and converted by the catalytic function exerted by the active groups while maintaining stringiness under conditions of high shear force. A reaction method using a viscoelastic body characterized by:
JP62042040A 1987-02-25 1987-02-25 Reaction method using viscoelastic body Expired - Lifetime JP2521079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62042040A JP2521079B2 (en) 1987-02-25 1987-02-25 Reaction method using viscoelastic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62042040A JP2521079B2 (en) 1987-02-25 1987-02-25 Reaction method using viscoelastic body

Publications (2)

Publication Number Publication Date
JPS63209749A true JPS63209749A (en) 1988-08-31
JP2521079B2 JP2521079B2 (en) 1996-07-31

Family

ID=12625024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62042040A Expired - Lifetime JP2521079B2 (en) 1987-02-25 1987-02-25 Reaction method using viscoelastic body

Country Status (1)

Country Link
JP (1) JP2521079B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103933985A (en) * 2013-01-18 2014-07-23 济南大学 Fused iron catalyst used for industrial synthetic ammonia and prepared from sulfuric acid residue

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6071732B2 (en) * 2013-04-30 2017-02-01 日本ドライブイット株式会社 Stud housing
JP6071731B2 (en) * 2013-04-30 2017-02-01 日本ドライブイット株式会社 Stud storage pipe valve structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103933985A (en) * 2013-01-18 2014-07-23 济南大学 Fused iron catalyst used for industrial synthetic ammonia and prepared from sulfuric acid residue

Also Published As

Publication number Publication date
JP2521079B2 (en) 1996-07-31

Similar Documents

Publication Publication Date Title
JP3517429B2 (en) Purification method of fluorinated carboxylic acid
KR20170136584A (en) Process for the preparation of helianidides
JPS63209749A (en) Reaction method using visco-elastic body
CA2347756A1 (en) Process for the manufacture of .alpha.,.alpha.-branched carboxylic acids
EP0172387A2 (en) Method of polymerizing rosin
KR910000818A (en) Preparation of oxyalkylated polymers containing carboxyl groups
US2446159A (en) Distillation of alcohol from hydrolyzed mixtures of alkyl sulfates and sulfuric acid
KR20050013930A (en) Methods, systems and catalysts for esterification, esters made thereby and downstream products made from the esters
US2868738A (en) Preparation of cation-exchange resins by oxidation of vinylalkoxy sulfide polymers
JPS63207840A (en) Viscoelastic material composition
JPS63208539A (en) Decomposition of carboxylic acid ester
CA1321210C (en) Method for converting substances
CH617211A5 (en)
JPS63207828A (en) Production of composition having high liquid content
US2466889A (en) Alcohol-soluble phenol-modified coumarone-indene resin
JPS63207842A (en) Viscoelastic material composition
DE1495851A1 (en) Process for chloromethylation and crosslinking of high molecular weight aromatic compounds
JPH0211529A (en) Production of glycerol
JPS63207841A (en) Composition having high liquid content
US1286179A (en) Process of refining mineral petroleum-oils.
US2447762A (en) Organic cation exchange adsorbents prepared from spent alkylation sulfuric acid or similar material
US2448127A (en) Method of removing halogen from coumarone-indene polymers
JPS63207857A (en) Highly liquid-containing composition
JPS6038355A (en) Isolation of paraffin-sulfonate under mild conditions from reaction mixture obtained on sulfoxidating paraffin
JPH06228227A (en) Production of polyvinyl acetal resin