JPS6320944Y2 - - Google Patents

Info

Publication number
JPS6320944Y2
JPS6320944Y2 JP13896583U JP13896583U JPS6320944Y2 JP S6320944 Y2 JPS6320944 Y2 JP S6320944Y2 JP 13896583 U JP13896583 U JP 13896583U JP 13896583 U JP13896583 U JP 13896583U JP S6320944 Y2 JPS6320944 Y2 JP S6320944Y2
Authority
JP
Japan
Prior art keywords
cooler
heat
freezer compartment
cooling member
thermoelectric cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13896583U
Other languages
Japanese (ja)
Other versions
JPS6048074U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13896583U priority Critical patent/JPS6048074U/en
Publication of JPS6048074U publication Critical patent/JPS6048074U/en
Application granted granted Critical
Publication of JPS6320944Y2 publication Critical patent/JPS6320944Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【考案の詳細な説明】 〔考案の技術分野〕 本考案は急速冷凍能力を有する冷蔵庫の改良に
関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an improvement of a refrigerator having quick freezing capability.

〔考案の技術的背景〕[Technical background of the invention]

従来、例えば冷凍室の内壁を冷却器で構成した
冷蔵庫においては、前記冷却器により一般に該冷
凍室を−18℃に冷却するように運転される。而し
て、食品を急速に冷凍するには−40℃〜−50℃の
極低温状態を作り出す必要があるが、上記構成に
おいて斯かる極低温状態を得るには、冷凍サイク
ルのキヤピラリチユーブの絞りを小さくしたり、
コンプレツサの容量を大きくしたりする等、冷凍
サイクルの変更が必要であつた。
Conventionally, for example, in a refrigerator in which the inner wall of a freezer compartment is constituted by a cooler, the freezer is generally operated to cool the freezer compartment to -18°C. Therefore, in order to rapidly freeze food, it is necessary to create a cryogenic state of -40°C to -50°C, but in order to obtain such a cryogenic state with the above configuration, the capillary tube of the refrigeration cycle must be Decrease the aperture or
It was necessary to change the refrigeration cycle, such as increasing the capacity of the compressor.

〔背景技術の問題点〕 しかしながら、上述したように冷凍サイクルを
変更すると、冷凍サイクルの特性上、サイクル効
率が低下し、しかも冷媒として一般に用いられる
R−12(CCl2F2)を使用した場合にコンプレツサ
の吸入圧力が負圧になり、シール上の問題が生ず
る。
[Problems with the background art] However, when the refrigeration cycle is changed as described above, the cycle efficiency decreases due to the characteristics of the refrigeration cycle.Moreover, when R-12 (CCl 2 F 2 ), which is commonly used as a refrigerant, is used, The suction pressure of the compressor becomes negative, causing sealing problems.

〔考案の目的〕[Purpose of the invention]

本考案の目的は、冷凍サイクルの効率を低下さ
せたりすることなく、冷凍室内に極低温状態の部
分を作り出すことができる冷蔵庫を提供するにあ
る。
An object of the present invention is to provide a refrigerator that can create an extremely low temperature area within the freezer compartment without reducing the efficiency of the refrigeration cycle.

〔考案の概要〕[Summary of the idea]

本考案は、熱電素子から成る熱電冷却部材を、
その吸熱部が冷凍室内に臨み且つ放熱部が冷却器
に接触する様に設け、且つ蓄冷材を該冷却器及び
熱電冷却部材の放熱部に接触させて設けたことを
特徴とするものであり、これにて熱電冷却部材の
放熱部を冷却器及びこの冷却器によつて蓄冷され
た蓄冷材により効率良く冷却して、冷凍室内の食
品負荷の多少に拘らず該熱電冷却部材の吸熱部を
極低温状態にすることができるようにしたもので
ある。
The present invention uses a thermoelectric cooling member consisting of thermoelectric elements.
It is characterized in that the heat absorbing part is provided so as to face into the freezing chamber and the heat radiating part is in contact with the cooler, and the cold storage material is provided in contact with the heat radiating part of the cooler and the thermoelectric cooling member, In this way, the heat radiation part of the thermoelectric cooling member is efficiently cooled by the cooler and the cold storage material stored by the cooler, and the heat absorption part of the thermoelectric cooling member is extremely This allows it to be kept at a low temperature.

〔考案の実施例〕[Example of idea]

以下、本考案の第1実施例を第1図及び第3図
を参照して説明する。まず、冷凍サイクルを示し
た第1図において、1はコンプレツサであり、そ
の吐出口1aと吸入口1bとの間に吐出口1a側
から順に、コンデンサ2、キヤピラリチユーブ
3、冷蔵室用冷却器4、冷却器たる冷凍室用冷却
器5を接続している。この冷却器5は前後両面を
開放する箱状に形成されて、第2図に示すように
その四壁部を冷凍室6の上、下、左、右の四壁面
としている。尚、前記冷凍室6の後壁部及び冷凍
室用冷却器5の外周囲は断熱材7にて形成され、
該冷凍室6の前面開口部には扉(図示せず)が設
けられている。而して、8は熱電素子から成る平
盤状の熱電冷却部材で、これはその一面部に吸熱
部9を有し且つ他面部に複数のフイン10a(第
3図参照)が突設された放熱部10を有してお
り、その吸熱部9を上向きにして冷凍室6内に臨
ませ且つ放熱部10を冷凍室用冷却器5に接触さ
せている。11は冷凍室用冷却器5及び熱電冷却
部材8の放熱部10に充分に接触させて設けた蓄
冷材で、これは例えば単位重量当りの熱容量の大
きい固液相変化を利用した潜熱蓄冷材から成り、
放熱部10に冷凍室用冷却器5の下側から密着さ
れた蓄冷容器12と放熱部10との間に充填され
ている。一方、第1図において、13は熱電冷却
部材8へ直流電流を供給するための直流電源、1
4,15は熱電冷却部材8の吸熱部9及び放熱部
10に夫々設けられた温度検出器、16は急速冷
凍運転開始用の押釦16a付きのスイツチ装置
で、これは押釦16aの押圧操作及び温度検出器
14,15の出力信号に基づいて直流電源13及
びコンプレツサ1をオン・オフ制御する様に構成
されている。
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 and 3. First, in FIG. 1 showing the refrigeration cycle, 1 is a compressor, and between its discharge port 1a and suction port 1b, in order from the discharge port 1a side, a condenser 2, a capillary tube 3, and a refrigerator cooler are installed. 4. A freezer compartment cooler 5 serving as a cooler is connected. The cooler 5 is formed into a box shape with both front and rear sides open, and its four walls are the upper, lower, left, and right walls of the freezer compartment 6, as shown in FIG. Note that the rear wall of the freezer compartment 6 and the outer periphery of the freezer compartment cooler 5 are formed of a heat insulating material 7,
A door (not shown) is provided at the front opening of the freezer compartment 6. Reference numeral 8 denotes a flat thermoelectric cooling member made of a thermoelectric element, which has a heat absorbing portion 9 on one side and a plurality of fins 10a (see Fig. 3) protruding from the other side. It has a heat radiating part 10, with its heat absorbing part 9 facing upward into the freezer compartment 6, and the heat radiating part 10 is brought into contact with the freezer compartment cooler 5. Reference numeral 11 denotes a cold storage material that is provided in sufficient contact with the heat radiation part 10 of the freezer compartment cooler 5 and the thermoelectric cooling member 8, and is made of, for example, a latent heat cold storage material that uses solid-liquid phase change and has a large heat capacity per unit weight. Becomes,
It is filled between the heat radiating part 10 and the cold storage container 12 which is brought into close contact with the freezer compartment cooler 5 from below. On the other hand, in FIG. 1, 13 is a DC power supply for supplying DC current to the thermoelectric cooling member 8;
Reference numerals 4 and 15 are temperature detectors provided respectively in the heat absorption part 9 and the heat radiation part 10 of the thermoelectric cooling member 8. Reference numeral 16 is a switch device with a push button 16a for starting the quick freezing operation. The DC power supply 13 and the compressor 1 are controlled to be turned on and off based on the output signals of the detectors 14 and 15.

次に、上記構成の作用について説明する。今、
通常の冷却運転状態にあつて、冷凍室6内が−18
℃に保たれているものとする。斯かる冷却運転中
に、冷凍室用冷却器5に接触した状態にある蓄冷
材11には、該冷却器5からの冷熱が充分に蓄え
られる。而して、食品或いは水(以下これらを負
荷と称す)を急速冷凍する場合には、該負荷を熱
電冷却部材8の吸熱部9上に載置してスイツチ装
置16の押釦16aを押圧操作する。すると、直
流電源13から熱電冷却部材8に直流電流が流れ
始めると共に、コンプレツサ1が駆動されている
ときにはその状態が継続され、停止状態にあると
きには起動される。このコンプレツサ1の起動に
より冷凍室用冷却器5が更に低温度になつて冷凍
室6が更に冷却される。而して、前述したように
して熱電冷却部材8に直流電流が流されると、該
熱電冷却部材8を構成する熱電素子にペルチエ効
果が生じ、これにより吸熱部9の熱が放熱部10
側に吸収されて該吸熱部9表面の温度が次第に低
下する。一方、放熱部10は冷凍室用冷却器5及
び蓄冷材11に充分に接触しているため、該放熱
部10は冷凍室用冷却器5の接触伝熱により冷却
されるばかりか、蓄冷材11の接触伝熱によつて
も冷却され、この結果、該放熱部10は極めて効
率良く冷却される。このため、前述したようにし
て放熱部10側に吸収された熱は効率良く該放熱
部10から冷凍室用冷却器5に伝えられる。この
結果、前述したペルチエ効果による吸熱部9から
放熱部10への熱の移動が極めて円滑に行なわ
れ、最終的に吸熱部9が−40℃〜−50℃の極低温
状態になる。斯様に吸熱部9が極低温になるに従
つてこの吸熱部9上に載置された負荷は、その量
の多少に拘らず主に吸熱部9により急速に冷却さ
れて、極めて短時間で冷凍される。斯かる急速冷
凍運転中、吸熱部9と放熱部10との間の温度差
が温度検出器14,15により検出されており、
両温度検出器14,15で検出された温度差が所
定値に達すると、スイツチ装置16によりコンプ
レツサ1及び直流電源13が停止され、以つて急
速冷凍運転が終了される。
Next, the operation of the above configuration will be explained. now,
During normal cooling operation, the temperature inside the freezer compartment 6 is -18
Assume that it is kept at ℃. During this cooling operation, cold heat from the cooler 5 is sufficiently stored in the cold storage material 11 that is in contact with the cooler 5 for the freezer compartment. When food or water (hereinafter referred to as a load) is to be rapidly frozen, the load is placed on the heat absorbing portion 9 of the thermoelectric cooling member 8 and the push button 16a of the switch device 16 is pressed. . Then, a direct current starts to flow from the direct current power supply 13 to the thermoelectric cooling member 8, and when the compressor 1 is being driven, this state is continued, and when it is in a stopped state, it is activated. By starting the compressor 1, the temperature of the freezer compartment cooler 5 becomes lower, and the freezer compartment 6 is further cooled. When a direct current is passed through the thermoelectric cooling member 8 as described above, a Peltier effect occurs in the thermoelectric element constituting the thermoelectric cooling member 8, and as a result, the heat in the heat absorption part 9 is transferred to the heat radiation part 10.
The temperature of the surface of the heat absorbing portion 9 gradually decreases. On the other hand, since the heat radiation part 10 is in sufficient contact with the freezer compartment cooler 5 and the cold storage material 11, the heat radiation part 10 is not only cooled by the contact heat transfer of the freezer compartment cooler 5, but also It is also cooled by contact heat transfer, and as a result, the heat radiating section 10 is cooled extremely efficiently. Therefore, the heat absorbed by the heat radiating section 10 as described above is efficiently transmitted from the heat radiating section 10 to the freezer compartment cooler 5. As a result, the transfer of heat from the heat absorbing section 9 to the heat dissipating section 10 due to the Peltier effect described above is carried out extremely smoothly, and the heat absorbing section 9 finally reaches an extremely low temperature of -40 DEG C. to -50 DEG C. In this way, as the heat absorbing part 9 becomes extremely low temperature, the load placed on the heat absorbing part 9 is rapidly cooled mainly by the heat absorbing part 9, regardless of the amount, and is cooled down in an extremely short time. Frozen. During such quick freezing operation, the temperature difference between the heat absorption part 9 and the heat radiation part 10 is detected by the temperature detectors 14 and 15,
When the temperature difference detected by both temperature detectors 14 and 15 reaches a predetermined value, the compressor 1 and the DC power supply 13 are stopped by the switch device 16, thereby terminating the quick freezing operation.

ところで、熱電冷却部材を設けていない従来の
冷蔵庫では、負荷を冷凍室用冷却器のみで冷凍す
ることになるが、該冷却器の温度は−30℃程度に
しかならず、負荷の冷凍に比較的長時間を要する
という欠点があつた。
By the way, in conventional refrigerators that do not have a thermoelectric cooling member, the load is frozen only by the freezer compartment cooler, but the temperature of the cooler is only about -30℃, and it takes a relatively long time to freeze the load. The drawback was that it was time consuming.

しかるに、熱電冷却部材8を設けた構成の本実
施例の場合、熱電冷却部材8の吸熱部9を−40℃
〜−50℃にすることができるため、負荷の冷凍を
極めて短時のうちに行うことができる。しかも、
斯様に熱電冷却部材8にて負荷を急速冷凍する構
成であるため、冷凍サイクルについて、キヤピラ
リチユーブ3の絞りを小さくする必要もなけれ
ば、コンプレツサ1の容量を大きくする必要もな
く、従つて従来に比べて冷凍サイクルの効率が低
下することはなく、ましてや冷凍としてR−12を
使用してもコンプレツサ1の吸込圧力が負圧にな
ることもない。
However, in the case of this embodiment having a configuration in which the thermoelectric cooling member 8 is provided, the heat absorption part 9 of the thermoelectric cooling member 8 is heated to -40°C.
Since the temperature can be lowered to -50°C, the load can be frozen in an extremely short time. Moreover,
Since the load is rapidly frozen using the thermoelectric cooling member 8 in this way, there is no need to reduce the orifice of the capillary tube 3 or increase the capacity of the compressor 1 in the refrigeration cycle. Compared to the conventional system, the efficiency of the refrigeration cycle does not decrease, and even when R-12 is used for refrigeration, the suction pressure of the compressor 1 does not become a negative pressure.

而して、熱電冷却部材8の冷却スピードについ
て前述した従来例と比較して定量的に説明する
に、一般に冷却スピードΔτ(時間)は次式で与え
られる。
To quantitatively explain the cooling speed of the thermoelectric cooling member 8 in comparison with the conventional example described above, the cooling speed Δτ (time) is generally given by the following equation.

Δτ=Q/(ΔT・K) …(1) ここで、Qは負荷の冷凍に要する熱量、ΔTは
負荷と冷熱源との間の平均温度差、Kは負荷と冷
熱源との間の熱通過係数である。そして、負荷の
平均温度を0℃とし、従来例の冷熱源たる冷凍室
用冷却器の温度を前述したように−30℃、本実施
例の冷熱源たる熱電冷却部材8の吸熱部9の温度
を−40℃とした場合、従来例と本実施例における
熱通過係数Kは略等しく、また冷凍に要する熱量
Qは同一であるため、従来例と本実施例における
冷却スピードを夫々Δτ-30,Δτ-40とすると、(1)
式より Δτ-40/Δτ-30=30/40=0.75 となり、従来例に比べて約25%冷凍時間を短縮す
ることができる。更に、吸熱部9の温度を−50℃
とした場合、その冷却スピードをΔτ-50とする
と、 Δτ-50/Δτ-30=30/50=0.6 となり、従来に比べて約40%冷凍時間を短縮する
ことができる。以上のことから、熱電冷却部材8
の吸熱部9の温度を−40℃〜−50℃とすることが
できる本実施例においては、従来例に比べて25%
〜40%冷凍時間を短縮することができる。
Δτ=Q/(ΔT・K) …(1) Here, Q is the amount of heat required to freeze the load, ΔT is the average temperature difference between the load and the cold source, and K is the heat between the load and the cold source. It is the passage coefficient. The average temperature of the load is 0°C, the temperature of the freezer compartment cooler which is the cold source of the conventional example is -30°C as described above, and the temperature of the heat absorption part 9 of the thermoelectric cooling member 8 which is the cold source of this embodiment. When is set to -40°C, the heat transfer coefficient K in the conventional example and this example is approximately equal, and the amount of heat Q required for freezing is the same, so the cooling speed in the conventional example and this example is Δτ -30 , Assuming Δτ -40 , (1)
From the formula, Δτ -40 /Δτ -30 = 30/40 = 0.75, and the freezing time can be reduced by approximately 25% compared to the conventional example. Furthermore, the temperature of the heat absorption part 9 is set to -50℃.
In this case, if the cooling speed is Δτ -50 , then Δτ -50 /Δτ -30 = 30/50 = 0.6, which makes it possible to shorten the freezing time by about 40% compared to the conventional method. From the above, thermoelectric cooling member 8
In this embodiment, the temperature of the heat absorption part 9 of the device can be set to -40°C to -50°C, which is 25% lower than that of the conventional example.
Freezing time can be shortened by ~40%.

ところで、冷凍室の内外を連通するように設け
られた冷気循環路中にフアン装置及び冷却器を設
けた所謂フアンクールと称される冷蔵庫におい
て、熱電冷却部材を、その吸熱部が前記冷凍室内
に臨み且つ放熱部が前記冷却器に空隙を存して臨
む様に設け、該放熱部を前記冷気循環路中を流れ
る冷気により冷却する構成もの(以下フアンクー
ル方式と称す)が最近になつて考えられている。
しかしながら上記構成では、熱電冷却部材の放熱
部を対流伝熱により冷却するため、本実施例に比
べて冷却効果が低く、この結果、特に負荷が多い
場合には放熱部の冷却が追いつかずその温度が上
昇して吸熱部の温度を−40℃〜−50℃という極低
温に保つことが極めて難しく、従つて急速冷凍の
効果が負荷の少ない場合に制限されるばかりか、
放熱部の温度が冷凍室内の温度以上に上昇して、
該放熱部が冷凍室内の空気を加熱してしまうとい
う不具合を生ずる。
By the way, in a refrigerator called a so-called "fan cool" in which a fan device and a cooler are installed in a cold air circulation path provided to communicate between the outside and the outside of the freezing compartment, a thermoelectric cooling member is used, and its heat absorbing part is inside the freezing compartment. Recently, a configuration has been developed in which a heat dissipation section is provided facing the cooler with a gap, and the heat dissipation section is cooled by the cold air flowing in the cold air circulation path (hereinafter referred to as the Fan Cool method). It is being
However, in the above configuration, since the heat dissipation part of the thermoelectric cooling member is cooled by convection heat transfer, the cooling effect is lower than that in this embodiment.As a result, especially when the load is large, the heat dissipation part cannot be cooled down enough to reach its temperature. increases, making it extremely difficult to maintain the temperature of the endothermic part at an extremely low temperature of -40°C to -50°C. Therefore, the effectiveness of quick freezing is not only limited to cases where the load is small, but also
The temperature of the heat radiation section rises above the temperature inside the freezer compartment,
This causes a problem in that the heat radiating section heats the air inside the freezing chamber.

しかるに、本実施例においては、放熱部10を
冷凍室用冷却器5及びこの冷却器5に接触された
蓄冷材11に充分に接触させる構成としたので、
冷凍室用冷却器5及び蓄冷材11により放熱部1
0から効率良く熱を奪うことができて、放熱部1
0の温度を常に冷凍室用冷却器5の温度と同等に
保つことができ、以つて負荷の多少に拘らず常に
吸熱部9を−40℃〜−50℃の極低温にすることが
できる。
However, in this embodiment, the heat dissipation section 10 is configured to be brought into sufficient contact with the freezer compartment cooler 5 and the cold storage material 11 that is in contact with the cooler 5.
Heat dissipation section 1 by freezer compartment cooler 5 and cold storage material 11
Heat dissipation part 1 can efficiently remove heat from 0.
0 can always be kept equal to the temperature of the freezer compartment cooler 5, and therefore the heat absorbing part 9 can always be kept at an extremely low temperature of -40°C to -50°C regardless of the amount of load.

以下、本実施例の熱電冷却部材8の冷却効果に
ついて前述のフアンクール方式によるものと比較
して定量的に説明するに、一般に熱電冷却部材の
放熱部と冷却器との間の温度差ΔTは次式で与え
られる。
Below, the cooling effect of the thermoelectric cooling member 8 of this embodiment will be quantitatively explained in comparison with that of the fan cool method described above. Generally, the temperature difference ΔT between the heat radiation part of the thermoelectric cooling member and the cooler is It is given by the following formula.

ΔT=Q/(αA) …(2) ここで、Qは放熱部から冷却器への放熱量、α
は熱伝達率、Aは伝熱面積である。而して本実施
例における熱伝達率α及び伝熱面積Aを夫々
200OKcal/m2h℃,0.01m2とする一方、フアン
クール方式によるものを夫々50Kcal/m2h℃,
0.1m2とし、更に冷却器の温度を両者共−30℃、
放熱部の総放熱量を両者共100Kcal/h、蓄冷材
11の蓄冷量を50/Kcal/hとした場合、本実
施例における放熱部10から冷凍室用冷却器5へ
の放熱量Q1は放熱部10の総放熱量から蓄冷材
11の蓄冷量を差引いたものとなるため、放熱部
10と冷凍室用冷却器5との間の温度差ΔT1は(2)
式により次のように求められる。
ΔT=Q/(αA) …(2) Here, Q is the amount of heat radiated from the heat radiating part to the cooler, α
is the heat transfer coefficient and A is the heat transfer area. Therefore, the heat transfer coefficient α and the heat transfer area A in this example are respectively
200Kcal/m 2 h℃, 0.01m 2 , while those using the Fancourt method are 50Kcal/m 2 h℃, respectively.
0.1m2 , and the temperature of both coolers is -30℃,
When the total heat radiation amount of both heat radiation parts is 100 Kcal/h and the cold storage amount of the cold storage material 11 is 50/Kcal/h, the heat radiation amount Q 1 from the heat radiation part 10 to the freezer compartment cooler 5 in this embodiment is Since the amount of cool storage in the cold storage material 11 is subtracted from the total amount of heat radiated by the heat radiating section 10, the temperature difference ΔT 1 between the heat radiating section 10 and the freezer compartment cooler 5 is (2)
It can be obtained from the formula as follows.

ΔT1=(100−50)/(2000・0.01) =2.5〔℃〕 これに対して、フアンクール方式によるものに
おける温度差ΔT2は同様にして次のように求めら
れる。
ΔT 1 = (100−50)/(2000·0.01) = 2.5 [°C] On the other hand, the temperature difference ΔT 2 in the fan cool method is similarly determined as follows.

ΔT2=100/(50・0.1)=20〔℃〕 この結果、本実施例の放熱部10の温度は−30
+2.5=−27.5〔℃〕となるのに対して、フアンク
ール方式の放熱部の温度は−30+20=−10〔℃〕
となるため、熱電冷却部材自体の作用により吸熱
部の温度を放熱部の温度より20℃低めるように構
成した場合、本実施例では吸熱部9の温度が−
47.5℃となるのに対して、フアンクール方式によ
るものの吸熱部の温度は−30℃にしかならない。
この結果に基づいて、本実施例の冷却スピード
Δτ-47.5をフアンクール方式のものの冷却スピー
ドΔτ-30と比較すると、(1)式から Δτ-47.5/Δτ-30=30/47.5=0.63 となり、フアンクール方式のものに比べて約37%
冷凍時間を短縮することができる。
ΔT 2 =100/(50・0.1)=20 [°C] As a result, the temperature of the heat dissipation section 10 in this example is -30
+2.5 = -27.5 [℃], whereas the temperature of the heat dissipation part of the fan cool method is -30 + 20 = -10 [℃]
Therefore, if the thermoelectric cooling member itself is configured to lower the temperature of the heat absorption part by 20 degrees Celsius than the temperature of the heat radiation part, in this embodiment, the temperature of the heat absorption part 9 will be -
The temperature is 47.5℃, whereas the temperature of the endothermic part of the Fan Cool method is only -30℃.
Based on this result, when the cooling speed Δτ -47.5 of this example is compared with the cooling speed Δτ -30 of the fan cool system, from equation (1), Δτ -47.5 /Δτ -30 = 30/47.5 = 0.63, approximately 37% compared to the Fancourt method.
Freezing time can be shortened.

ところで、上述の第1実施例では熱電冷却部材
8を冷却する手段として冷凍室用冷却器5を用い
る構成のため、本考案の目的を充分に達成し得る
ものの、急速冷凍運転時に冷凍室用冷却器5ばか
りか冷蔵室用冷却器4にも冷媒が供給されて、冷
蔵室が必要以上に冷却されてしまうという不具合
を生ずる。
By the way, in the first embodiment described above, since the freezer compartment cooler 5 is used as a means for cooling the thermoelectric cooling member 8, the objective of the present invention can be fully achieved. The refrigerant is supplied not only to the container 5 but also to the cooler 4 for the refrigerator compartment, resulting in a problem that the refrigerator compartment is cooled more than necessary.

斯かる不具合を解消し得る構成の第2実施例を
第4図及び第5図に基づいて説明するに、この第
2実施例においては熱電冷却部材8の放熱部10
を冷却するための冷却器17(以下これを放熱部
冷却用冷却器と称す)を冷凍室6の内壁を構成す
る冷却器即ち第1実施例における冷凍室用冷却器
5とは別に設けたところに第1の特徴を有し、熱
電冷却部材8とこの熱電冷却部材8の放熱部10
に接触させた放熱部冷却用冷却器17を冷凍室6
の中間部において吸熱部9を上向きにした状態で
水平に配置したところに第2の特徴を有する。こ
の第2実施例においても、前述の第1実施例と同
様の手段にて蓄冷材(図示せず)が放熱部冷却用
冷却器17及び熱電冷却部材8の放熱部10に充
分に接触する様に設けられている。一方、第5図
を参照して冷凍サイクル構成を説明するに、キヤ
ピラリチユーブ3と冷蔵室用冷却器4との間に流
路抵抗として作用する補助キヤピラリチユーブ1
8を設けると共に、この補助キヤピラリチユーブ
18、冷蔵室用冷却器4及び冷凍室用冷却器5と
並列に迂回路19を設け、この迂回路19に常閉
形の電磁弁20及び放熱部冷却用冷却器17を順
に設けており、該電磁弁20の開閉制御をスイツ
チ装置16により行うようにしている。
A second embodiment of the structure capable of eliminating such a problem will be described based on FIGS. 4 and 5. In this second embodiment, the heat dissipation section 10 of the thermoelectric cooling member 8
A cooler 17 (hereinafter referred to as a heat dissipation cooling cooler) for cooling is provided separately from the cooler forming the inner wall of the freezer compartment 6, that is, the freezer compartment cooler 5 in the first embodiment. The thermoelectric cooling member 8 and the heat dissipating portion 10 of the thermoelectric cooling member 8 have a first feature.
The cooler 17 for cooling the heat dissipation section is placed in contact with the freezer compartment 6.
It has a second feature in that it is arranged horizontally with the heat absorbing part 9 facing upward in the middle part. Also in this second embodiment, the cold storage material (not shown) is brought into sufficient contact with the heat dissipation section cooling cooler 17 and the heat dissipation section 10 of the thermoelectric cooling member 8 by the same means as in the first embodiment described above. It is set in. On the other hand, to explain the refrigeration cycle configuration with reference to FIG.
8, and a detour 19 is provided in parallel with the auxiliary capillary tube 18, the refrigerator compartment cooler 4, and the freezer compartment cooler 5, and in this detour 19, a normally closed solenoid valve 20 and a heat dissipation section cooling valve are provided. Coolers 17 are provided in sequence, and the opening and closing of the solenoid valves 20 is controlled by a switch device 16.

斯かる構成とした本第2実施例においては、ス
イツチ装置16の押釦16aを押圧操作すると、
直流電源13及びコンプレツサ1が起動されると
同時に、電磁弁20が開放される。すると、キヤ
ピラリチユーブ3から流れ出た冷媒の流路が迂回
路19側に切換えられるため、3個ある冷却器の
うち放熱部冷却用冷却器17にのみ冷媒が流れる
ようになる。このため、前述の第1実施例とは異
なり、急速冷凍運転時に冷蔵室を必要以上に冷却
してしまうといつたことはなく、しかも冷凍室用
冷却器5側の負荷によらず放熱部冷却用冷却器1
7を充分に低温度とすることができて、放熱部1
0の冷却を一層効率良く行うことができる。そし
て、温度検出器14,15で検出された温度差が
所定値に達すると、スイツチ装置16によりコン
プレツサ1及び直流電源13が停止されると共
に、電磁弁20が閉鎖され、以つて急速冷凍運転
が停止される。又、この第2実施例では、熱電冷
却部材8を前述の如く位置設定したことにより急
速冷凍を良好に行ない得ることを前提として、急
速冷凍を行なわない通常の冷却運転時における冷
凍効果の低下を抑えつつ貯蔵物の収容量を充分に
確保できる。即ち、通常貯蔵物を冷凍室内に収容
する場合その貯蔵物は冷凍室の底面部に載置され
るが、該冷凍室の底面部に熱電冷却部材が存する
と貯蔵物の載置面積が減少されるので、貯蔵物の
収容量が減じてしまい、かといつて熱電冷却部材
上に貯蔵物を載置すると、冷却作用を生じない状
態の該熱電冷却部材が存することによつての載置
した貯蔵物に対する冷凍効果が低下してしまう。
しかしながら、上述の第2実施例においては、熱
電冷却部材8全体を冷凍室用冷却器5の底面部か
ら上方に離間させてその側壁上部に設けているた
め、通常の冷却運転時に貯蔵物に対する冷凍効果
の低下を防止できると共に、貯蔵物の収容量も充
分に確保でき、急速冷凍を行う場合には熱電冷却
部材8の吸熱部10上に急速冷凍すべき貯蔵物を
載置すればよく、総じて冷凍室6内の空間を有効
利用し得る。
In the second embodiment having such a configuration, when the push button 16a of the switch device 16 is pressed,
At the same time as the DC power supply 13 and compressor 1 are started, the solenoid valve 20 is opened. Then, the flow path of the refrigerant flowing out from the capillary tube 3 is switched to the bypass path 19 side, so that the refrigerant flows only to the heat radiation section cooling cooler 17 among the three coolers. Therefore, unlike the first embodiment described above, the refrigerator compartment is not cooled more than necessary during the quick freezing operation, and the heat dissipation section is cooled regardless of the load on the freezer compartment cooler 5 side. cooler 1
7 can be kept at a sufficiently low temperature, and the heat dissipation section 1
0 can be cooled more efficiently. When the temperature difference detected by the temperature detectors 14 and 15 reaches a predetermined value, the switch device 16 stops the compressor 1 and the DC power supply 13, and the solenoid valve 20 is closed, thereby stopping the quick freezing operation. will be stopped. In addition, in this second embodiment, on the premise that rapid freezing can be performed satisfactorily by positioning the thermoelectric cooling member 8 as described above, the reduction in the refrigerating effect during normal cooling operation without rapid freezing is suppressed. It is possible to secure a sufficient storage capacity of stored items while reducing the amount of storage. That is, when stored items are normally stored in a freezer compartment, the stored items are placed on the bottom of the freezer compartment, but if a thermoelectric cooling member is present at the bottom of the freezer compartment, the area on which the stored items are placed is reduced. Therefore, the storage capacity of stored items will be reduced, and if stored items are placed on a thermoelectric cooling member, the presence of the thermoelectric cooling member that does not produce a cooling effect will reduce the storage capacity of the stored items. The freezing effect on objects will be reduced.
However, in the above-mentioned second embodiment, since the entire thermoelectric cooling member 8 is spaced upward from the bottom of the freezer compartment cooler 5 and is provided on the upper side wall thereof, the stored items are not frozen during normal cooling operation. It is possible to prevent a decrease in effectiveness, and to ensure a sufficient storage capacity for stored items, and when performing quick freezing, it is only necessary to place the stored items to be quickly frozen on the heat absorption part 10 of the thermoelectric cooling member 8. The space inside the freezer compartment 6 can be used effectively.

第6図は本考案の第3実施例を示すもので、こ
の第3実施例は前述の第2実施例において冷凍サ
イクルのみを変更したものである。即ち、第3実
施例においては、冷凍室用冷却器5の吐出側に放
熱部冷却用冷却器17を設けると共に、冷蔵室用
冷却器4及び冷凍室用冷却器5と並列に迂回路2
1を設け、この迂回路21に常閉形の電磁弁20
を設ける構成としたところに特徴を有する。
FIG. 6 shows a third embodiment of the present invention, in which only the refrigeration cycle is changed from the second embodiment described above. That is, in the third embodiment, a heat radiation section cooling cooler 17 is provided on the discharge side of the freezer compartment cooler 5, and a detour 2 is provided in parallel with the refrigerator compartment cooler 4 and the freezer compartment cooler 5.
1, and a normally closed solenoid valve 20 is provided in this detour 21.
It is characterized by the structure in which it is provided with.

斯かる構成とした本第3実施例においては、ス
イツチ装置16の押釦16aを押圧操作すると、
電磁弁20が開放されて、迂回路21側に冷媒が
流入するため、放熱部冷却用冷却器17にのみ冷
媒が流入するようになる。従つて、本第3実施例
においても、前述の第2実施例と同様の効果を得
ることができる。
In the third embodiment having such a configuration, when the push button 16a of the switch device 16 is pressed,
Since the solenoid valve 20 is opened and the refrigerant flows into the detour 21 side, the refrigerant flows only into the heat radiation section cooling cooler 17. Therefore, the third embodiment can also achieve the same effects as the second embodiment described above.

尚、本考案は上記し且つ図面に示した各実施例
のみに限定されるものではなく、要旨を逸脱しな
い範囲内で種々変形可能である。
The present invention is not limited to the embodiments described above and shown in the drawings, but can be modified in various ways without departing from the spirit of the invention.

〔考案の効果〕[Effect of idea]

本考案は以上の説明から明らかなように、熱電
冷却部材の放熱部を冷却器及び蓄冷材の双方の接
触伝熱により効率良く冷却することができて、冷
凍室内の食品負荷の多少に拘らず吸熱部を極低温
にすることができ、以つて冷凍サイクルの効率を
低下させたりすることなく、負荷の多少に拘らず
冷凍室内に極低温状態の部分を作り出すことがで
きて、急速冷凍時における冷凍時間を大幅に短縮
できるという優れた効果を奏する冷蔵庫を提供で
きる。
As is clear from the above description, the present invention can efficiently cool the heat dissipation part of the thermoelectric cooling member through contact heat transfer between the cooler and the cold storage material, regardless of the food load in the freezer compartment. The heat absorbing part can be brought to an extremely low temperature, and it is possible to create an extremely low temperature part in the freezing chamber regardless of the load without reducing the efficiency of the refrigeration cycle. It is possible to provide a refrigerator that exhibits the excellent effect of significantly shortening freezing time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第3図は本考案の第1実施例を示す
もので、第1図は冷凍サイクルの構成図、第2図
は冷凍室部分の縦断面図、第3図は熱電冷却部材
部分の拡大縦断面図であり、第4図及び第5図は
本考案の第2実施例を示すもので、第4図は第2
図相当図、第5図は第1図相当図であり、そし
て、第6図は本考案の第3実施例を示す第1図相
当図である。 図面中、5は冷凍室用冷却器(冷却器)、6は
冷凍室、8は熱電冷却部材、9は吸熱部、10は
放熱部、11は蓄冷材、17は放熱部冷却用冷却
器(冷却器)である。
1 and 3 show a first embodiment of the present invention, in which FIG. 1 is a configuration diagram of a refrigeration cycle, FIG. 2 is a vertical cross-sectional view of a freezer compartment, and FIG. 3 is a thermoelectric cooling member. FIG. 4 and FIG. 5 show a second embodiment of the present invention; FIG.
FIG. 5 is a diagram equivalent to FIG. 1, and FIG. 6 is a diagram equivalent to FIG. 1 showing a third embodiment of the present invention. In the drawing, 5 is a freezer compartment cooler (cooler), 6 is a freezer compartment, 8 is a thermoelectric cooling member, 9 is a heat absorption part, 10 is a heat radiation part, 11 is a cold storage material, and 17 is a cooler for cooling the heat radiation part ( cooler).

Claims (1)

【実用新案登録請求の範囲】 1 熱電素子から成る熱電冷却部材を、その吸熱
部が冷凍室内に臨み且つ放熱部が冷却器に接触
する様に設け、且つ蓄冷材を該冷却器及び熱電
冷却部材の放熱部に接触させて設けたことを特
徴とする冷蔵庫。 2 前記冷却器は冷凍室の内壁を構成する冷却器
とは別に設けられていることを特徴とする実用
新案登録請求の範囲第1項に記載の冷蔵庫。
[Claims for Utility Model Registration] 1. A thermoelectric cooling member consisting of a thermoelectric element is provided so that its heat absorbing part faces into the freezing chamber and its heat radiating part is in contact with the cooler, and a cold storage material is provided between the cooler and the thermoelectric cooling member. A refrigerator characterized in that the refrigerator is provided in contact with a heat radiation part of the refrigerator. 2. The refrigerator according to claim 1, wherein the cooler is provided separately from a cooler constituting an inner wall of the freezer compartment.
JP13896583U 1983-09-07 1983-09-07 refrigerator Granted JPS6048074U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13896583U JPS6048074U (en) 1983-09-07 1983-09-07 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13896583U JPS6048074U (en) 1983-09-07 1983-09-07 refrigerator

Publications (2)

Publication Number Publication Date
JPS6048074U JPS6048074U (en) 1985-04-04
JPS6320944Y2 true JPS6320944Y2 (en) 1988-06-09

Family

ID=30311629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13896583U Granted JPS6048074U (en) 1983-09-07 1983-09-07 refrigerator

Country Status (1)

Country Link
JP (1) JPS6048074U (en)

Also Published As

Publication number Publication date
JPS6048074U (en) 1985-04-04

Similar Documents

Publication Publication Date Title
US5941085A (en) Refrigerator having an apparatus for defrosting
JP5571044B2 (en) refrigerator
JP3576103B2 (en) refrigerator
KR101306536B1 (en) Refrigerator
US20220042739A1 (en) Refrigerator control method
KR20200105288A (en) Control method for refrigerator
US20220236000A1 (en) Method for controlling refrigerator
CN110671865A (en) Parallel double-circulation refrigerator and control method thereof
JP5417397B2 (en) refrigerator
JP3826998B2 (en) Stirling refrigeration system and Stirling refrigerator
JPS6320944Y2 (en)
JP2012042140A (en) Refrigerator
JP6492291B2 (en) refrigerator
US20220235977A1 (en) Method for controlling refrigerator
JP2006064314A (en) Cold storage type cold insulation storage
KR100701954B1 (en) Thawing room unit and quick freezing room unit of refrigerator having vibrator apparatus
JP2000329442A (en) Cooling storage chamber
JP2018004121A (en) Refrigerator
CN219390195U (en) Refrigerating apparatus
KR102678956B1 (en) Control method for refrigerator
JP2010038483A (en) Refrigerator
JP2017172850A (en) refrigerator
JP2021181850A (en) refrigerator
JP2000111232A (en) Cool storage type cold insulation storage
JPS6060478A (en) Freezing refrigerator