JPS63208290A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS63208290A
JPS63208290A JP4023187A JP4023187A JPS63208290A JP S63208290 A JPS63208290 A JP S63208290A JP 4023187 A JP4023187 A JP 4023187A JP 4023187 A JP4023187 A JP 4023187A JP S63208290 A JPS63208290 A JP S63208290A
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor layer
semiconductor
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4023187A
Other languages
Japanese (ja)
Inventor
Misuzu Yoshizawa
吉沢 みすず
Shigeo Yamashita
茂雄 山下
Akio Oishi
大石 昭夫
Takashi Kajimura
梶村 俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4023187A priority Critical patent/JPS63208290A/en
Publication of JPS63208290A publication Critical patent/JPS63208290A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain an element characterized by a low threshold current value and high reliability, by providing a light-intensity-distribution correcting layer in a self-alignment type semiconductor laser device having an interface improving layer, making the light-intensity distribution in the vertical direction with respect to a bonding surface to be a symmetrical pattern, and efficiently guiding the light to an active layer. CONSTITUTION:A layer having a small Al mol ratio, i.e., a light-intensity- distribution correcting layer 3, which is a layer, whose refractive index is larger than those of n-type clad layers 2 and 4, is provided on the sides of the n-type clad layers 2 and 4 like an interface improving layer 7. When the light-intensity- distribution correcting layer 3 is provided between the first n-GaAlAs clad layer 2 and the second n-GaAlAs clad layer 4, the distribution of the light intensity (c) in the vertical direction with respect to a bonding surface becomes symmetrical. Therefore the light can be guided to an active layer (e) efficiently. Thus the element characterized by a low threshold current value and high reliability can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザの構造に係り、特に民生用におい
て要求される高出力半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a semiconductor laser, and particularly to a high-power semiconductor laser required for consumer use.

〔従来の技術〕[Conventional technology]

光ディスク等、光情報機器の光源として1発振波長78
0〜830nmの縦単一モードで、非点収差の無い半導
体レーザが要求されている。これらの要求を満足するも
のとして、自己整合型半導体レーザ装置が有力な候補で
ある。しかしながら、この自己整合型半導体レーザ装置
は、2回成長により作製するため、成長界面の結晶性不
良が問題となった。従来、この問題の解決方法として、
溝ストライプ形成時に大気中に露出するストライプ底部
を、隣接したクラッド層よりAlモル比の小さい半導体
層すなわち、界面改良層で形成した自己整合型半導体レ
ーザが、吉沢らにより、1986年(昭和61年)秋季
第47回応用物理学会学術講演予稿集P160 (講演
番号27P−T−B)において、報告されている。
One oscillation wavelength of 78 as a light source for optical information equipment such as optical disks.
There is a demand for a semiconductor laser with a longitudinal single mode of 0 to 830 nm and no astigmatism. A self-aligned semiconductor laser device is a promising candidate for meeting these requirements. However, since this self-aligned semiconductor laser device is manufactured by two-step growth, poor crystallinity at the growth interface has become a problem. Traditionally, the solution to this problem was to
In 1986, Yoshizawa et al. developed a self-aligned semiconductor laser in which the bottom of the stripe exposed to the atmosphere during groove stripe formation was formed with a semiconductor layer having a lower Al molar ratio than the adjacent cladding layer, that is, an interface improvement layer. ) It is reported in the autumn 47th Japan Society of Applied Physics academic lecture proceedings P160 (lecture number 27P-T-B).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術による。界面改良層を有する自己整合型半
導体レーザ装置の構造図を第2図(a)に、接合面に垂
直な方向の光強度分布を第2図(b)に示す。p型Ga
A Q Asクラッド層側のみにAlモル比の低いすな
わち屈折率がp型GaA Q Asクラッド層より大き
い界面改良層を設けているため光が、界面改良層へとし
み出し、光強度分布が、p側へ片寄る。すなわち、接合
面に垂直な方向の光強度分布が非対称となり、活性層へ
の光導波が、効率よくは行われていない。したがって、
しきい値電流が大きくなり、信頼性にも影響していた。
Based on the above conventional technology. FIG. 2(a) shows a structural diagram of a self-aligned semiconductor laser device having an interface improvement layer, and FIG. 2(b) shows a light intensity distribution in a direction perpendicular to the bonding surface. p-type Ga
Since an interface improvement layer with a low Al molar ratio, that is, a larger refractive index than the p-type GaA Q As cladding layer is provided only on the A Q As cladding layer side, light seeps into the interface improvement layer and the light intensity distribution is Move to the side. That is, the light intensity distribution in the direction perpendicular to the bonding surface becomes asymmetrical, and optical waveguide to the active layer is not performed efficiently. therefore,
The threshold current increased, which affected reliability.

本発明の目的は、接合面に垂直な方向の光強度分布を対
称とし、活性層への先導波を効率よく行うことにより、
しきい値電流の小さい、高信頼性の素子を提供すること
にある。
The purpose of the present invention is to make the light intensity distribution symmetrical in the direction perpendicular to the bonding surface and to efficiently conduct the leading wave to the active layer.
The object of the present invention is to provide a highly reliable element with a small threshold current.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、第1図(a)に示すように、n型クラッド
層側にも、界面改良層と同様に、Alモル比の小さい層
、すなわち、n型クラッド層よりも屈折率の大きい層で
ある光強度分布補正層を設けることにより、達成される
As shown in FIG. 1(a), the above purpose is to create a layer with a small Al molar ratio, that is, a layer with a higher refractive index than the n-type cladding layer, on the n-type cladding layer side, similarly to the interface improvement layer. This is achieved by providing a light intensity distribution correction layer.

〔作用〕[Effect]

第1図(a)に、本発明による構造の一例を。 FIG. 1(a) shows an example of the structure according to the present invention.

第1図(b)に、接合面に垂直な方向の光強度分布を示
す。n −GaA Q As第1クラツド2とn−Ga
A 11 As第2クラツド4の間に光強度分布補正層
3を設けることにより、接合面に垂直な方向の光強度分
布が対称となる。したがって、活性層への先導波を効率
よく行うことが可能となり、しきuNN雷電流低い、高
倍調性の素子を得ることができる。
FIG. 1(b) shows the light intensity distribution in the direction perpendicular to the bonding surface. n-GaA Q As first clad 2 and n-Ga
By providing the light intensity distribution correction layer 3 between the A 11 As second cladding 4, the light intensity distribution in the direction perpendicular to the bonding surface becomes symmetrical. Therefore, it becomes possible to efficiently conduct the leading wave to the active layer, and it is possible to obtain a highly harmonic device with a low uNN lightning current.

〔実施例〕〔Example〕

以下1本発明の実施例を詳細に説明する。 Hereinafter, one embodiment of the present invention will be described in detail.

実施例1 第1図を用いて説明する。Example 1 This will be explained using FIG.

n型G a A s基板1上に、n型G av−xAQ
 x A s第1クラッド層2 (x=0.37 )、
n型G a 1−2A Q z A s光強度分布補正
層3 (z=0.2)、n型Ga1−uAfiuAs第
2クラッド層4(u=0.37 ) 、Gax−yAQ
yAs活性ff5(y=0.08 )、p型G a t
−vA Q vA sクラッド層6(v=0.37 )
、p型G a t−wA Q wA s界面改良層7 
(w=0.2 )、n型GaAs電流狭窄層8をMOC
VD法により順次形成する。この時。
On the n-type Ga As substrate 1, the n-type G av-xAQ
x As first cladding layer 2 (x=0.37),
n-type Ga1-2A QzAs light intensity distribution correction layer 3 (z=0.2), n-type Ga1-uAfiuAs second cladding layer 4 (u=0.37), Gax-yAQ
yAs activity ff5 (y=0.08), p-type Ga t
-vA Q vA s cladding layer 6 (v=0.37)
, p-type Ga t-wA Q wA s interface improvement layer 7
(w=0.2), the n-type GaAs current confinement layer 8 is
They are formed sequentially by the VD method. At this time.

n型G a L−u A Q u A 8第2クラッド
層4の膜厚と、p型G a L−w A Q v A 
Sクラッド層6の膜厚は等しくなるようにする。また、
n型G a 1−ZA Q zA s光強度分布補正量
3と、p型G a 1−w A Q w A s界面改
良層7の膜厚も等しくなるようにする。その後、ホトエ
ツチング工程により、n型G a A s fft流狭
窄層8を完全に除去しp型Gaz−wAQwAs界面改
良層7の表面を露出する幅1〜15μmの溝ストライプ
を形成する。次にMOCVD法によりp型G a 1−
t A Q t A s埋込みクラッド層9 (t=0
.37 )、p型G a A sキャップ層10を形成
する。この後、p側電極11.n@電Vi12を形成し
た後、へき開法により、共振器長約300μmのレーザ
素子を得た。
Thickness of n-type Ga L-u A Q u A 8 second cladding layer 4 and p-type Ga L-w A Q v A
The thickness of the S cladding layer 6 is made equal. Also,
The n-type Ga 1-ZA Q z As light intensity distribution correction amount 3 and the film thickness of the p-type Ga 1-w A Q w As interface improvement layer 7 are also made equal. Thereafter, by a photoetching process, the n-type GaAs fft flow constriction layer 8 is completely removed to form groove stripes with a width of 1 to 15 μm exposing the surface of the p-type Gaz-wAQwAs interface improvement layer 7. Next, p-type Ga 1-
t A Q t A s Buried cladding layer 9 (t=0
.. 37), forming a p-type GaAs cap layer 10; After this, the p-side electrode 11. After forming n@electronic Vi12, a laser element with a cavity length of about 300 μm was obtained by a cleavage method.

試作した素子は、発振波長830nmにおいて、しきい
電流値30〜40mAで室側連続発振し、発振スペクト
ルは、安定な縦単一モードであった。
The prototype device oscillated continuously on the chamber side at a threshold current value of 30 to 40 mA at an oscillation wavelength of 830 nm, and the oscillation spectrum was a stable longitudinal single mode.

また、非点収差は全くなかった。また、電流−電圧特性
における電流の立上り電圧は1.3V 、素子抵抗1.
5Ω といった良好な電気特性も得られた。さらに、7
0℃において、光出力40mW定光出力動作時の寿命も
、2000時間経過後も顕著な劣化は見られず、信頼性
も高いことが明らかとなった。
Also, there was no astigmatism at all. In addition, the current rise voltage in the current-voltage characteristics is 1.3V, and the element resistance is 1.3V.
Good electrical properties of 5Ω were also obtained. Furthermore, 7
At 0° C., no significant deterioration was observed even after 2000 hours of operation at a constant light output of 40 mW, and it was revealed that the reliability was high.

実施例2 本発明の第2の実施例を、第3図を用いて、詳細に説明
する。
Example 2 A second example of the present invention will be described in detail with reference to FIG.

n型G a A s 1基板上に、n型G a t−x
 A Q x A s第1クラッド層2(x=0.37
)、n型G a x−z A Q Z A S光強度分
布補正層3 (z =0.20)、n型G a t−u
A Q uA s第2クラッドJfi4(u=0.37
 )、Gat−yAQyAs活性層5(y=0.06)
、p型G a 1−VA Q VA Sクラッド層6(
v=0.37 ) 、P型Gat−wAl2wAs界面
改良M’l (w=0.20 )、n型G a A s
電流狭窄層8を、MOCVD法により順次形成するにの
時、p型G a 1−w A Q w A s界面改良
層7の膜厚はn型G a 1−ZA Q zA s光強
度分布補正層3の膜厚よりも厚くなるようにする。その
後、ホトエツチング工程により、n型GaAs電流狭窄
層8を完全に除去しp型G a 1−w A Q w 
A s界面改良層7の表面を露出する幅1〜15μmの
溝ストライプを形成する。次にMOCVD法によりp型
G a z−tA Q tA s埋込みクラッド[9(
t=0.5)、p型G a A sキャップ層10を形
成する。この後、p側電極11.n側電極12を形成し
た後、へき開法により、共振器長約300μmのレーザ
素子を得た。なお、本実施例においては、p型G a 
1−w A Q w A S界面改良層7の膜厚を、n
型G a 1−z A Q z A S光強度分布補正
層3よりも厚くしであるため、ホトエツチング工程にお
いて、エツチングの深さの制御の要求が、実施例1と比
較して、甘くなるため、実施例1よりも歩留りよく素子
が得られた。また、上述したように、p型G a 1−
W A Q w A S界面改良層7の膜厚を光強度分
布補正層3よりも厚くしているためp型埋込みクラッド
9の半導体層を、屈折率の小さい層とした。
On the n-type Ga As 1 substrate, the n-type Ga t-x
A Q x A s first cladding layer 2 (x=0.37
), n-type G a x-z A Q Z A S light intensity distribution correction layer 3 (z = 0.20), n-type G a tu
A Q uA s2nd cladding Jfi4 (u=0.37
), Gat-yAQyAs active layer 5 (y=0.06)
, p-type Ga 1-VA Q VA S cladding layer 6 (
v=0.37), P-type Gat-wAl2wAs interface improvement M'l (w=0.20), n-type GaAs
When the current confinement layer 8 is sequentially formed by the MOCVD method, the thickness of the p-type Ga 1-w A Q w As interface improvement layer 7 is determined by adjusting the n-type Ga 1-ZA Q z As light intensity distribution. The film thickness should be greater than that of layer 3. Thereafter, the n-type GaAs current confinement layer 8 is completely removed by a photoetching process, and the p-type GaAs current confinement layer 8 is completely removed.
Groove stripes with a width of 1 to 15 μm exposing the surface of the As interface improvement layer 7 are formed. Next, a p-type G az-tA QtAs embedded cladding [9(
t=0.5), and a p-type GaAs cap layer 10 is formed. After this, the p-side electrode 11. After forming the n-side electrode 12, a laser element with a cavity length of about 300 μm was obtained by a cleavage method. Note that in this example, p-type Ga
1-w A Q w A The film thickness of the S interface improvement layer 7 is n
Since the type G a 1-z A Q z A S is thicker than the light intensity distribution correction layer 3, the requirements for controlling the etching depth in the photoetching process are less strict than in Example 1. , devices were obtained with better yield than in Example 1. Moreover, as mentioned above, p-type Ga 1-
Since the thickness of the W A Q w A S interface improvement layer 7 is made thicker than the light intensity distribution correction layer 3, the semiconductor layer of the p-type buried cladding 9 is made to be a layer with a small refractive index.

これにより、第3図(b)に示すように、対称性の良い
光強度分布の素子が得られた。
As a result, an element with a well-symmetrical light intensity distribution was obtained, as shown in FIG. 3(b).

試作した素子は1発振波長830nmにおいて、しきい
電流値30〜40 m Aで室温連続発振し、発振スペ
クトルは、安定な縦単一モードであった。
The prototype device oscillated continuously at room temperature at a threshold current value of 30 to 40 mA at a single oscillation wavelength of 830 nm, and the oscillation spectrum was a stable longitudinal single mode.

また、非点収差は全くなかった。また、電流−電圧特性
における電流の立上り電圧は1.3V 、素子抵抗1.
5Ω といった良好な電気特性も得られた。さらに、7
0℃において、光出力40mW定光出力動作時の寿命も
、2000時間経過後も顕著な劣化は見られず、信頼性
も高いことが明らかになった。
Also, there was no astigmatism at all. In addition, the current rise voltage in the current-voltage characteristics is 1.3V, and the element resistance is 1.3V.
Good electrical properties of 5Ω were also obtained. Furthermore, 7
At 0° C., no significant deterioration was observed even after 2000 hours of operation at a constant light output of 40 mW, indicating high reliability.

実施例3 本発明の第3の実施例を、第4図を用いて、詳細に説明
する。
Example 3 A third example of the present invention will be described in detail using FIG. 4.

n型G a A s基板1上に、n型Gat−xA Q
 XAS第1クラッド層2(x=0.37)、n型G 
a 1−zAQ z A s光強度分布補正層3(z=
0.2)、n型G a 1−11A Q uA s第2
クラッド層4(u=0.37 ) 、 G aL−yA
 QyA s活性WJ5 (y=0.06 )、p型G
 a t−v A Q v A Sクラッド層6(v=
0.37 )、p型G a 1−W A Q w A 
s界面改良層7 (w=0.2 ) 、n型GaAsf
f1流狭窄層8をMOCVD法により順次形成する。こ
の時、p型Gaz−wAQwAs界面改良層7の膜厚を
、n型Gaz−zAQzAs光強度分布補正層3の膜厚
よりも厚くなるようにする。また、p型 G a 1.、、v A Q v A sクラッド層6
の膜厚を、n型G a z−uA QuA s第2クラ
ッド層4の膜厚よりも厚くなるようにする。その後、ホ
トエツチング工程により、n型GaAs電流狭窄層8を
完全に除去しp型G a z−wA Q wA s界面
改良層7の表面を露出する幅1〜15μmの溝ストライ
プを形成する。次にMOCVD法により、p型Ga5−
tA Q tAs埋込みクラッド層9 (t=0.37
 )、p型GaAsキャップ層10を形成する。この後
、p (Ill電極11、n側電極12を形成した後、
へき開法により、共振器長約300μmのレーザ素子を
得た。
On the n-type GaAs substrate 1, the n-type Gat-xA Q
XAS first cladding layer 2 (x=0.37), n-type G
a 1-zAQ z A s Light intensity distribution correction layer 3 (z=
0.2), n-type Ga 1-11A Q uA s second
Cladding layer 4 (u=0.37), GaL-yA
QyAs active WJ5 (y=0.06), p-type G
a tv A Q v A S cladding layer 6 (v=
0.37), p-type G a 1-W A Q w A
s interface improvement layer 7 (w=0.2), n-type GaAsf
The f1 flow constriction layer 8 is sequentially formed by MOCVD. At this time, the thickness of the p-type Gaz-wAQwAs interface improvement layer 7 is set to be thicker than the thickness of the n-type Gaz-zAQzAs light intensity distribution correction layer 3. In addition, p-type Ga 1. ,, v A Q v A s cladding layer 6
The film thickness of the n-type G az-uA QuAs second cladding layer 4 is made thicker than that of the n-type G az-uA QuAs second cladding layer 4 . Thereafter, by a photo-etching process, the n-type GaAs current confinement layer 8 is completely removed to form groove stripes with a width of 1 to 15 μm exposing the surface of the p-type G az-wA Q wAs interface improvement layer 7 . Next, by MOCVD method, p-type Ga5-
tA Q tAs buried cladding layer 9 (t=0.37
), a p-type GaAs cap layer 10 is formed. After this, p (after forming the Ill electrode 11 and the n-side electrode 12,
A laser device with a cavity length of about 300 μm was obtained by the cleavage method.

なお、本実施例においては、実施例2と同様に。Note that in this embodiment, the same as in the second embodiment.

p型G a 1−IF A Q w A s界面改良層
7の膜厚を、n型G a 1−2 A Q z A s
光強度分布補正層3の膜厚よりも厚くしであるため、実
施例1よりも歩留り良く素子が得られた。また、p型G
 a 1−V A Q v A SクラッドWJ6の膜
厚を、n型Gat−uAQuAs第2クラッド層4の膜
厚よりも厚くしているため、p型G a t−tA f
l wA s界面改良層7の膜厚を、n型G a 1−
z A Q z A 9光強度分布補正層3の膜厚より
厚くしていることに起因する光強度分布の非対称はない
。すなわち、第4図(b)に示すような、光強度分布の
対称性の良いの素子が得られた。
The thickness of the p-type Ga 1-IF A Q w As interface improvement layer 7 is changed from that of the n-type Ga 1-2 A Q z As
Since the film thickness was thicker than that of the light intensity distribution correction layer 3, a device was obtained with a higher yield than in Example 1. Also, p-type G
a 1-V A Q v AS Since the film thickness of the S cladding WJ6 is made thicker than the film thickness of the n-type Gat-uAQuAs second cladding layer 4, the p-type Ga t-tA f
The thickness of the interface improvement layer 7 is set to n-type Ga 1-
z A Q z A 9 There is no asymmetry in the light intensity distribution due to the film being thicker than the light intensity distribution correction layer 3. That is, an element with good symmetry of the light intensity distribution as shown in FIG. 4(b) was obtained.

試作した素子は1発振波長830nmにおいて、しきい
電流値30〜40mAで室温連続発振し、発振スペクト
ルは、安定な縦単一モードであった。
The prototype device oscillated continuously at room temperature at a threshold current value of 30 to 40 mA at a single oscillation wavelength of 830 nm, and the oscillation spectrum was a stable longitudinal single mode.

また、非点収差は全くなかった。また、電流−電圧特性
における電流の立上り電圧は1.3V 、素子抵抗は1
.5Ω といった良好な電気特性も得られた。さらに、
70℃において、光出力40mW定光出力動作時の寿命
も、2000時間経過後も顕著な劣化は見られず、信頼
性も高いことが明らかになった。
Also, there was no astigmatism at all. In addition, the current rise voltage in the current-voltage characteristics is 1.3V, and the element resistance is 1.
.. Good electrical properties of 5Ω were also obtained. moreover,
At 70° C., no significant deterioration was observed even after 2000 hours of operation at a constant light output of 40 mW, and it was revealed that the reliability was high.

実施例4 本発明の第4の実施例を、第5図を用いて、詳細に説明
する。
Example 4 A fourth example of the present invention will be described in detail using FIG. 5.

n型G a A s基板1上に、n型G al−x A
 Q x A s第1クラッド52 (x=0.50 
)、n型G a 1−zA Q zA s光強度補正層
3(z=0.2)、n型Gaz−uAuuAs第2クラ
ッド層4(u=0.37 ) 、G as−yA Qy
A s活性層5(y=0.06)、P型Ga1−vAQ
vAsクラッド層6(v=0.37 )、p型G a 
ニーw A Q w A s界面改良層7 (w=0.
2 ) 、n型GaAs電流狭窄層8をMOCVD法に
より順次形成する。この時。
On the n-type Ga As substrate 1, the n-type Gal-x A
Q x A s first cladding 52 (x=0.50
), n-type Ga 1-zA Q zA s light intensity correction layer 3 (z=0.2), n-type Gaz-uAuuAs second cladding layer 4 (u=0.37), Gas-yA Qy
As active layer 5 (y=0.06), P-type Ga1-vAQ
vAs cladding layer 6 (v=0.37), p-type Ga
Knee w A Q w A s Interface improvement layer 7 (w=0.
2) An n-type GaAs current confinement layer 8 is sequentially formed by MOCVD. At this time.

n型G a 1−z A Q z A s光強度補正層
3の膜厚とp型G a 1−al A Q w A s
界面改良層7の膜厚は等しくなるようにする。また、n
型G a 1−u A Ou A s第2クラッド層4
の膜厚とp型Gaニー、Al1.As界面改良層7の膜
厚も等しくなるようにする。その後、ホトエツチング工
程により、n型G a A s電流狭窄層8を完全に除
去しp型Ga1−AαwAs界面改良層7の表面を露出
させる幅1〜15μmの溝ストライプを形成する。次に
MOCVD法により、p型G a 1−tA Q tA
 s埋込みクラッド層9(t=0.5 ) 、p型G 
a A sキャップ層10を形成する。この後、p側電
極11.n側電tf!12を形成した後、八き開法によ
り、共振器長約300μmのレーザ素子を得た。
Thickness of n-type G a 1-z A Q z A s light intensity correction layer 3 and p-type G a 1-al A Q w A s
The thickness of the interface improvement layer 7 is made equal. Also, n
Type G a 1-u A Ou As second cladding layer 4
The film thickness of p-type Ga, Al1. The thickness of the As interface improving layer 7 is also made equal. Thereafter, by a photoetching process, the n-type GaAs current confinement layer 8 is completely removed to form groove stripes with a width of 1 to 15 μm that expose the surface of the p-type Ga1-AαwAs interface improvement layer 7. Next, by MOCVD method, p-type Ga 1-tA Q tA
s-buried cladding layer 9 (t=0.5), p-type G
a As cap layer 10 is formed. After this, the p-side electrode 11. N side electric tf! After forming 12, a laser element with a cavity length of about 300 μm was obtained by the octagonal method.

本実施例においては、n型G a 1−3IA Q x
A s第1クラッド層2、及び、p型G a z−tA
 Q tA s埋込みクラッド層9の屈折率を、n型G
a1−uA Q uAs第2クラッド層4及びp型G 
a 1−v A Q v A 8クラッド層6の屈折率
よりかさくしであるため、第5図(b)に示すように、
n型G a s−z A Q 2 A s光強度補正層
3及び、p型G a L−W A Q w A s界面
改良層7への光のしみ出しが小さくなる。したがって、
活性層への光の導波がさらに効率よく行われる。また、
接合面に垂直方向の屈折率分布が活性層に対し、完全に
対称となっているため、光強度分布も、完全に対称にな
っている。
In this example, n-type Ga 1-3IA Q x
A s first cladding layer 2 and p-type G az-tA
Q tA s The refractive index of the buried cladding layer 9 is set to n-type G
a1-uA Q uAs second cladding layer 4 and p-type G
a 1-v A Q v A 8 Since the refractive index is lower than that of the cladding layer 6, as shown in FIG. 5(b),
Light seepage into the n-type Ga s-z A Q 2 As light intensity correction layer 3 and the p-type Ga L-W A Q w As interface improvement layer 7 is reduced. therefore,
Light is guided to the active layer more efficiently. Also,
Since the refractive index distribution in the direction perpendicular to the bonding surface is completely symmetrical with respect to the active layer, the light intensity distribution is also completely symmetrical.

試作した素子は、発振波長830nmにおいて、しきい
電流値30〜35mAで室温連続発振し、発振スペクト
ルは、安定な縦単一モードであった。
The prototype device oscillated continuously at room temperature at an oscillation wavelength of 830 nm with a threshold current value of 30 to 35 mA, and the oscillation spectrum was a stable longitudinal single mode.

また、非点収差は全くなかった。また、電流−電圧特性
における、電流の立上り電圧は1.3v、素子抵抗1.
5Ω といった良好な電気特性も得られた6さらに70
℃において、光出力40mW定光出力動作時の寿命も、
2000時間経過後も顕著な劣化は見られず、信頼性も
高いことが判明した。
Also, there was no astigmatism at all. Also, in the current-voltage characteristics, the current rising voltage is 1.3V, and the element resistance is 1.3V.
Good electrical properties such as 5Ω were also obtained6 and 70
The lifespan when operating at a constant light output of 40 mW at ℃ is also
No significant deterioration was observed even after 2000 hours, and the reliability was found to be high.

実施例5 本発明の第5の実施例を、第6図を用いて、詳細に説明
する。
Example 5 A fifth example of the present invention will be described in detail using FIG. 6.

n型G a A s基板1上に、n型Ga1−xA Q
 xAs第1クラッド層2 (x=0.5 )、n型G
 a 1−Z A Q z A s光強度分布補正層3
 (z =0.2)、n型G a 1−u A Q u
 A S第2クラッド層4(u=0.37 ) 、 G
 at−yA QyA s活性層5(y=0、o6)、
p型G a 1−v A n v A 8クラッド層6
(v =0.37 ) 、 P型G a 1−w A 
Q w A s界面改良層7 (w=0.2 )、n型
GaAs1!流狭窄層8をMOCVD法により順次形成
する。この時、p型G a 1−IT A Q w A
 S界面改良層7の膜厚を、n型G a t−z A 
Q z A s光強度分布補正層3の膜厚よりも厚くな
るようにする。また、p型 G a t−vA Q vA sクラッド層6の膜厚を
、n型G a z−u A n u A s第2クラッ
ド層4の膜厚よりも厚くなるようにする。その後、ホト
エツチング工程により、n型G a A s電流狭窄層
8を完全に除去しp型G a 1−WA Q wA s
界面改良層7の表面を露出する幅1〜15μmの溝スト
ライプを形成する。次にMOCVD法によりp型Gat
−tA Q t、Ls埋込みクラッド5g (t=0.
5 )、p型G a A sキャップ層10を形成する
。この後、p側電極11、n側電極12を形成した後、
へき開法により、共振器長約300μmのレーザ素子を
得た。
On the n-type Ga As substrate 1, the n-type Ga1-xA Q
xAs first cladding layer 2 (x=0.5), n-type G
a 1-Z A Q z A s Light intensity distribution correction layer 3
(z = 0.2), n-type Ga 1-u A Q u
A S second cladding layer 4 (u=0.37), G
at-yA QyA s active layer 5 (y=0, o6),
p-type Ga 1-v A n v A 8 cladding layer 6
(v = 0.37), P type Ga 1-w A
Q w As interface improvement layer 7 (w=0.2), n-type GaAs 1! Flow constriction layers 8 are sequentially formed by MOCVD. At this time, p-type Ga 1-IT A Q w A
The film thickness of the S interface improvement layer 7 is
The thickness of the Q z A s light intensity distribution correction layer 3 should be greater than that of the light intensity distribution correction layer 3 . Further, the film thickness of the p-type Ga t-vA QvAs cladding layer 6 is made thicker than the film thickness of the n-type GazuAnuAs second cladding layer 4. Thereafter, the n-type GaAs current confinement layer 8 is completely removed by a photoetching process, and the p-type GaAs current confinement layer 8 is completely removed.
Groove stripes with a width of 1 to 15 μm exposing the surface of the interface improvement layer 7 are formed. Next, by MOCVD method, p-type Ga
-tA Q t, Ls embedded cladding 5g (t=0.
5) Form a p-type GaAs cap layer 10. After this, after forming the p-side electrode 11 and the n-side electrode 12,
A laser device with a cavity length of about 300 μm was obtained by the cleavage method.

なお、本実施例においては、実施例2と同様に。Note that in this embodiment, the same as in the second embodiment.

p型G a t−wA Q wA S界面改良層7の膜
厚をn型G a 1−2 A Q 2 A s光強度分
布補正層3の膜厚より厚くしているため、実施例1及び
実施例4より歩留りが良く、また、実施例3と同様にp
型G a 1−vA Q VA Sクラッド層6の膜厚
を、n型G a 1−u A Q u A s第2クラ
ッド層4の膜厚よりも厚くしているため、光強度分布の
非対称性はない。
Since the film thickness of the p-type Ga t-wA Q wA S interface improvement layer 7 is made thicker than the film thickness of the n-type Ga 1-2 A Q 2 As light intensity distribution correction layer 3, the The yield is better than in Example 4, and as in Example 3, p
Since the film thickness of the type Ga1-vAQVAS cladding layer 6 is made thicker than the film thickness of the n-type Ga1-uAQVAS second cladding layer 4, the asymmetry of the light intensity distribution There is no gender.

さらに、実施例4と同様に、n型Ga1−xA Q X
A8第1クラッド層2及び、p型G a x−tA A
 tA s埋込みクラッド層9の屈折率をn型G al
−u A Q u A S第2クラッド層4及びp型G
 a 1−V A Q v A sクラッド層6の屈折
率より小さくしであるため、活性層への光の導波が効率
よく行なわれる。
Furthermore, as in Example 4, n-type Ga1-xA Q
A8 first cladding layer 2 and p-type Gax-tA
tA sThe refractive index of the buried cladding layer 9 is set to n-type Gal
-u A Q u A S second cladding layer 4 and p-type G
Since the refractive index of a 1-V A Q v As is smaller than that of the cladding layer 6, light can be efficiently guided to the active layer.

試作した素子は、発振波長830nmにおいて。The prototype device has an oscillation wavelength of 830 nm.

しきい電流30〜35mAで室温連続発振し、発振スペ
クトルは、安定な縦単一モードであった。
Continuous oscillation was performed at room temperature with a threshold current of 30 to 35 mA, and the oscillation spectrum was a stable longitudinal single mode.

また、非点収差は全くなかった。また、電流−電圧特性
における電流の立上り電圧は1.3V 、素子抵抗1.
5Ω といった良好な電気特性も得られた。さらに70
℃において、光出力40mW定光出力動作時の寿命も、
2000時間経過後も顕著な劣化は見られず、信頼性も
高いことが判明した。
Also, there was no astigmatism at all. In addition, the current rise voltage in the current-voltage characteristics is 1.3V, and the element resistance is 1.3V.
Good electrical properties of 5Ω were also obtained. Another 70
The lifespan when operating at a constant light output of 40 mW at ℃ is also
No significant deterioration was observed even after 2000 hours, and the reliability was found to be high.

実施例6 本発明の第6の実施例を、第7図を用いて、詳細に説明
する。
Example 6 A sixth example of the present invention will be described in detail with reference to FIG.

n型G a A s基板1上に、n型Gaz−xA 1
1 xAs第1クラッド層2 (x=0.45 )、n
型G a x−zA Q zA s光強度分布補正層3
(z=0.2) 。
n-type Gaz-xA 1 on n-type GaAs substrate 1
1 x As first cladding layer 2 (x=0.45), n
Type G ax-zA QzA s light intensity distribution correction layer 3
(z=0.2).

n型Q a 1−u A Q u A s第2クラッド
層4(u=0.37 )、Gaz−yAQyAs活性層
5(y=0.06 )、p型G a x−w A n 
w A s界面改良層7(w = 0 、2 ) 、 
n 3M G a A s電流狭窄層8をMOCVD法
により順次形成するにの時、p型Gat−wAQwAs
界面改良層7の膜厚を、n型G a t−zA Q z
A s光強度分布補正層3の膜厚よりも厚くなるように
する。その後、ホトエツチング工程により、n型G a
 A s @流狭窄層8を完全に除去しP型G a 1
−w A Q w A s界面改良層7の表面を露出す
る幅1〜15μmの溝ストライプを形成する。次にMO
CVD法により、p型 GaニーtAQtAs埋込みクラッド層9 (t =0
.45)、p型GaAsキャップ層10を形成する。こ
の後、p all電極11.n側電極12を形成した後
、へき開法により、共振器長約300μmのレーザ素子
を得た。なお、本実施例においては、実施例2と同様に
、p型G a t−wA Q wA s界面改良層7の
膜厚をn型Ga1−zAQzAs光強度分布補正層3の
膜厚より厚くしているため、実施例1及び実施例4より
歩留りが良い。また、n型Ga1−vA 、Q vAs
クラッド層6の屈折率を、n型Gat−uAQuAs第
2クラッド層4の屈折率よりも小さくしているため、第
7図(b)に示すように、光強度分布は活性層に対して
、対称な形をしている。
N-type Q a 1-u A Q u As second cladding layer 4 (u=0.37), Gaz-yAQyAs active layer 5 (y=0.06), p-type G a x-w An
w As interface improvement layer 7 (w = 0, 2),
When forming the n3M GaAs current confinement layer 8 sequentially by MOCVD method, the p-type Gat-wAQwAs
The thickness of the interface improvement layer 7 is
The thickness of the As light intensity distribution correction layer 3 should be greater than that of the light intensity distribution correction layer 3. After that, through a photoetching process, n-type Ga
A s @flow constriction layer 8 is completely removed and P type Ga 1
-w A Q w As Groove stripes with a width of 1 to 15 μm exposing the surface of the interface improvement layer 7 are formed. Next, M.O.
A p-type Ga knee tAQtAs buried cladding layer 9 (t = 0
.. 45) Form a p-type GaAs cap layer 10. After this, pall electrode 11. After forming the n-side electrode 12, a laser element with a cavity length of about 300 μm was obtained by a cleavage method. In this example, as in Example 2, the thickness of the p-type Ga t-wA Q wAs interface improvement layer 7 is made thicker than the thickness of the n-type Ga1-zAQzAs light intensity distribution correction layer 3. Therefore, the yield is better than in Examples 1 and 4. Also, n-type Ga1-vA, Q vAs
Since the refractive index of the cladding layer 6 is made smaller than the refractive index of the n-type Gat-uAQuAs second cladding layer 4, the light intensity distribution with respect to the active layer is as shown in FIG. 7(b). It has a symmetrical shape.

試作した素子は、発振波長830nmにおいて、しきい
電流30〜35 m Aで室温連続発振し、発振スペク
トルは、安定な縦単一モードであった。
The prototype device oscillated continuously at room temperature at an oscillation wavelength of 830 nm and a threshold current of 30 to 35 mA, and the oscillation spectrum was a stable longitudinal single mode.

また、非点収差は全くなかった。また、電流−電圧特性
における電流の立上り電圧は1.3V 、素子抵抗1.
5Ω といった良好な電気特性も得られた。さらに、7
0℃において、光出力40mW定光出力動作時の寿命も
、2000時間経過後も顕著な劣化は見られず、信頼性
も高いことが判明した。
Also, there was no astigmatism at all. In addition, the current rise voltage in the current-voltage characteristics is 1.3V, and the element resistance is 1.3V.
Good electrical properties of 5Ω were also obtained. Furthermore, 7
At 0° C., no significant deterioration was observed even after 2000 hours of operation at a constant light output of 40 mW, and the reliability was found to be high.

なお、本発明は、実施例に示した波長830nm前後に
限らず、波長680〜890nmのGaA Q As系
半導体レーザ装置で、室温連続発振できる全範囲にわた
り同様な結果が得られた。本実施例では活性層として単
一のGaA Q As層を用いたが、 G a 1−P
A n pA Sと、Gat−qAQqAs  (p≠
q)の超格子で活性層を形成したM Q W (Mul
ti−Quantumn Well )構造の場合も同
様な結果が得られた。また、レーザの構造としては前記
実施例で示した3層導波路を基本とするものに限らず、
活性層の両側にそれぞれ隣接して光ガイド層を設けるG
 RI N −S CH(Graded−Iudsx 
−3eparrate−Confinement−He
tsvostvuctuve )構造にも本発明を適用
することができた。
Note that the present invention is not limited to the wavelength of around 830 nm as shown in the example, but similar results were obtained over the entire range in which continuous oscillation at room temperature is possible with a GaA Q As semiconductor laser device having a wavelength of 680 to 890 nm. In this example, a single GaAQAs layer was used as the active layer, but Ga1-P
A n pA S and Gat-qAQqAs (p≠
M Q W (Mul
Similar results were obtained in the case of the ti-Quantum Well) structure. Furthermore, the structure of the laser is not limited to the one based on the three-layer waveguide shown in the above embodiment.
A light guide layer is provided adjacently on both sides of the active layer.G
RI N-S CH (Graded-Iudsx
-3eparrate-Confinement-He
The present invention could also be applied to the tsvostvuctuve) structure.

また、前記実施例において導電性を全て反対にした構造
(pをnに、nをpに置換えた構造)においても同様な
結果が得られた。
Furthermore, similar results were obtained in a structure in which the conductivities were all reversed in the above examples (structure in which p was replaced with n and n was replaced with p).

また、本実施例では、GaA Q As系の材料を用い
ているが、A (l GaPAs、 A Q InPA
s、 A Q GaInP。
In addition, in this example, GaA Q As-based materials are used, but A (l GaPAs, A Q InPA
s, A Q GaInP.

A 11 GaInAsなど、AQを含む材料系全てに
適用できることは言うまでもない。
Needless to say, this method can be applied to all material systems including AQ, such as A 11 GaInAs.

なお、本発明は、当該当基板と前記各半導体領域の間お
よび/もしくは前記各半導体領域間に。
Note that the present invention provides a method for forming a connection between the relevant substrate and each of the semiconductor regions and/or between each of the semiconductor regions.

他の介在物が存在しても実施できる。It can be carried out even if other inclusions are present.

また、本実施例においては、MOCVD法により素子を
作製したが1MBE法及びLPE法によって作製した素
子についても同様の特性が得られた。
Further, in this example, the device was fabricated by the MOCVD method, but similar characteristics were obtained with devices fabricated by the 1MBE method and the LPE method.

〔発明の効果〕〔Effect of the invention〕

本発明において、界面改良層を有する自己整合型半導体
レーザ装置に、光強度分布補正量を設けた。それにより
、接合面に垂直な方向の光強度分布は対称形となり、光
が活性層に効率よく導波されるようになった。このため
、低しきい値電流で。
In the present invention, a light intensity distribution correction amount is provided in a self-aligned semiconductor laser device having an interface improvement layer. As a result, the light intensity distribution in the direction perpendicular to the bonding surface becomes symmetrical, and light is efficiently guided to the active layer. Because of this, at low threshold currents.

高信頼性の素子が得られた。A highly reliable device was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による装置の基本構造及び実施例を示す
図、第2図は従来構造を示す図、第3図〜第7図は本発
明の実施例を示す図である。 1 ・= n型G a A s基板、2− n型Ga5
−xA n xAs第1クラッド層、3・・・光強度分
布補正量、4・・・n型G a 1−uA Q uA 
s第2クラッド層、5・・・活性層、6・・・p型G 
a 1−u A Q u A sクラッド層、7・・・
界面改良層、8・・・n型電流狭窄層、9・・・p型G
 a x−tA Q tA s埋込みクラッド層、10
・p型G a A sキャップ層、11・・・p側電極
、12・・・n側電極、13・・・n型クラッド層。 篤 Z  口 第 3 図 ’f、A  図 4′−「月゛″7[Yが1 5  、冶M’?    埋込Jフラ・斥゛鞠す   
 乙     図 第 7 図
FIG. 1 is a diagram showing the basic structure and embodiments of an apparatus according to the present invention, FIG. 2 is a diagram showing a conventional structure, and FIGS. 3 to 7 are diagrams showing embodiments of the present invention. 1 ・= n-type GaAs substrate, 2- n-type Ga5
-xA n xAs first cladding layer, 3... Light intensity distribution correction amount, 4... n-type Ga 1-uA Q uA
s second cladding layer, 5... active layer, 6... p-type G
a 1-u A Q u As cladding layer, 7...
Interface improvement layer, 8... n-type current confinement layer, 9... p-type G
a x-tA QtA s buried cladding layer, 10
-p-type GaAs cap layer, 11...p-side electrode, 12...n-side electrode, 13...n-type cladding layer. Atsushi Z Mouth Figure 3 'f, A Figure 4' - "Monday" 7 [Y is 1 5, Ji M'? Embedded J hula/punching
Figure 7

Claims (1)

【特許請求の範囲】 1、第1導電型の第1半導体領域上に、少なくとも第1
導電型の第2半導体層、該第2半導体層を形成する半導
体のAlモル比よりも小さなAlモル比の半導体からな
る第1導電型の第3半導体層、該第3半導体層を形成す
る半導体のAlモル比よりも大きいAlモル比の半導体
からなる第1導電型の第4半導体層、上記第2及び第4
半導体層よりも屈折率が大きく、且禁制帯幅の小さい第
5半導体層、該第5半導体層よりも屈折率が小さく、且
禁制帯幅の大きい第2導電型の第6半導体層、該第6半
導体層を形成する半導体のAlモル比よりも小さなAl
モル比の半導体から第2導電型の第7半導体層、上記第
5、第6及び第7半導体層よりも禁制帯幅の小さい第1
導電型の第8半導体層を順次積層した後、エッチングに
より上記第8半導体層をストライプ状に除去することに
より上記第7半導体層を露出させ、次に上記エッチング
により露出された第7半導体層及び、上記第8半導体層
の表面上に、少なくとも上記第5半導体層よりも屈折率
が小さく、且禁制帯幅の大きい第2導電型の第9半導体
層を設けたことを特徴とする半導体レーザ装置。 2、上記第3半導体層の膜厚よりも上記第7半導体層の
膜厚の方が厚いことを特徴とする、特許請求の範囲第1
項記載の半導体レーザ装置。 3、上記第2半導体層の屈折率よりも上記第4半導体層
の屈折率の方が大きいことを特徴とする、特許請求の範
囲第1項記載の半導体レーザ装置。 4、上記第8半導体層の屈折率よりも上記第6半導体層
の屈折率の方が大きいことを特徴とする、特許請求の範
囲第1項記載の半導体レーザ装置。 5、上記第6半導体層の膜厚よりも上記第4半導体層の
膜厚の方が小さいことを特徴とする、特許請求の範囲第
1及び第2項のいずれかに記載の半導体レーザ装置。 6、上記第8半導体層の屈折率よりも上記第2半導体層
の屈折率の方が小さいことを特徴とする、特許請求の範
囲1及び第2項のいずれかに記載の半導体レーザ装置。
[Claims] 1. On the first semiconductor region of the first conductivity type, at least the first
a second conductivity type semiconductor layer; a first conductivity type third semiconductor layer made of a semiconductor having an Al molar ratio smaller than that of the semiconductor forming the second semiconductor layer; a semiconductor forming the third semiconductor layer; a fourth semiconductor layer of the first conductivity type made of a semiconductor having an Al molar ratio greater than the Al molar ratio of the second and fourth semiconductor layers;
a fifth semiconductor layer having a refractive index larger than that of the semiconductor layer and a narrow bandgap width; a sixth semiconductor layer of a second conductivity type having a smaller refractive index and a larger bandgap width than the fifth semiconductor layer; 6 Al smaller than the Al molar ratio of the semiconductor forming the semiconductor layer
a seventh semiconductor layer of a second conductivity type from a semiconductor having a molar ratio, a first semiconductor layer having a narrower band gap than the fifth, sixth and seventh semiconductor layers;
After sequentially stacking conductive type eighth semiconductor layers, the seventh semiconductor layer is exposed by removing the eighth semiconductor layer in stripes by etching, and then the seventh semiconductor layer and the seventh semiconductor layer exposed by the etching are removed. , a semiconductor laser device characterized in that a ninth semiconductor layer of a second conductivity type having a refractive index smaller than at least the fifth semiconductor layer and a larger forbidden band width is provided on the surface of the eighth semiconductor layer. . 2. Claim 1, characterized in that the thickness of the seventh semiconductor layer is thicker than the thickness of the third semiconductor layer.
The semiconductor laser device described in . 3. The semiconductor laser device according to claim 1, wherein the refractive index of the fourth semiconductor layer is greater than the refractive index of the second semiconductor layer. 4. The semiconductor laser device according to claim 1, wherein the refractive index of the sixth semiconductor layer is greater than the refractive index of the eighth semiconductor layer. 5. The semiconductor laser device according to claim 1, wherein the thickness of the fourth semiconductor layer is smaller than the thickness of the sixth semiconductor layer. 6. The semiconductor laser device according to claim 1, wherein the refractive index of the second semiconductor layer is smaller than the refractive index of the eighth semiconductor layer.
JP4023187A 1987-02-25 1987-02-25 Semiconductor laser device Pending JPS63208290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4023187A JPS63208290A (en) 1987-02-25 1987-02-25 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4023187A JPS63208290A (en) 1987-02-25 1987-02-25 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS63208290A true JPS63208290A (en) 1988-08-29

Family

ID=12574956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4023187A Pending JPS63208290A (en) 1987-02-25 1987-02-25 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS63208290A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234540A (en) * 2002-02-12 2003-08-22 Mitsubishi Electric Corp Distributed feedback laser, semiconductor optical device and method for fabricating distributed feedback laser
WO2004027950A1 (en) * 2002-09-20 2004-04-01 Mitsubishi Chemical Corporation Semiconductor laser
US7792170B2 (en) 2002-09-20 2010-09-07 Mitsubishi Chemical Corporation Semiconductor laser
US9018641B2 (en) 2007-11-30 2015-04-28 CSRAM Opto Semiconductors GmbH Method for producing a radiation-emitting component and radiation-emitting component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234540A (en) * 2002-02-12 2003-08-22 Mitsubishi Electric Corp Distributed feedback laser, semiconductor optical device and method for fabricating distributed feedback laser
WO2004027950A1 (en) * 2002-09-20 2004-04-01 Mitsubishi Chemical Corporation Semiconductor laser
CN100359772C (en) * 2002-09-20 2008-01-02 三菱化学株式会社 Semiconductor laser
US7792170B2 (en) 2002-09-20 2010-09-07 Mitsubishi Chemical Corporation Semiconductor laser
US9018641B2 (en) 2007-11-30 2015-04-28 CSRAM Opto Semiconductors GmbH Method for producing a radiation-emitting component and radiation-emitting component

Similar Documents

Publication Publication Date Title
EP0254568B1 (en) A semiconductor laser device
JPS6384186A (en) Transverse junction stripe laser
JP2807250B2 (en) Semiconductor laser device
GB2252872A (en) Laser diode and method of manufacture
JPH01175285A (en) Semiconductor laser device
JPH0677587A (en) Semiconductor laser
JP2585230B2 (en) Semiconductor laser device
JPS63208290A (en) Semiconductor laser device
JP2000164986A (en) Semiconductor light emitting device and manufacture thereof
US4456999A (en) Terrace-shaped substrate semiconductor laser
JPS60145687A (en) Semiconductor laser
CN111937260B (en) Semiconductor laser and method for manufacturing the same
JPH10256647A (en) Semiconductor laser element and fabrication thereof
JPH0485981A (en) Semiconductor laser
JP3084264B2 (en) Semiconductor laser device
JP2656482B2 (en) Semiconductor laser device
JPH084180B2 (en) Semiconductor laser device and method of manufacturing the same
JPS6119186A (en) Manufacture of two-wavelength monolithic semiconductor laser array
JPH065969A (en) Semiconductor laser
JPH0933960A (en) Semiconductor laser device and its driving method
JPS62296582A (en) Semiconductor laser device
JP2763781B2 (en) Semiconductor laser device and method of manufacturing the same
JP2001077466A (en) Semiconductor laser
JPH0728094B2 (en) Semiconductor laser device
JPS61208886A (en) Buried type semiconductor laser