JPS63206443A - Material for tritium storage and supply - Google Patents

Material for tritium storage and supply

Info

Publication number
JPS63206443A
JPS63206443A JP3981787A JP3981787A JPS63206443A JP S63206443 A JPS63206443 A JP S63206443A JP 3981787 A JP3981787 A JP 3981787A JP 3981787 A JP3981787 A JP 3981787A JP S63206443 A JPS63206443 A JP S63206443A
Authority
JP
Japan
Prior art keywords
tritium
alloy
storage
supply
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3981787A
Other languages
Japanese (ja)
Inventor
Takahiro Ide
井手 隆裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP3981787A priority Critical patent/JPS63206443A/en
Publication of JPS63206443A publication Critical patent/JPS63206443A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To obtain a material for tritium storage and supply capable of storing and releasing gaseous tritium safely in high density, by constituting the above material of an La-Ni-Mn alloy. CONSTITUTION:The material for tritium storage and supply consists of an La-Ni-Mn ternary-system alloy and has a composition represented, preferably, by a general formula LaNi5-xMnx (where x=1-3). This material is capable of storing gaseous tritium safely in high density. The above alloy can easily be obtained by melting raw materials in the prescribed compositional ranges in an inert-gas atmosphere of Ar, etc., by means of a high-frequency furnace or arc melting and is used usually in the form of powder. This alloy powder is extremely easily activated and is capable of adsorbing large amounts of tritium at ordinary pressure and also capable of supplying a tritium gas of about 1atm at a temp. as low as <=about 450 deg.C, and further, this alloy is free from the risk of tritium permeation from the wall of a vessel for tritium.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、原子炉、核燃料再処理施設及び核融−合炉等
の原子力施設において発生あるいは製造されるガス状ト
リチウムを高密度に且つ安全に貯蔵し得る実用的なトリ
チウム貯蔵・供給材料に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to high-density and safe storage of gaseous tritium generated or produced in nuclear facilities such as nuclear reactors, nuclear fuel reprocessing facilities, and nuclear fusion reactors. Regarding possible practical tritium storage and supply materials.

従来の技術 トリチウムは放射性を有する水素の同位体であり、発生
源としては、原子炉と核燃料再処理施設が主たるもので
ある。また、最近では、核融合炉の燃料として注目され
、年々その取り扱い量は増大している。
BACKGROUND OF THE INVENTION Tritium is a radioactive hydrogen isotope, and its main sources are nuclear reactors and nuclear fuel reprocessing facilities. Recently, it has attracted attention as a fuel for nuclear fusion reactors, and the amount handled is increasing year by year.

トリチウムを貯蔵する場合には、少量の場合はガラスア
ンプルや鋼製容器にガス状で貯蔵するが、多量の場合に
は、安全性の面から金属水素化物の形態で貯蔵するのが
一般的である。トリチウムを貯蔵・保管するには、放射
線管理上、常温において、できる限り解離圧の低い金属
水素化物であることが要求される。この点では、現在開
発が進められている水素貯蔵合金とは、要求される圧力
一温度特性が大きく異なっている。即ち、水素貯蔵合金
は常温で1気圧以上の解離圧を要求されるのでトリチウ
ムの貯蔵には安全上問題がある。
When storing tritium, small amounts are stored in gaseous form in glass ampoules or steel containers, but large amounts are generally stored in the form of metal hydrides for safety reasons. be. In order to store tritium, it is required to be a metal hydride with as low a dissociation pressure as possible at room temperature for radiation control reasons. In this respect, the required pressure-temperature characteristics are significantly different from the hydrogen storage alloys currently under development. That is, since hydrogen storage alloys are required to have a dissociation pressure of 1 atm or more at room temperature, there is a safety problem in storing tritium.

他方Ti、Zrあるいは希土類の単体金属の水素化物は
、常温の解離圧が極めて低いので実際にトリチウムの永
久貯蔵用として利用されている。しかし、たとえば2r
の場合には、トリチウムを吸収させるのに600℃以上
の加熱を必要とし、さらにこれらの水素化物を分解して
トリチウムを再利用するには、800℃以上の高温を必
要とする。−しかしながら、このような高温では容器壁
から水素が透過する問題がある。一般的な貯蔵容器の構
成材料であるステンレス鋼の場合、高温で水素が透過し
易いことは、よく知られている。トリチウムは放射性物
質であるため、微量の透過でも問題となるので、トリチ
ウムの再利用を考える限りこれらの低解離圧水素化物は
、利用し難い。
On the other hand, hydrides of Ti, Zr, or rare earth metals have extremely low dissociation pressures at room temperature, so they are actually used for permanent storage of tritium. However, for example 2r
In this case, heating of 600° C. or higher is required to absorb tritium, and furthermore, a high temperature of 800° C. or higher is required to decompose these hydrides and reuse tritium. -However, at such high temperatures there is a problem of hydrogen permeation through the container walls. It is well known that hydrogen easily permeates stainless steel, which is a common material for storage containers, at high temperatures. Since tritium is a radioactive substance, even a small amount of permeation poses a problem, so these low dissociation pressure hydrides are difficult to use as far as tritium reuse is concerned.

従って、トリチウムの貯蔵・供給用材料としては活性化
に高温、高圧とすることを必要とせず、常温でトリチウ
ムを吸収してその解離圧ができる限り低く、しかも30
0〜450℃でかなり高い解離圧(〜I気圧)を有して
いることが要求される。このような条件に適合している
のは現在のところウランだけである。ウランは200℃
、1気圧の水素圧印加によって容易に活性化でき、常温
でトリチウムを吸収し、その解離圧も10 ’Torr
以下と低く、また約430℃で1気圧のトリチウムを得
ることができるため、最も広く利用されている。
Therefore, as a material for storing and supplying tritium, it does not require high temperature or high pressure for activation, it absorbs tritium at room temperature, and its dissociation pressure is as low as possible.
It is required to have a fairly high dissociation pressure (~I atm) between 0 and 450°C. Currently, only uranium meets these conditions. Uranium is 200℃
, can be easily activated by applying 1 atm of hydrogen pressure, absorbs tritium at room temperature, and has a dissociation pressure of 10' Torr.
It is the most widely used because it has a low temperature of less than 1 atm and can obtain tritium at 1 atm at about 430°C.

しかしながら、ウランは核燃料物質であると同時に放射
性物質でもあるので、計量管理、放射線管理の両面から
規制を受け、特殊設備を必要とするなど、その取り扱い
は煩雑である。さらに、ウラン粉末は空気中で発火性を
有するので、使用後の処分についても取り扱いに注意が
必要である。
However, since uranium is both a nuclear fuel material and a radioactive material, its handling is complicated, as it is regulated in terms of both measurement control and radiation control, and requires special equipment. Furthermore, since uranium powder is flammable in the air, care must be taken when disposing of it after use.

また、ウランは単体金属であるため、解離圧は温度のみ
の関数である。1気圧以上のトリチウムを必要とする場
合には、ウランでさえも分解温度がやや高いという問題
があり、トリチウム透過対策として格納容器や水冷ジャ
ケットなどを貯蔵容器に付帯させる必要がある。そのた
め、貯蔵容器の構造が複雑化し透過トリチウムの回収・
除去談備が必要となるなどの欠点もある。
Furthermore, since uranium is a simple metal, the dissociation pressure is a function only of temperature. When tritium at 1 atm or higher is required, there is a problem that even uranium has a rather high decomposition temperature, so it is necessary to attach a containment vessel or a water-cooling jacket to the storage vessel to prevent tritium from permeating. As a result, the structure of the storage container becomes complicated, and the recovery and recovery of permeated tritium becomes difficult.
There are also drawbacks, such as the need for removal preparations.

このように、ウランは唯一トリチウムの貯蔵・供給用材
料としての基本条件を具備しているものの、かかる欠点
を有しているために、その利用には多くの問題があり、
代替材料が強く求められている。
As described above, although uranium is the only material that has the basic requirements as a material for storing and supplying tritium, there are many problems in its use due to these drawbacks.
There is a strong need for alternative materials.

発明の解決しようとする問題点 本発明の目的は、上述した従来技術の問題を解決して高
密度に且つ安全にガス状トリチウムを貯蔵・放出し得る
トリチウム貯蔵・供給用材料を提供することにある。
Problems to be Solved by the Invention An object of the present invention is to solve the problems of the prior art described above and to provide a tritium storage/supply material that can store and release gaseous tritium at high density and safely. be.

さらに詳細には本発明の目的は、活性化が容易で、常温
でトリチウムガスを吸収・貯蔵でき、解離圧が低いため
安全性を確保でき、さらにトリチウムの容器壁部からの
透過がないように比較的低温に加熱することによってト
リチウムを放出可能なトリチウム貯蔵・供給用材料を提
供することを目的とする。
More specifically, the purpose of the present invention is to enable easy activation, absorb and store tritium gas at room temperature, ensure safety due to low dissociation pressure, and prevent tritium from permeating through the container wall. The object of the present invention is to provide a tritium storage/supply material that can release tritium by heating to a relatively low temperature.

問題点を解決するための手段 本発明者等は上述の如き本発明の目的を達成すべく、従
来のウランの有するトリチウム貯蔵・放出特性と同程度
の特性を有し且つ前述した如きウランの欠点のないトリ
チウム貯蔵・供給材料を開発すべく研究を進めてきたも
のである。
Means for Solving the Problems In order to achieve the object of the present invention as described above, the inventors of the present invention have developed a material that has tritium storage and release characteristics comparable to those of conventional uranium, and that eliminates the drawbacks of uranium as described above. We have been conducting research to develop tritium storage and supply materials that are free of tritium.

その結果、La、 NiおよびMnより構成される合金
が上記のトリチウム貯蔵・供給材料の全ての条件を具備
し、さらに合金化により、単体金属であるウランには求
められない解離圧の調整が可能であるという極めて有用
な特性をもつ合金を完成させるに至った。
As a result, an alloy composed of La, Ni, and Mn meets all of the above conditions for tritium storage and supply materials, and furthermore, by alloying, it is possible to adjust the dissociation pressure, which is not required for uranium, which is a single metal. We have completed an alloy with extremely useful properties.

すなわち、本発明に従うと、La−Ni −!Jn三元
系合金からなることを特徴とするトリチウム貯蔵・供給
材料が提供される。
That is, according to the present invention, La-Ni-! A tritium storage and supply material is provided that is characterized by being made of a Jn ternary alloy.

さらに好ましくは、本発明のトリチウム貯蔵・供給材料
は、一般式LaN+s〜、Mn、で表わされる組成を有
する三元合金である。ただし、式中Xは、1≦X≦3 の範囲の数であり、Mn含有量Xを変化させることによ
り解離圧を容易に調整できるものである。
More preferably, the tritium storage/supply material of the present invention is a ternary alloy having a composition represented by the general formula LaN+s~, Mn. However, in the formula, X is a number in the range of 1≦X≦3, and by changing the Mn content X, the dissociation pressure can be easily adjusted.

作用 本発明は、la−Ni−Mn三元系合金からなるトリチ
ウム貯蔵・供給材料を要旨とするものであり、後述する
如く、本発明のLa  N+  Mn三元系合金からな
るトリチウム貯蔵・供給材料は活性化が容易であり、常
温でトリチウムガスを吸収・貯蔵でき、解離圧が低く、
低温加熱によりトリチウムを放出可能であるのでトリチ
ウムの容器壁部からの透過の危険がない。
The gist of the present invention is a tritium storage/supply material made of a La-Ni-Mn ternary alloy, and as described below, the tritium storage/supply material made of a LaN+Mn ternary alloy of the present invention. is easy to activate, can absorb and store tritium gas at room temperature, has low dissociation pressure,
Since tritium can be released by low-temperature heating, there is no danger of tritium permeating through the container wall.

本発明のトリチウム貯蔵・供給材料は、一般式LaNi
5−Jn、で表わされる組成を有するのが好ましいが、
これらの各成分元素の含有量の設定理由は、以下の如く
である。
The tritium storage and supply material of the present invention has the general formula LaNi
It is preferable to have a composition represented by 5-Jn,
The reason for setting the content of each component element is as follows.

Xを1〜3の範囲で調整したとき、常温におけるトリチ
ウムの解離圧の低下が顕著であり、かつ供給時の加熱温
度が450℃以下となる。一方、Xが3より大きくなる
と前記TiやZrのように吸収したトリチウムの放出が
困難となり、供給時に高温加熱を要するという問題点を
生ずる。また、Xが1より小さいと常温におけるトリチ
ウム解離圧を安全貯蔵に必要な圧力まで低下させること
が困難となる。従って1.1 n含有量Xの範囲は、前
記の範囲内とする必要がある。
When X is adjusted in the range of 1 to 3, the dissociation pressure of tritium at room temperature decreases significantly, and the heating temperature during supply becomes 450° C. or lower. On the other hand, when X is larger than 3, it becomes difficult to release the absorbed tritium such as Ti and Zr, resulting in the problem of requiring high-temperature heating during supply. Moreover, if X is smaller than 1, it will be difficult to lower the tritium dissociation pressure at room temperature to the pressure required for safe storage. Therefore, the range of the 1.1 n content X needs to be within the above range.

本発明のLa  N+  Mn系三元合金は、通常の合
金製造方法、例えばアルゴンのような不活性ガスの雲囲
気中で、高周波炉を用いる方法、またはアーク融解法な
どにより、原料金属を上記組成範囲で溶融して容易に製
造することができる。このようにして得られた合金塊は
表面積を増大するため、通常粉末の形状で用いるのが有
利である。
The LaN+Mn-based ternary alloy of the present invention can be produced by preparing raw metals with the above-mentioned composition by a normal alloy manufacturing method, for example, a method using a high-frequency furnace in an atmosphere of an inert gas such as argon, or an arc melting method. It can be easily manufactured by melting within a range. Since the alloy ingot thus obtained increases its surface area, it is usually advantageous to use it in powder form.

このようにして得た粉末状の合金は、極めて容易に活性
化することができ、活性後は常温で低圧のトリチウムを
多量に吸収し、450℃以下の温度で約1気圧のトリチ
ウムガスを供給することができる。たとえば上記合金粉
末を適当な容器に充填し、真空下、200℃の温度で脱
ガス処理して活性化を行った後、たとえば、常温で1気
圧以下の水素ガスを印加することにより、容易に水素を
吸収・貯蔵させることができる。この水素化物から水素
を放出・供給させるには、加熱するだけでよい。
The powdered alloy thus obtained can be activated extremely easily, and after activation, it absorbs a large amount of low-pressure tritium at room temperature and supplies tritium gas at approximately 1 atm at temperatures below 450°C. can do. For example, after filling the above-mentioned alloy powder into a suitable container, degassing it under vacuum at a temperature of 200°C to activate it, and then applying hydrogen gas of 1 atm or less at room temperature, it can be easily activated. It can absorb and store hydrogen. To release and supply hydrogen from this hydride, it is only necessary to heat it.

以下、本発明の実施例により詳細に説明するが、これら
の実施例は本発明の例示であり、本発明の技術的範囲を
何等制限するものではないことは勿論である。
Hereinafter, the present invention will be explained in detail using Examples, but these Examples are merely illustrative of the present invention, and it goes without saying that they do not limit the technical scope of the present invention.

実施例 本実施例では、放射性材料であるトリチウムの替わりに
その同位体である水素を試料ガスとして使用した。水素
を用いた場合とトリチウムを用いた場合の吸収・放出特
性に関しては、その質量差にもとづく解離圧の若干の相
違が知られている。
Example In this example, hydrogen, which is an isotope of tritium, was used as a sample gas instead of tritium, which is a radioactive material. Regarding the absorption and release characteristics when hydrogen is used and when tritium is used, it is known that there is a slight difference in dissociation pressure based on the difference in mass.

即ち、水素の解離圧をPl+、)’JチウムのそれをP
アとするとP、/PT#1/汀なる関係が実験的に知ら
れている。従って、水素によって得ら ′れた知見はこ
のような補正を施すことにより、トリチウムへ適用する
ことができる。
That is, the dissociation pressure of hydrogen is Pl+, )'J that of thiium is P
The relationship P, /PT#1/Tan is experimentally known. Therefore, the knowledge obtained for hydrogen can be applied to tritium by making such corrections.

市販のLa、 NiおよびMn純金属をそれぞれLaN
+4Mn。
Commercially available La, Ni and Mn pure metals were converted into LaN.
+4Mn.

LaNi3Mn2、LaNi2Mn3の組成になるよう
に配合し、これをアルゴン中でアーク溶解して上記組成
の3種の合金を製造した。これらの合金を16メ・ノシ
ュに粉砕し、その5.0gをステンレス鋼製の容器に入
れ、真空下、200℃の温度に加熱して脱ガスを行った
。これらの合金はこの操作で活性化が完了した。
They were blended to have the compositions LaNi3Mn2 and LaNi2Mn3, and arc melted in argon to produce three types of alloys with the above compositions. These alloys were ground to 16 mm, 5.0 g of which was placed in a stainless steel container, and degassed by heating to a temperature of 200° C. under vacuum. Activation of these alloys was completed by this operation.

室温に冷却した後、純度99.99999%の水素ガス
を導入し、容器内の水素圧を1気圧に保持すると、直ち
に水素の吸収が認められた。このような操作を各種温度
において逐次行い、100〜760Torrの水素圧で
水素を吸収させた。
After cooling to room temperature, hydrogen gas with a purity of 99.99999% was introduced and the hydrogen pressure in the container was maintained at 1 atm, and hydrogen absorption was immediately observed. Such operations were performed successively at various temperatures, and hydrogen was absorbed at a hydrogen pressure of 100 to 760 Torr.

第1図は上記の方法で求めたそれぞれの組成の合金の水
素吸収時の圧力一温度の関係を示す。第1図において縦
座標は水素を吸収した合金の解離圧であり、横座標はそ
のときの合金の温度である。
FIG. 1 shows the pressure-temperature relationship during hydrogen absorption for alloys with respective compositions determined by the above method. In FIG. 1, the ordinate is the dissociation pressure of the alloy that has absorbed hydrogen, and the abscissa is the temperature of the alloy at that time.

また、図中、直線1.2および3はそれぞれLaNi、
Mn。
In addition, in the figure, straight lines 1.2 and 3 are LaNi,
Mn.

LaNi3Mn2およびLaNi2Mn3の場合を示す
The cases of LaNi3Mn2 and LaNi2Mn3 are shown.

いずれの組成の合金も室温において低圧の水素ガスを速
やかに吸収して水素化物を形成し、図示の如く著しく低
い解離圧を示した。水素化物を形成した合金は、温度を
上昇させることによって熱分解し、所望の水素圧を得る
ことができた。
Alloys of all compositions quickly absorbed low-pressure hydrogen gas at room temperature to form hydrides, and exhibited significantly low dissociation pressures as shown in the figure. The alloy that formed the hydride could be thermally decomposed by increasing the temperature to obtain the desired hydrogen pressure.

さらに第1図からも明らかなようにMn含有量Xが高く
なるにつれて、著しく水素の解離圧が低くなる。このよ
うに)4n含有量Xを変化させることにより、水素の解
離圧を調整することができた。
Furthermore, as is clear from FIG. 1, as the Mn content X increases, the hydrogen dissociation pressure decreases significantly. By changing the 4n content X in this way, the dissociation pressure of hydrogen could be adjusted.

発明の詳細 な説明の如く、本発明のLa−Ni −Mn三元系合金
からなるトリチウム貯蔵・供給材料は活性化が容易であ
り、常温でトリチウムガスを吸収・貯蔵でき、解離圧が
低く、また低温加熱によりトリチウムを放出可能である
のでトリチウムの容器壁部からの透過の危険がない。従
って、トリチウムの貯蔵・供給用容器を簡単な構造で実
現できる。
As described in the detailed description of the invention, the tritium storage/supply material made of the La-Ni-Mn ternary alloy of the present invention is easy to activate, can absorb and store tritium gas at room temperature, has a low dissociation pressure, Furthermore, since tritium can be released by low-temperature heating, there is no risk of tritium permeating through the container wall. Therefore, a container for storing and supplying tritium can be realized with a simple structure.

さらに、本発明のLa−Ni −Mn三元系合金の水素
化物の解離圧は、合金の組成を変えることにより、即ち
Xの値を上記範囲で変化させることによって調整するこ
とができる。同一温度での解離圧はMn含有量Xを高く
すると低くなり、低(すると高くなる。従ってMn含有
fiXを変化させることによって実用的に必要な解離圧
を有する合金を設計することができる。たとえば供給時
の加熱温度が低い組成を選べば、格納容器や水冷ジャケ
ットなどが不要な構造が極めて簡単な貯蔵容器を提供す
ることができる。
Furthermore, the dissociation pressure of the hydride of the La-Ni-Mn ternary alloy of the present invention can be adjusted by changing the composition of the alloy, that is, by changing the value of X within the above range. The dissociation pressure at the same temperature becomes lower when the Mn content X is increased, and vice versa. Therefore, by changing the Mn content fiX, it is possible to design an alloy with a practically required dissociation pressure. For example, By selecting a composition that has a low heating temperature during supply, it is possible to provide a storage container with an extremely simple structure that does not require a containment container or a water cooling jacket.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のトリチウム貯蔵・供給用材料を構成
する3種のLa−Ni−Mn合金の温度と解離圧の関係
を示すグラフである。
FIG. 1 is a graph showing the relationship between temperature and dissociation pressure of three types of La-Ni-Mn alloys constituting the tritium storage/supply material of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)La−Ni−Mn三元系合金からなることを特徴
とするトリチウム貯蔵・供給材料。
(1) A tritium storage/supply material comprising a La-Ni-Mn ternary alloy.
(2)一般式LaNi_5_−_XMn_X(ただし、
1≦X≦3)で示される組成を有することを特徴とする
特許請求の範囲第1項に記載のトリチウム貯蔵・供給材
料。
(2) General formula LaNi_5_-_XMn_X (however,
The tritium storage/supply material according to claim 1, having a composition represented by 1≦X≦3).
JP3981787A 1987-02-23 1987-02-23 Material for tritium storage and supply Pending JPS63206443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3981787A JPS63206443A (en) 1987-02-23 1987-02-23 Material for tritium storage and supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3981787A JPS63206443A (en) 1987-02-23 1987-02-23 Material for tritium storage and supply

Publications (1)

Publication Number Publication Date
JPS63206443A true JPS63206443A (en) 1988-08-25

Family

ID=12563520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3981787A Pending JPS63206443A (en) 1987-02-23 1987-02-23 Material for tritium storage and supply

Country Status (1)

Country Link
JP (1) JPS63206443A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53140222A (en) * 1977-05-13 1978-12-07 Agency Of Ind Science & Technol Hydrogen storing mmni l5 -xm lnx alloy
JPS6070154A (en) * 1983-09-27 1985-04-20 Japan Metals & Chem Co Ltd Hydrogen storing material
JPS61203561A (en) * 1985-03-05 1986-09-09 Matsushita Electric Ind Co Ltd Battery electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53140222A (en) * 1977-05-13 1978-12-07 Agency Of Ind Science & Technol Hydrogen storing mmni l5 -xm lnx alloy
JPS6070154A (en) * 1983-09-27 1985-04-20 Japan Metals & Chem Co Ltd Hydrogen storing material
JPS61203561A (en) * 1985-03-05 1986-09-09 Matsushita Electric Ind Co Ltd Battery electrode

Similar Documents

Publication Publication Date Title
Nagasaki et al. A zirconium-cobalt compound as the material for a reversible tritium getter
US4396576A (en) Alloy for occlusion of hydrogen
US4907948A (en) Non-evaporable ternary gettering alloy, particularly for the sorption of water and water vapor in nuclear reactor fuel elements
US4556551A (en) Hydrogen storage materials of zirconium-chromium-iron and titanium alloys characterized by ZrCr2 stoichiometry
US4142300A (en) Lanthanum nickel aluminum alloy
US4082834A (en) Process for gettering moisture and reactive gases
US4200460A (en) Alloys for gettering moisture and reactive gases
US4347082A (en) Mischmetal alloy for storage of hydrogen
US4412982A (en) Zirconium-titanium-manganese-iron alloy characterized by ZrMn2 stoichiometry
JPS63206443A (en) Material for tritium storage and supply
JPS5938293B2 (en) Titanium-chromium-vanadium hydrogen storage alloy
JPS62287031A (en) Tritium storage and supply material
US4421718A (en) Alloy for occlusion of hydrogen
US4406874A (en) ZrMn2 -Type alloy partially substituted with cerium/praseodymium/neodymium and characterized by AB2 stoichiometry
JPS619544A (en) Titanium alloy for occluding hydrogen
US2929706A (en) Delta phase plutonium alloys
JPS61250136A (en) Titanium-type hydrogen occluding alloy
JPS5839218B2 (en) Rare earth metal quaternary hydrogen storage alloy
JPS6372851A (en) Zirconium-type alloy for hydrogen occlusion
Strickland et al. Operating manual for the PSE and G hydrogen reservoir containing iron titanium hydride
JPS5841334B2 (en) Quaternary hydrogen storage alloy
Akabori et al. Nutridation of uranium and rare-earth metals in liquid Cd
JPH0693366A (en) Hydrogen storage alloy
JPS5841333B2 (en) Alloy for hydrogen storage
JPS5950742B2 (en) Titanium quaternary hydrogen storage alloy