JPS63205531A - Measuring method for temperature by optical fiber - Google Patents

Measuring method for temperature by optical fiber

Info

Publication number
JPS63205531A
JPS63205531A JP62038517A JP3851787A JPS63205531A JP S63205531 A JPS63205531 A JP S63205531A JP 62038517 A JP62038517 A JP 62038517A JP 3851787 A JP3851787 A JP 3851787A JP S63205531 A JPS63205531 A JP S63205531A
Authority
JP
Japan
Prior art keywords
optical fiber
light
temperature
wavelength
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62038517A
Other languages
Japanese (ja)
Other versions
JP2516613B2 (en
Inventor
Kazunori Nakamura
中村 一則
Yasumasa Sasaki
康真 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62038517A priority Critical patent/JP2516613B2/en
Publication of JPS63205531A publication Critical patent/JPS63205531A/en
Application granted granted Critical
Publication of JP2516613B2 publication Critical patent/JP2516613B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure accurate temperature by separating loss variation with the ambient temperature of an optical fiber from variation in the absorption characteristics of an additive which is added to realize the function of a transducer. CONSTITUTION:The light pulse of a wavelength component lambda1 from a light source 1 which is included in a light absorption band and the light pulse of wavelength lambda2 from a light source 1 which is not included are multiplexed by a multiplexer 3 into one piece of luminous flux 4, which is passed through a beam splitter 5 and a condenser 15 and incident on one terminal of an optical fiber 6 formed by adding impurities which vary in light absorption characteristics with temperature and has the light absorption band. The two incident light beams which differ in wavelength are scattered in the incident direction and opposite backward direction by Rayleigh scattering in the optical fiber 6. The backward scattered light intensity of the light pulses of the respective wavelengths and the time difference from the time of the input to the optical fiber 6 and the time of projection of the backward scattered light 7 are measured to fin the loss value of each wavelength to the length of the optical fiber 6, and the loss values of both wavelengths are compared to measure the accurate temperature.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光フアイバ自身の光透過特性の変化を利用した
温度測定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a temperature measuring method that utilizes changes in the light transmission characteristics of an optical fiber itself.

(従来技術) 近年、光ファイバの応用技術の一環として光フアイバ温
度センサの開発が盛んになっている。光フアイバ温度セ
ンサとしては対象物体からの放射光(赤外線)を光ファ
イバで導き、その光強度値から温度を測定する放射形光
ファイバ温度計が開発されている。
(Prior Art) In recent years, optical fiber temperature sensors have been actively developed as part of optical fiber application technology. As an optical fiber temperature sensor, a radiation type optical fiber thermometer has been developed that guides radiation light (infrared rays) from a target object through an optical fiber and measures the temperature from the light intensity value.

最近は光フアイバ自体にトランスデユーサの機能を持た
せたファイバ型温度形の検討もなされている。
Recently, consideration has been given to fiber-type temperature sensors in which the optical fiber itself has the function of a transducer.

後者のタイプのセンサとして、光ファイバの母体ガラス
中にNd3◆、Sm”、Eu’◆、Ho3・などの希土
類元素イオンをドーピングし、これら希土類元素イオン
の゛光吸収特性の温度変化をファイバ中の損失値の増減
として検出し、光ファイバに沿った周囲環境の温度分布
を測定する手段が考案されている。
As the latter type of sensor, rare earth element ions such as Nd3◆, Sm", Eu'◆, Ho3. Means have been devised to detect the increase or decrease in the loss value of the optical fiber and measure the temperature distribution of the surrounding environment along the optical fiber.

具体的例として第5図にNd3・をドーピングした石英
系光ファイバの損失スペクトルを、また第6図に第5図
中に存在する900nm付近の吸収ピークの温度に対す
る損失値の変化を示した。第5図で観察される590n
m、750nm、890nmなどを中心とする光吸収帯
は、各々Nd3・に固有の電子準位間遷移に基づく吸収
であり、これらの吸収帯において、例えば590nm付
近に中心をもつ吸収帯に含まれる波長600nmにおけ
る吸収特性は、第6図に示すように温度の上昇に対して
単調に変化するので、この光吸収量即ち光損失量を検出
することにより温度を測定することができる。
As a specific example, FIG. 5 shows the loss spectrum of a silica-based optical fiber doped with Nd3., and FIG. 6 shows the change in loss value with respect to temperature at the absorption peak near 900 nm present in FIG. 590n observed in Figure 5
The optical absorption bands centered at m, 750 nm, 890 nm, etc. are absorptions based on inter-electronic level transitions unique to Nd3, and among these absorption bands, for example, light absorption bands centered around 590 nm include absorption bands centered around 590 nm. Since the absorption characteristic at a wavelength of 600 nm changes monotonically as the temperature increases, as shown in FIG. 6, the temperature can be measured by detecting the amount of light absorption, that is, the amount of light loss.

光7フイバの場合、0ptical  TimeDom
ain  Refrectmeter(OTDR)法と
呼ばれる、光ファイバの損失評価手法が確立している。
For optical 7 fiber, 0ptical TimeDom
An optical fiber loss evaluation method called the overlapping reflectmeter (OTDR) method has been established.

この方法は光フアイバ内に入力された光パルスの光フア
イバ内の後方レーり散乱光強度を測定し、光ファイバの
長手方向に沿った入力光パルスの波長での損失値を1m
以内の空間分解能で評価する手法である。従ってこの手
法を用いてN d3−の吸収帯に含まれる波長の光パル
スを入力し、その波長での吸収損失の距離方向の変化を
調べることにより、布設した光ファイバに沿ったファイ
バの近傍での温度分布が測定できる(従来技術の問題点
) 第6図のNd3°の例に示されているように一般に希土
類元素イオンの吸収特性は約100℃以下の温度域で一
義的に変化する0種種の希土類元素を添加物として選ぶ
ことにより一200℃から100℃の間の温度測定がで
きる。この場合、光フアイバ自体がセンサであるため、
光フアイバ自体をその温度環境にごく必要がある。しか
しそのようにすると保護のために光ファイバに施されて
いる各種のコーティングF3(一般にポリマー)もその
温度になり、コーティング層の温度変化(収縮、膨張な
ど)が生じ、それによっても光ファイバの損失が変化し
てしまう、従って光ファイバの周囲の温度環境による損
失変化には、温度と対応する希土類元素の吸収特性によ
る変化以外の要因も含まれ、その変化が温度測定の誤差
要因となる。
This method measures the backscattered light intensity within the optical fiber of the optical pulse input into the optical fiber, and calculates the loss value at the wavelength of the input optical pulse along the longitudinal direction of the optical fiber.
This is a method that evaluates with a spatial resolution within Therefore, using this method, by inputting an optical pulse with a wavelength included in the N d3- absorption band and examining the change in absorption loss at that wavelength in the distance direction, it is possible to temperature distribution can be measured (problem with conventional technology) As shown in the example of Nd3° in Figure 6, the absorption characteristics of rare earth ions generally change uniquely in the temperature range of about 100°C or less. By selecting various rare earth elements as additives, it is possible to measure temperatures between -200°C and 100°C. In this case, the optical fiber itself is the sensor, so
The optical fiber itself must be exposed to that temperature environment. However, when doing so, the various coatings F3 (generally polymers) applied to optical fibers for protection also reach that temperature, causing temperature changes (shrinkage, expansion, etc.) of the coating layer, which also causes damage to the optical fiber. Changes in loss due to the temperature environment around the optical fiber include factors other than changes due to temperature and the corresponding absorption characteristics of rare earth elements, and these changes become a cause of error in temperature measurement.

(発明の目的) 本発明の目的は、光ファイバの周囲温度により光フアイ
バケーブルの構造に起因して生ずる損失変化と、トラン
スデユーサとしての機能を持たすために光ファイバに添
加した添加剤の吸収特性の変化とを分離して、正確な温
度を求める方法を実現することにある。
(Objective of the Invention) The object of the present invention is to reduce the loss change caused by the structure of the optical fiber cable depending on the ambient temperature of the optical fiber, and the absorption of additives added to the optical fiber to function as a transducer. The objective is to realize a method for determining accurate temperature by separating changes in characteristics.

(問題点を解決するための手段) 本発明の光ファイバによる温度測定方法は第1図のよう
に、温度により光吸収特性が変化する光吸収帯を持つ不
純物がガラス母体中に添加された光ファイバ6の一端も
しくは両端から、上記の光吸収帯に含まれる波長入lの
光パルスと、その光吸収帯に含まれない波長入2の光パ
ルスとを入力し、夫々の波長の光パルスの後方散乱強度
と、光ファイバ6への入力時から後方散乱光として出射
されるまでの時間差とを測定して、光ファイバ6の一端
からの長さに対する夫々の波長での損失値を求め、この
両波長での損失値を比較演算して測定対象の温度を測定
するようにしたものである。
(Means for Solving the Problems) As shown in Figure 1, the temperature measurement method using an optical fiber of the present invention uses light that is added to a glass matrix with impurities having a light absorption band whose light absorption characteristics change depending on the temperature. An optical pulse with wavelength 1 included in the above-mentioned optical absorption band and an optical pulse with wavelength 2 not included in the optical absorption band are inputted from one or both ends of the fiber 6, and the optical pulses of the respective wavelengths are The backscattered intensity and the time difference from the time of input to the optical fiber 6 until it is emitted as backscattered light are measured, and the loss value at each wavelength for the length from one end of the optical fiber 6 is determined. The temperature of the object to be measured is measured by comparing and calculating the loss values at both wavelengths.

(実施例1) 第1図は本発明の一実施例である。この図において6は
温度計測のトランスデユーサとなる光フアイバケーブル
で、その光ファイバ6の母体のガラス中K、例えば希土
類元素イオンなどのような周囲温度によって光吸収特性
が変わるような吸収帯を持つ添加剤が含まれている。
(Example 1) FIG. 1 shows an example of the present invention. In this figure, 6 is an optical fiber cable that serves as a transducer for temperature measurement, and the optical fiber 6 has an absorption band whose light absorption characteristics change depending on the ambient temperature, such as K in the glass of the base material, such as rare earth element ions. Contains additives that have

第1図の1は上記の吸収帯に含まれる波長成分λ1を持
つ光パルス光源、2は上記の吸収帯に含まれない波長入
2の光パルス光源である。これらの光パルス光源1.2
から発生される光パルスは合波器3により1本の光束4
とされ、ビームスプリッタ−5、レンズ或いは球面ミラ
ーなどの集光器15を通して光ファイバ6に入射される
。なお、この集光器15は未発IJでは不可欠な構成要
素ではない。
In FIG. 1, reference numeral 1 indicates an optical pulse light source having a wavelength component λ1 included in the above absorption band, and reference numeral 2 indicates an optical pulse light source having a wavelength component λ1 included in the above absorption band. These optical pulse light sources 1.2
The optical pulses generated from
The light is input into the optical fiber 6 through a beam splitter 5 and a condenser 15 such as a lens or a spherical mirror. Note that this condenser 15 is not an essential component in an unfired IJ.

光ファイバ6に入力された波長の異なる二つの光は、夫
々光ファイバ6の内部でのレーり散乱により入射方向と
は反対方向の後方にも散乱される、この場合、その散乱
光は入力端まで戻る間に、戻る光ファイバの長さに応じ
た損失を受けて同光ファイバ6の入射端面より出力され
る。
Two lights with different wavelengths input into the optical fiber 6 are each scattered backward in the opposite direction to the direction of incidence due to Ray scattering inside the optical fiber 6. In this case, the scattered lights are scattered at the input end. During the return, the signal is outputted from the input end face of the optical fiber 6 after receiving a loss depending on the length of the returning optical fiber.

出力された光7はビームスプリッタ5でその一部が反射
され、更に分波器8により波長に応じて分離され、その
うち一方は吸収帯に含まれる波長成分入1の光、他方は
吸収帯に含まれない波長成分λ2の光となる。それらの
光は夫々光検出器9.10で検出され、図示されていな
い増幅器、平均化処理器を通して第2図に示したような
、時間に対する光強度値の関係が得られる。
A portion of the output light 7 is reflected by the beam splitter 5, and is further separated according to wavelength by the demultiplexer 8, one of which is the light of wavelength component 1 included in the absorption band, and the other is the light of wavelength component 1 included in the absorption band. The light has a wavelength component λ2 that is not included. These lights are detected by photodetectors 9 and 10, respectively, and are passed through an amplifier and an averaging processor (not shown) to obtain the relationship of the light intensity value with respect to time as shown in FIG. 2.

この場合の時間は光パルスの光フアイバ中の走行時間で
あるから、光ファイバの長さ、即ち測定点の位置に対応
する。また、その位置での光ファイバの損失値は光強度
の値を時間(即ち光ファイバの長さ)で微分することに
よって与えられる。
Since the time in this case is the travel time of the optical pulse in the optical fiber, it corresponds to the length of the optical fiber, that is, the position of the measurement point. Further, the loss value of the optical fiber at that position is given by differentiating the light intensity value with respect to time (that is, the length of the optical fiber).

つまり曲線の勾配が損失を表している。この勾配が一定
ならば損失値は一定であるが、急峻に変化するところは
何らかの要因で他と損失値が異なる位置であり、その勾
配(微分値)の大きさにより損失値を求めることができ
る。
In other words, the slope of the curve represents the loss. If this slope is constant, the loss value is constant, but where it changes sharply, the loss value is different due to some reason, and the loss value can be determined by the magnitude of the slope (differential value). .

本発明ではこのような時間に対する光温度値の関係の特
性が、添加剤の吸収帯に含まれる波長成分入1の光パル
スによるものと、吸収帯に含まれない波長成分入2の光
パルスによるものとの2種類得られる。このうち後者の
特性は希土類元素イオンなどの温度計測のために添加し
た添加剤の吸収の温度による変化情報が含まれず、その
他の影響、例えば、光ファイバのコーテイング材の周囲
温度変化による収縮、W張の変化に基づくような周囲温
度との一意的な対応がつきにくい損失変化による影響の
みを受けている。前者の特性は、後者の特性に加えて添
加材の吸収の温度特性の影響も合せて含まれている。こ
のため前者と後者の2種類の特性を比較し、補正1例え
ば減算や除算をおこなうことにより、添加剤の吸収の温
度特性のみを摘出することができる。
In the present invention, the characteristics of the relationship between the light temperature value and the time are determined by a light pulse with wavelength component 1 included in the absorption band of the additive and a light pulse with wavelength component 2 not included in the absorption band. You can get two types. Of these, the latter characteristic does not include information on temperature-related changes in the absorption of additives added for temperature measurement, such as rare earth element ions, and is affected by other effects, such as shrinkage due to changes in the ambient temperature of the coating material of optical fibers, W It is affected only by changes in loss, which are difficult to uniquely correspond to changes in ambient temperature, such as those based on changes in tension. In addition to the latter characteristics, the former characteristics include the influence of the temperature characteristics of absorption of additives. Therefore, by comparing the former and latter two types of characteristics and performing correction 1, such as subtraction or division, it is possible to extract only the temperature characteristics of absorption of the additive.

(実施例2) 第3図は本発明の他の実施例である。第1図では添加剤
の吸収帯に含まれる波長成分入lの光パルスと、吸収帯
に含まれない波長成分λ2の光パルスが共に光ファイバ
6の同一の入射端面から入力されているが、第3図に示
したものは波長成分入蔦の光パルスと、吸収帯に含まれ
ない波長成分λ2の光パルスとを光ファイバ6の逆方向
から入力するようにしたものである。
(Embodiment 2) FIG. 3 shows another embodiment of the present invention. In FIG. 1, an optical pulse with a wavelength component λ included in the absorption band of the additive and an optical pulse with a wavelength component λ2 not included in the absorption band are both input from the same input end face of the optical fiber 6. What is shown in FIG. 3 is such that a light pulse with a wavelength component input and a light pulse with a wavelength component λ2 not included in the absorption band are input from opposite directions of the optical fiber 6.

(実施例3) 第4図は本発明の更に他実施例である。これは時間に対
する後方レーり散乱光強度を観測する際に、ビームスプ
リッタ5の一方に反射ミラー14を設け、光ファイバ6
に入力する直前の光パルスを反射ミラー14により光検
出器内9.lGへ入力し、この信号をトリガとして時間
掃引をさせるようにしたものである。この方法では反射
ミラー14の位置を変化させることにより、光フアイバ
6内のうち特に観測したい部分のみを時間掃引して温度
測定をすることができる。このようにすれば応答時間を
短縮することができる。また光パルスの発振器からの外
部出力をトリガとして時間掃引を開始する場合では時間
遅延器を用いることもできる。
(Embodiment 3) FIG. 4 shows still another embodiment of the present invention. When observing the backscattered light intensity with respect to time, a reflecting mirror 14 is provided on one side of the beam splitter 5, and the optical fiber 6 is
The optical pulse just before being input to the photodetector 9 is reflected by the reflecting mirror 14. This signal is input to the IG and used as a trigger to perform a time sweep. In this method, by changing the position of the reflecting mirror 14, it is possible to time-sweep only the part of the optical fiber 6 that is particularly desired to observe and measure the temperature. In this way, response time can be shortened. Further, a time delay device can also be used when the time sweep is started using an external output from an optical pulse oscillator as a trigger.

(発明の効果) 本発明の光ファイバによる温度測定方法は、光フアイバ
6中に温度測定のために添加した添加剤の吸収の温度特
性に基づく損失変化と、それ以外の原因による光ファイ
バの損失変化とを観測し、両者の差から添加剤による温
度に対する吸収損失を摘出するので、正確な温度を光フ
ァイバの長手方向に沿って測定することがuf能となる
(Effects of the Invention) The method for measuring temperature using an optical fiber of the present invention is characterized by changes in loss based on the temperature characteristics of absorption of additives added into the optical fiber 6 for temperature measurement, and losses in the optical fiber due to other causes. Since the absorption loss due to the additive due to the temperature is extracted from the difference between the two, it becomes possible to accurately measure the temperature along the longitudinal direction of the optical fiber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の温度測定方法の一実施例を示す説明図
、第2図は第1図の温度測定方法による時間差−後方散
乱光強度の特性説明図、第3図、第4図は本発明の他の
実施例の説明図、第5図はNd3・をドーピングした石
英系光ファイバの損失スペクトルの説明図1.第6図は
600nmの吸収損失による出力変化と温度との関係を
示す説IJ1図である。 l、2は光パルス光源 3は合波器 5はビームスプリッター 6は光ファイバ 7は後方散乱光 8は分波器 9、lOは光検出器 14は反射ミラー 藪 憂 +s  N  ON  寸 W堰五R−2!
FIG. 1 is an explanatory diagram showing an embodiment of the temperature measuring method of the present invention, FIG. 2 is an explanatory diagram of the time difference-backscattered light intensity characteristic according to the temperature measuring method of FIG. 1, and FIGS. 3 and 4 are An explanatory diagram of another embodiment of the present invention, FIG. 5 is an explanatory diagram of a loss spectrum of a silica-based optical fiber doped with Nd3.1. FIG. 6 is a theory IJ1 diagram showing the relationship between output change due to absorption loss at 600 nm and temperature. 1, 2 is an optical pulse light source 3 is a multiplexer 5 is a beam splitter 6 is an optical fiber 7 is a backscattered light 8 is a demultiplexer 9, IO is a photodetector 14 is a reflection mirror. R-2!

Claims (1)

【特許請求の範囲】[Claims] 温度により光吸収特性が変化する光吸収帯を持つ不純物
がガラス母体中に混入された光ファイバの一端もしくは
両端から、上記の光吸収帯に含まれる波長の光パルスと
、その光吸収帯に含まれない波長の光パルスとを入力し
、夫々の波長の光パルスの後方散乱強度と、光ファイバ
への入力時から後方散乱光として出射されるまでの時間
差とを測定して、光ファイバの一端からの長さに対する
夫々の波長での損失値を求め、この両波長での損失値を
比較演算して測定対象の温度を測定するようにしたこと
を特徴とする光ファイバによる温度測定方法。
A light pulse with a wavelength included in the above light absorption band and a light pulse with a wavelength included in the above light absorption band are generated from one or both ends of an optical fiber in which an impurity having a light absorption band whose light absorption characteristics change depending on temperature is mixed into the glass matrix. At one end of the optical fiber, we measure the backscattering intensity of the light pulses at each wavelength and the time difference from when they enter the optical fiber until they are emitted as backscattered light. 1. A method for measuring temperature using an optical fiber, characterized in that the temperature of the object to be measured is measured by calculating the loss value at each wavelength with respect to the length of the fiber and comparing the loss values at both wavelengths.
JP62038517A 1987-02-21 1987-02-21 Optical fiber temperature measurement method Expired - Fee Related JP2516613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62038517A JP2516613B2 (en) 1987-02-21 1987-02-21 Optical fiber temperature measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62038517A JP2516613B2 (en) 1987-02-21 1987-02-21 Optical fiber temperature measurement method

Publications (2)

Publication Number Publication Date
JPS63205531A true JPS63205531A (en) 1988-08-25
JP2516613B2 JP2516613B2 (en) 1996-07-24

Family

ID=12527463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62038517A Expired - Fee Related JP2516613B2 (en) 1987-02-21 1987-02-21 Optical fiber temperature measurement method

Country Status (1)

Country Link
JP (1) JP2516613B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045136A (en) * 1990-04-23 1992-01-09 Hitachi Cable Ltd Optical fiber compound trolley wire, abnormal exothermicity detecting system for trolley line using such trolley wire and optical fiber compound trolley wire stringing method
US5263776A (en) * 1992-09-25 1993-11-23 International Business Machines Corporation Multi-wavelength optical thermometry
JP2006023260A (en) * 2004-07-09 2006-01-26 J-Power Systems Corp Method and instrument for measuring temperature distribution in optical fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173732A (en) * 1981-04-18 1982-10-26 Omron Tateisi Electronics Co Optical temperature measuring method
JPS61202131A (en) * 1985-03-06 1986-09-06 Agency Of Ind Science & Technol Distribution type optical fiber temperature sensor
JPS61225627A (en) * 1985-03-29 1986-10-07 Mitsubishi Electric Corp Photometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173732A (en) * 1981-04-18 1982-10-26 Omron Tateisi Electronics Co Optical temperature measuring method
JPS61202131A (en) * 1985-03-06 1986-09-06 Agency Of Ind Science & Technol Distribution type optical fiber temperature sensor
JPS61225627A (en) * 1985-03-29 1986-10-07 Mitsubishi Electric Corp Photometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045136A (en) * 1990-04-23 1992-01-09 Hitachi Cable Ltd Optical fiber compound trolley wire, abnormal exothermicity detecting system for trolley line using such trolley wire and optical fiber compound trolley wire stringing method
US5263776A (en) * 1992-09-25 1993-11-23 International Business Machines Corporation Multi-wavelength optical thermometry
JP2006023260A (en) * 2004-07-09 2006-01-26 J-Power Systems Corp Method and instrument for measuring temperature distribution in optical fiber

Also Published As

Publication number Publication date
JP2516613B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
CA1265938A (en) Temperature measurement
EP0983486B1 (en) Distributed sensing system
US9500537B2 (en) Temperature measurement apparatus and method
US8529123B2 (en) Device and method for calibrating a fiber-optic temperature measuring system
GB2140554A (en) Temperature measuring arrangement
JPH0364812B2 (en)
KR20120122612A (en) Optical fiber sensor system using an optical spectrometer
GB2077421A (en) Displacement sensing
JP2008268106A (en) Method of measuring temperature information
JP2007240294A (en) Apparatus for measuring optical fiber distortion
GB2122337A (en) Fibre optic sensing device
JPS63205531A (en) Measuring method for temperature by optical fiber
GB2183821A (en) A temperature sensor
CN108489631A (en) A kind of absorption spectrum intensity compares temp measuring method
JPH02201129A (en) Optical fiber system distribution type temperature sensor
GB2210451A (en) Optical temperature measurement
Datta et al. Precise, rugged spectrum-based calibration of distributed anti-stokes raman thermometry systems
RU2398194C2 (en) Double-channel pyrometre
CN105954004B (en) A kind of back scattering random fit coherent noise tester
JPH04332835A (en) Corrective processing method of distributed temperature data
JP2897389B2 (en) Temperature measuring method and distributed optical fiber temperature sensor
JP7238541B2 (en) Spectroscopic measurement device and spectroscopic measurement method
JP3614491B2 (en) Optical fiber temperature distribution measuring method and apparatus
JP6141433B2 (en) Optical fiber sensing optical system and optical fiber sensing system
JPH05172657A (en) Optical fiber distributed temperature sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees