JPS63204753A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63204753A
JPS63204753A JP3862587A JP3862587A JPS63204753A JP S63204753 A JPS63204753 A JP S63204753A JP 3862587 A JP3862587 A JP 3862587A JP 3862587 A JP3862587 A JP 3862587A JP S63204753 A JPS63204753 A JP S63204753A
Authority
JP
Japan
Prior art keywords
die pad
resin
package
semiconductor element
sealing resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3862587A
Other languages
Japanese (ja)
Other versions
JP2534251B2 (en
Inventor
Tatsushi Ito
達志 伊藤
Hideto Suzuki
秀人 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP62038625A priority Critical patent/JP2534251B2/en
Publication of JPS63204753A publication Critical patent/JPS63204753A/en
Application granted granted Critical
Publication of JP2534251B2 publication Critical patent/JP2534251B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lead Frames For Integrated Circuits (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To prevent device reliability in terms of resistance to moisture from degrading after packaging by a method wherein a die pad is formed to be smaller than the bottom area of a semiconductor element. CONSTITUTION:Package cracks result from heat generated in a soldering process for installation on a surface when water vapor coming out of resin collects in an interface between a sealing resin and a die pad 4 and the die pad 4 consequently presses the sealing resin toward the bottom side for an eventual increase in volume. To counter the situation, the die pad 4 is designed to smaller than the bottom of a semiconductor element 3. This reduces the concentration of water vapor coming out of the sealing resin, which in turn prevents the generation of package cracks.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、耐半田熱衝撃性に優れた半導体装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device having excellent solder thermal shock resistance.

〔従来の技術〕[Conventional technology]

一般に、樹脂封止型の半導体装置は、リードフレームの
ダイパッド上への半導体素子のグイボンド、ワイヤーボ
ンド、樹脂封止、タイバーカット、ピン曲げという一連
の工程を経由して製造される。この種の樹脂封止型半導
体装置の典型例は、DIP (デュアルインラインパッ
ケージ)形のものであり、パッケージの両側に配設され
たビンを挿入することにより基板に実装される。しかし
ながら、最近では、実装密度を高くするため、DIPタ
イプのパッケージではなくフラットパッケージやPLC
C(プラスチックリープイツトチップキャリヤ)形のパ
ッケージがなされるようになっている。このようなタイ
プのパッケージは、基板面に対して直接半田接合により
実装されるものであり、その実装に際しては、半田浸漬
やペーパーフェーズソルダリング等が行われ、パッケー
ジ全体が実装時に高温にさらされる。したがって、この
ようなパッケージにおいては、特に耐半田熱衝撃性に優
れていることが要求される。
Generally, a resin-sealed semiconductor device is manufactured through a series of steps including bonding a semiconductor element onto a die pad of a lead frame, wire bonding, resin sealing, tie bar cutting, and pin bending. A typical example of this type of resin-sealed semiconductor device is a DIP (dual in-line package) type device, which is mounted on a substrate by inserting vias provided on both sides of the package. However, recently, in order to increase packaging density, flat packages and PLC packages are being used instead of DIP type packages.
A C (plastic leap-fit chip carrier) type package is now available. This type of package is mounted by soldering directly to the board surface, and during mounting, solder dipping or paper phase soldering is performed, and the entire package is exposed to high temperatures during mounting. . Therefore, such a package is particularly required to have excellent solder thermal shock resistance.

最近では、チップの大形化ならびにパッケージの薄形化
が試みられており、なかにはチップサイズが100mm
”以上に達するものもある。このような大形のチップを
、先に述べたようなフラットパッケージやPLCCでパ
ッケージングする場合、パッケージソゲしたのち、通常
の雰囲気下で数時間放置し、ついで、例えば半田浸漬に
よって表面実装を行うと、パッケージクラックが多発し
、実装後の耐湿性が著しく低下するという現象が生じて
いる。
Recently, attempts have been made to increase the size of chips and thinner packages, with some chip sizes reaching 100 mm.
When packaging such a large chip with a flat package or PLCC as mentioned above, after the package is soldered, it is left in a normal atmosphere for several hours, and then For example, when surface mounting is performed by solder dipping, package cracks occur frequently and the moisture resistance after mounting is significantly reduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように、フラットタイプやPLCC等のタイプのパ
ッケージングを行う場合には、パッケージ自体に耐半田
熱衝撃性を備えていることが要求されているが、チップ
サイズが大形化し、しかもパッケージが薄形化している
現状では、半田浸漬等の表面実装時に、先に述べたよう
なパッケージクラックが多発するというような問題が生
じており、これの早急な解決が望まれている。
In this way, when packaging types such as flat type or PLCC, the package itself is required to have solder thermal shock resistance, but as the chip size increases and the package In the current situation where devices are becoming thinner, problems such as the above-mentioned package cracks occur frequently during surface mounting such as solder dipping, and an immediate solution to this problem is desired.

この発明は、このような事情に鑑みなされたもので、耐
半田熱衝撃性に優れた半導体装置の提供をその目的とす
る。
The present invention was made in view of the above circumstances, and an object thereof is to provide a semiconductor device having excellent solder thermal shock resistance.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため、この発明の半導体装置は、
リードフレームのグイパッド上に半導体素子が載置され
た状態で熱硬化性樹脂により樹脂封止された半導体装置
において、ダイパッドを半導体素子の底面よりも小形に
形成するという構成をとる。
In order to achieve the above object, the semiconductor device of the present invention includes:
In a semiconductor device in which a semiconductor element is placed on a die pad of a lead frame and sealed with a thermosetting resin, the die pad is formed smaller than the bottom surface of the semiconductor element.

すなわち、本発明者らは、上記フラットパッケージ、P
LCC等の表面実装時におけるパッケージクラックの発
生原因について一連の研究を重ねた。その結果、表面実
装時における半田加熱により、封止樹脂とダイパッドと
の界面に、樹脂中の水分の気化蒸気が集中し、ダイパッ
ドから封止樹脂を底面側に押圧して全体が膨らんだよう
な状態になり、それによってパッケージクラックが発生
することを突き止めた。そこで、本発明者らは、このよ
うな現象の発生防止についてさらに研究を重ねた結果、
ダイパッドの表面積をシリコンチップの底面積よりも小
さくすると、上記封止樹脂中の水分の気化蒸気の集中現
象が少なくなり、パッケージクラックの発生が防止され
るようになることを見いだしこの発明に到達した。
That is, the present inventors have discovered that the flat package, P
We have conducted a series of studies on the causes of package cracks during surface mounting of LCCs, etc. As a result, due to the solder heating during surface mounting, the vaporized moisture in the resin concentrates at the interface between the sealing resin and the die pad, pushing the sealing resin from the die pad toward the bottom side, causing the entire body to swell. It was discovered that this caused package cracks. Therefore, as a result of further research into preventing such phenomena from occurring, the present inventors found that
This invention was achieved by discovering that if the surface area of the die pad is made smaller than the bottom area of the silicon chip, the concentration of water vapor in the sealing resin will be reduced, and the occurrence of package cracks will be prevented. .

この発明の対象となる半導体装置は、半導体素子自体が
偏平状であって、その底面積が60重1以上、特に60
鶴2〜4001m”であり、その封止パッケージの厚み
が1.5 mm4. Q mmのようなものについて特
に有効であり、そのような半導体装置におけるダイパッ
ドの半導体素子載置面の寸法を16鶴2以下、特に4鶴
2〜1611に設定すると、先に述べたようなシリコン
チップ底面側の半田加熱時の膨れの発生が防止され、パ
ッケージクラックの発生が回避されるようになる。
In the semiconductor device to which the present invention is applied, the semiconductor element itself is flat, and its base area is 60 times or more, particularly 60 times
It is particularly effective for devices with a sealing package thickness of 1.5 mm or 4. Q mm, and the dimensions of the semiconductor element mounting surface of the die pad in such semiconductor devices are When it is set to 2 or less, especially 4 cranes 2 to 1611, the above-mentioned blistering on the bottom side of the silicon chip during solder heating is prevented, and package cracks are avoided.

上記の場合、そのパッケージのタイプは、フラットパッ
ケージ、PLCC等の表面実装形のパッケージが特に効
果的であるが、表面実装形だけに限るものではなくDI
Pタイプについても応用可能である。
In the above case, the type of package is particularly effective, such as a flat package or a surface mount type package such as PLCC, but it is not limited to the surface mount type.
It is also applicable to P type.

なお、上記パッケージングに用いる封止樹脂としては、
予備反応によりシランカップリング剤等のシラン化合物
が分子構造中に導入されているエポキシ樹脂もしくはフ
ェノール樹脂(エポキシ樹脂硬化剤)と硬化促進剤等と
を用いて得られたエポキシ樹脂組成物を用いることがパ
ッケージクラック等の発生防止の観点から有効である。
In addition, the sealing resin used for the above packaging is as follows:
Use an epoxy resin composition obtained by using an epoxy resin or phenol resin (epoxy resin curing agent) and a curing accelerator, etc., into which a silane compound such as a silane coupling agent is introduced into the molecular structure by preliminary reaction. is effective from the viewpoint of preventing the occurrence of package cracks, etc.

このような樹脂を用いると、封止樹脂とチップとの接着
力が0.5 kg/mm2以上、封止樹脂とリードフレ
ームとの接着力が0.2 kg/m+n”以上のものに
なり、耐半田耐熱性の向上に効果的に寄与するようにな
る。
When such a resin is used, the adhesive force between the sealing resin and the chip is 0.5 kg/mm2 or more, and the adhesive force between the sealing resin and the lead frame is 0.2 kg/m+n'' or more, This effectively contributes to improving solder heat resistance.

上記エポキシ樹脂組成物に用いるエポキシ樹脂は、特に
制限するものではなく、タレゾールノボラック型、フェ
ノールノボラック型やビスフェノールA型等の従来から
半導体装置の封止樹脂として用いられている各種のエポ
キシ樹脂が用いられる。これらの樹脂のなかでも融点が
室温を超えており、室温下では固形状もしくは高粘度の
溶液状を呈するものを用いることが好結果をもたらす。
The epoxy resin used in the above epoxy resin composition is not particularly limited, and various epoxy resins conventionally used as sealing resins for semiconductor devices, such as Talesol novolac type, phenol novolac type, and bisphenol A type, can be used. used. Among these resins, it is preferable to use one having a melting point above room temperature and exhibiting a solid state or a highly viscous solution state at room temperature.

ノボラック型エポキシ樹脂としては、代表的なりレゾー
ルノボラック型エポキシ樹脂のほか、ter t−ブチ
ル基、メチル基等各種のアルキル基をフェノール部に付
加したアルキル化フェノールノボラック型エポキシ樹脂
が一般に用いられる。これらのノボラック型エポキシ樹
脂としては、エポキシ当量が160〜300.軟化点が
50〜130 ’Cのものが賞月される。
As the novolac type epoxy resin, in addition to the typical resol novolac type epoxy resin, alkylated phenol novolac type epoxy resins in which various alkyl groups such as tert-butyl group and methyl group are added to the phenol moiety are generally used. These novolac type epoxy resins have an epoxy equivalent of 160 to 300. Those with a softening point of 50 to 130'C are prized.

上記エポキシ樹脂とともに用いるフェノール樹脂は、上
記エポキシ樹脂の硬化剤として作用するものであり、フ
ェノールノボラック、タレゾールノボラックやその他タ
ーシャルブチル基等のアルキル基ヲフェノール部に付加
したアルキル化フェノールノボラック樹脂等が好適に用
いられる。これらノボラック樹脂としては軟化点が50
〜110°C9水酸基当量が70〜180のものを用い
ることが好ましい。
The phenol resin used with the above epoxy resin acts as a curing agent for the above epoxy resin, and includes phenol novolac, talesol novolac, and other alkylated phenol novolak resins in which an alkyl group such as a tertiary butyl group is added to the phenol moiety. is preferably used. These novolak resins have a softening point of 50
It is preferable to use one having a hydroxyl group equivalent of 70 to 180 at ~110°C.

硬化促進剤としては、従来から用いられている各種の硬
化促進剤が用いられ、単独でもしくは併せて使用するこ
とができる。この種の硬化促進剤として、下記の三級ア
ミン、四級アンモニウム塩、イミダゾール類およびホウ
素化合物を好適な例としてあげることができる。
As the curing accelerator, various conventionally used curing accelerators can be used, and they can be used alone or in combination. Suitable examples of this type of curing accelerator include the following tertiary amines, quaternary ammonium salts, imidazoles, and boron compounds.

三級アミン トリエタノールアミン、テトラメチルヘキサンジアミン
、トリエチレンジアミン、ジメチルアニリン、ジメチル
アミノエタノール、ジエチルアミノエタノール、2,4
.8−(ジメチルアミノメチル)フェノール、N、N’
−ジメチルピペラジン、ピリジン、ピコリン、1.8−
ジアザ−ビシクロ(5,4,O)ウンデセン−7、ベン
ジルジメチルアミン、2−(ジメチルアミノ)メチルフ
ェノール四級アンモニウム塩 ドデシルトリメチルアンモニウムアイオダイド、セチル
トリメチルアンモニウムクロライド、ベンジルジメチル
テトラブチルアンモニウムクロライド、ステアリルトリ
メチルアンモニウムクロライド。
Tertiary amine triethanolamine, tetramethylhexanediamine, triethylenediamine, dimethylaniline, dimethylaminoethanol, diethylaminoethanol, 2,4
.. 8-(dimethylaminomethyl)phenol, N, N'
-dimethylpiperazine, pyridine, picoline, 1.8-
Diaza-bicyclo(5,4,O)undecene-7, benzyldimethylamine, 2-(dimethylamino)methylphenol quaternary ammonium salt dodecyltrimethylammonium iodide, cetyltrimethylammonium chloride, benzyldimethyltetrabutylammonium chloride, stearyltrimethyl ammonium chloride.

イミダゾール類 2−メチルイミダゾール、2−ウンデシルイミダゾール
、2−エチルイミダゾール、1−ベンジル−2−メチル
イミダゾール、1−シアンエチル−2−ウンデシルイミ
ダゾールホウ素化合物 テトラフェニルボロン、テトラフェニルボレート、N−
メチルモルホリンテトラフェニルボレート また、必要に応じて上記の原料以外に離型剤。
Imidazoles 2-methylimidazole, 2-undecylimidazole, 2-ethylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole boron compounds tetraphenylboron, tetraphenylborate, N-
Methylmorpholine tetraphenylborate and mold release agent in addition to the above raw materials if necessary.

無機質充填剤、二酸化アンチモン、リン系化合物等の難
燃剤やシランカップリング剤のようなシラン化合物およ
び顔料ならびにポリシロキサンを用いることができる。
Inorganic fillers, antimony dioxide, flame retardants such as phosphorous compounds, silane compounds such as silane coupling agents, pigments, and polysiloxanes can be used.

この発明で用いる封止樹脂としては、先に述べたように
、シランカップリング剤のようなシラン化合物を予備反
応させてエポキシ樹脂やフェノール樹脂を予め変性し、
これをエポキシ樹脂組成物の主成分として用いるものが
好適であるが、上記のようなシラン変性エポキシ樹脂、
フェノール樹脂とシランカップリング剤等のシラン化合
物を適宜併用することが可能であり、この場合には、上
記併用するシラン化合物は無機質充填剤の処理用として
使用することが行われる。
As described above, the sealing resin used in this invention is obtained by pre-reacting a silane compound such as a silane coupling agent to modify the epoxy resin or phenol resin in advance.
It is preferable to use this as the main component of an epoxy resin composition, but silane-modified epoxy resins such as those described above,
It is possible to appropriately use a phenol resin and a silane compound such as a silane coupling agent in combination, and in this case, the silane compound used in combination is used for treating the inorganic filler.

なお、上記離型剤としては、従来公知のステアリン酸、
バルミチン酸等の長鎖カルボン酸、ステアリン酸亜鉛、
ステアリン酸カルシウム等の長鎖カルボン酸の金属塩、
カルナバワックス、モンタンワックス等のワックス類を
用いることができる。
In addition, as the above-mentioned mold release agent, conventionally known stearic acid,
Long chain carboxylic acids such as valmitic acid, zinc stearate,
metal salts of long-chain carboxylic acids such as calcium stearate;
Waxes such as carnauba wax and montan wax can be used.

また、上記無機質充填剤としては、特に制限するもので
はなく、−mに用いられている石英ガラス粉末、タルク
、シリカ粉末、アルミナ粉末等が適宜に用いられる。
The inorganic filler is not particularly limited, and silica glass powder, talc, silica powder, alumina powder, etc. used in -m can be used as appropriate.

上記封止に用いる樹脂は、先に述べたように、封止エポ
キシ樹脂組成物の主成分であるエポキシ樹脂、フェノー
ル樹脂をシランカップリング剤等のシラン化合物と予備
反応させ、変性させるものであって、それによって半導
体チップ中におけるケイ素と封止樹脂中におけるケイ素
とを酸素架橋させ、強靭な接着力を発現させるものであ
る。
As mentioned above, the resin used for the sealing is a resin that is modified by pre-reacting the epoxy resin and phenol resin, which are the main components of the sealing epoxy resin composition, with a silane compound such as a silane coupling agent. As a result, the silicon in the semiconductor chip and the silicon in the sealing resin are cross-linked with oxygen, and a strong adhesive force is developed.

上記変性用の化合物としては、アミノ基、メルカプト基
、グリシジル基、水酸基、カルボキシル基等の官能基を
もったシラン化合物があげられる。
Examples of the above-mentioned modifying compound include silane compounds having functional groups such as an amino group, a mercapto group, a glycidyl group, a hydroxyl group, and a carboxyl group.

その代表例としては(つぎのようなものがある。Typical examples include the following:

■ N−(2−アミノエチル)3−アミノプロピルメチ
ルジメトキシシラン ■ N−(2−アミノエチル)3−アミノプロピルトリ
メトキシシラン ■ 3−アミノプロピルトリメトキシシラン■ 3−ア
ミノプロピルメチルジェトキシシラン ■ 3−グリシドキシプロビルトリメトキシシラン ■ 3−グリシドキシプロビルメチルジメトキシシラン ■ 2−(3,4−エポキシシクロヘキシル)エチルト
リメトキシシラン ■ 3−メルカプトプロピルトリメトキシシラン 上記シラン化合物のうち■、■、■、■、■はエポキシ
樹脂の変性に用いることができ、■、■、■、■、■、
■、■はフェノール樹脂の変性に用いることができる。
■ N-(2-aminoethyl)3-aminopropylmethyldimethoxysilane■ N-(2-aminoethyl)3-aminopropyltrimethoxysilane■ 3-aminopropyltrimethoxysilane■ 3-aminopropylmethyljethoxysilane■ 3-glycidoxypropyltrimethoxysilane ■ 3-glycidoxypropylmethyldimethoxysilane ■ 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane ■ 3-Mercaptopropyltrimethoxysilane Among the above silane compounds ■ , ■, ■, ■, ■ can be used to modify epoxy resin, ■, ■, ■, ■, ■,
(1) and (2) can be used to modify phenolic resins.

上記変性の際の予備反応は、エポキシ樹脂もしくはフェ
ノールノボラック系樹脂を軟化点以上、好適には130
−170’cに加熱して行うことが望ましい。このとき
、予備反応に使用するシラン化合物の量は、エポキシ樹
脂組成物中における樹脂成分に対し0.03〜15重景
%(以下「%」と略す)内に設定することが望ましい。
In the preliminary reaction during the above-mentioned modification, the epoxy resin or phenol novolak resin is heated to a temperature higher than the softening point, preferably at 130°C.
It is preferable to heat to -170'c. At this time, the amount of the silane compound used in the preliminary reaction is desirably set within 0.03 to 15 weight percent (hereinafter abbreviated as "%") based on the resin component in the epoxy resin composition.

すなわち、上記範囲をはずれると良好な効果が得られに
くくなるからである。特に、好適なのは0.15〜3.
0%の範囲内である。
That is, if the content is outside the above range, it becomes difficult to obtain good effects. Particularly suitable is 0.15 to 3.
It is within the range of 0%.

上記のようにすることにより、封止樹脂と半導体チップ
との接着力を著しく高めることができるのであるが、さ
らに、封止樹脂として170°Cの曲げ弾性率が50〜
300 kg/mm”であるものを用いると、上記効果
に、さらに封止樹脂の高温時における応力緩和効果が付
加されるようになり、一層耐湿信頼性の向上効果が得ら
れるようになる。
By doing the above, it is possible to significantly increase the adhesive strength between the encapsulating resin and the semiconductor chip, and furthermore, the flexural modulus of the encapsulating resin at 170°C is 50 to 50.
300 kg/mm", the effect of stress relaxation at high temperatures of the sealing resin is added to the above effect, and the effect of further improving moisture resistance reliability can be obtained.

〔発明の効果〕〔Effect of the invention〕

この発明の半導体装置は、以上のように、半導体素子を
載置するグイバットを、半導体素子の底面よりも小形に
形成しているため、表面実装時における半田浸漬等の熱
衝撃に対しても強い抵抗力を備えており、表面実装後に
耐湿信鯨性が低下するというようなことがない。すなわ
ち、この発明の半導体装置は、上記のような簡単な構成
により、優れた耐半田熱衝撃性を備えており、極めて実
用的価値が大である。
As described above, the semiconductor device of the present invention is resistant to thermal shocks such as solder immersion during surface mounting because the guide plate on which the semiconductor element is placed is formed to be smaller than the bottom surface of the semiconductor element. It has high resistance, and its moisture resistance does not deteriorate after surface mounting. That is, the semiconductor device of the present invention has excellent solder thermal shock resistance due to the simple configuration as described above, and is of great practical value.

つぎに、実施例について比較例と併せて説明する。Next, examples will be described together with comparative examples.

(実施例1〜7〕 後記の第1表に示すサイズのダイパッドを備えたリード
フレームを準備し、これに同表に示したチップサイズの
半導体素子をia置した。そして、これを同表に示す組
成の封止樹脂を用い、パッケージサイズが同表になるよ
うに樹脂封止した。この樹脂封止はモールドによって行
い、成形条件は175°C(2分)、後硬化は175°
C(5時間)の条件で行った。これを第1図および第2
図に示す。図において、1はパッケージ、2はツリピン
、3はチップ、4はダイパッドである。このようにして
得られた半導体装置に対して、パッケージクラックを測
定した。その結果は同表に示すとおりであり、いずれの
実施例も良好な成績を示している。
(Examples 1 to 7) A lead frame equipped with a die pad of the size shown in Table 1 below was prepared, and a semiconductor element of the chip size shown in the table was placed ia on it. Using a sealing resin with the composition shown, resin sealing was performed so that the package size was as shown in the table.This resin sealing was performed by molding, the molding conditions were 175 ° C (2 minutes), and the post-curing was 175 ° C.
The test was carried out under the conditions of C (5 hours). This is shown in Figures 1 and 2.
As shown in the figure. In the figure, 1 is a package, 2 is a trip pin, 3 is a chip, and 4 is a die pad. Package cracks were measured for the semiconductor device thus obtained. The results are shown in the same table, and all examples showed good results.

なお、後記の第1表において、実施例1〜4はフラット
パッケージタイプであり、実施例5〜7はDIPタイプ
である。
In Table 1 below, Examples 1 to 4 are flat package types, and Examples 5 to 7 are DIP types.

(以下余白) なお、第1表において、チップの接着力は、プッシュプ
ルゲージを用い剪断接着力として常温下で求めた。また
、パッケージクラックの評価は、成形物を85°C/8
5%RHで48時間吸湿させ、その後、215’Cの半
田浴に10秒間浸漬しパッケージクラックの発生の有無
で判定した(以下の表でも同様である)。
(The following is a blank space) In Table 1, the adhesive strength of the chip was determined as shear adhesive strength at room temperature using a push-pull gauge. In addition, evaluation of package cracks was conducted at 85°C/8
It was allowed to absorb moisture at 5% RH for 48 hours, and then immersed in a 215'C solder bath for 10 seconds, and was judged by the presence or absence of package cracks (the same applies to the table below).

〔比較例1〜4〕 リードフレームとしてダイパッドの大きさが、第2表に
示すように、チップより大きい従来のものを用い、上記
対応する実施例1〜4と同じ条件で成形しサンプルを作
製した。これを第3図および第4図に示す。図において
、lはパッケージ、2はツリピン、3はチップ、4はダ
イパッドである。そして、このサンプルについて実施例
と同様にして性能試験を行った結果を後記の第2表に示
す。
[Comparative Examples 1 to 4] A conventional lead frame with a die pad size larger than the chip as shown in Table 2 was used, and samples were prepared by molding under the same conditions as in the corresponding Examples 1 to 4 above. did. This is shown in FIGS. 3 and 4. In the figure, l is a package, 2 is a trip pin, 3 is a chip, and 4 is a die pad. A performance test was conducted on this sample in the same manner as in the example, and the results are shown in Table 2 below.

(以下余白) 第2表から明らかなように、比較別品は実施別品に比べ
てパッケージクラックの発生量が大幅に増加しているこ
とがわかる。
(Left space below) As is clear from Table 2, the amount of package cracks generated in the comparative product was significantly increased compared to the tested product.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の平面図、第2図はその断
面図、第3図は従来例の平面図、第4図はその断面図で
ある。 1・・・パッケージ 2・・・ツリピン 3・・・チッ
プ4・・・グイパッド 特許出願人 日東電気工業株式会社 −第4図 第3図
FIG. 1 is a plan view of an embodiment of the present invention, FIG. 2 is a sectional view thereof, FIG. 3 is a plan view of a conventional example, and FIG. 4 is a sectional view thereof. 1...Package 2...Tsuripin 3...Chip 4...Guipad Patent Applicant Nitto Electric Industry Co., Ltd. -Figure 4Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)リードフレームのダイパッド上に半導体素子が載
置された状態で熱硬化性樹脂により樹脂封止された半導
体装置において、ダイパッドが半導体素子の底面よりも
小形に形成されていることを特徴とする半導体装置。
(1) A semiconductor device in which a semiconductor element is mounted on a die pad of a lead frame and sealed with a thermosetting resin, characterized in that the die pad is formed smaller than the bottom surface of the semiconductor element. semiconductor devices.
(2)半導体素子が平板状をしていてその底面の面積が
60mm^2〜400mm^2であり、ダイパッドの半
導体素子載置面の面積が4mm^2〜16mm^2であ
り、かつ熱硬化性樹脂による封止パッケージの厚みが1
.5mm〜4.0mmに設定されている特許請求の範囲
第1項記載の半導体装置。
(2) The semiconductor element has a flat plate shape, the area of the bottom surface is 60 mm^2 to 400 mm^2, the area of the semiconductor element mounting surface of the die pad is 4 mm^2 to 16 mm^2, and it is thermoset The thickness of the sealed package made of plastic resin is 1
.. The semiconductor device according to claim 1, wherein the thickness is set to 5 mm to 4.0 mm.
JP62038625A 1987-02-20 1987-02-20 Semiconductor device Expired - Lifetime JP2534251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62038625A JP2534251B2 (en) 1987-02-20 1987-02-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62038625A JP2534251B2 (en) 1987-02-20 1987-02-20 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS63204753A true JPS63204753A (en) 1988-08-24
JP2534251B2 JP2534251B2 (en) 1996-09-11

Family

ID=12530421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62038625A Expired - Lifetime JP2534251B2 (en) 1987-02-20 1987-02-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2534251B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182630A (en) * 1991-02-13 1993-01-26 Sharp Kabushiki Kaisha Semiconductor device having a particular shaped die pad and coated lower surface
JPH05211271A (en) * 1992-01-30 1993-08-20 Nec Corp Semiconductor device
US5378656A (en) * 1992-03-27 1995-01-03 Hitachi, Ltd. Leadframe, semiconductor integrated circuit device using the same, and method of and process for fabricating the same
EP0617464A3 (en) * 1993-03-22 1995-05-31 Motorola Inc Semiconductor device having X-shaped die support member and method for making the same.
EP0669650A2 (en) * 1994-02-22 1995-08-30 Siemens Aktiengesellschaft Container for semiconductor device and method for manufacturing
US5683944A (en) * 1995-09-01 1997-11-04 Motorola, Inc. Method of fabricating a thermally enhanced lead frame
WO1998009329A1 (en) * 1996-08-29 1998-03-05 Hitachi, Ltd. Resin-sealed semiconductor device and method of manufacturing the same
US6340837B1 (en) 1998-08-31 2002-01-22 Hitachi, Ltd. Semiconductor device and method of fabricating the same
US6558980B2 (en) 1996-12-26 2003-05-06 Yoshinori Miyaki Plastic molded type semiconductor device and fabrication process thereof
SG97850A1 (en) * 1993-03-22 2003-08-20 Motorola Inc Semiconductor device having x-shaped die support member and method for making the same
US6692989B2 (en) 1999-10-20 2004-02-17 Renesas Technology Corporation Plastic molded type semiconductor device and fabrication process thereof
US6989334B2 (en) 1998-03-20 2006-01-24 Renesas Technology Corp. Manufacturing method of a semiconductor device
CN100385658C (en) * 2003-05-28 2008-04-30 雅马哈株式会社 Lead frame and semiconductor device using the same
JP2010178171A (en) * 2009-01-30 2010-08-12 Kyocera Kinseki Corp Piezoelectric oscillator
JP2010258424A (en) * 2009-03-31 2010-11-11 Sumitomo Bakelite Co Ltd Method for manufacturing semiconductor device
CN109524389A (en) * 2017-09-19 2019-03-26 东芝存储器株式会社 Semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521128A (en) * 1978-08-02 1980-02-15 Hitachi Ltd Lead frame used for semiconductor device and its assembling
JPS56161356U (en) * 1980-04-28 1981-12-01
JPS574226U (en) * 1980-06-09 1982-01-09
JPS5992535A (en) * 1982-11-18 1984-05-28 Toshiba Corp Semiconductor device
JPS59194443A (en) * 1983-04-19 1984-11-05 Toshiba Corp Semiconductor device
JPS61208858A (en) * 1985-03-14 1986-09-17 Kyushu Hitachi Maxell Ltd Manufacture of lead frame of semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521128A (en) * 1978-08-02 1980-02-15 Hitachi Ltd Lead frame used for semiconductor device and its assembling
JPS56161356U (en) * 1980-04-28 1981-12-01
JPS574226U (en) * 1980-06-09 1982-01-09
JPS5992535A (en) * 1982-11-18 1984-05-28 Toshiba Corp Semiconductor device
JPS59194443A (en) * 1983-04-19 1984-11-05 Toshiba Corp Semiconductor device
JPS61208858A (en) * 1985-03-14 1986-09-17 Kyushu Hitachi Maxell Ltd Manufacture of lead frame of semiconductor device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182630A (en) * 1991-02-13 1993-01-26 Sharp Kabushiki Kaisha Semiconductor device having a particular shaped die pad and coated lower surface
JPH05211271A (en) * 1992-01-30 1993-08-20 Nec Corp Semiconductor device
US5378656A (en) * 1992-03-27 1995-01-03 Hitachi, Ltd. Leadframe, semiconductor integrated circuit device using the same, and method of and process for fabricating the same
US5637913A (en) * 1992-03-27 1997-06-10 Hitachi, Ltd. Leadframe semiconductor integrated circuit device using the same and method of and process for fabricating the two
EP0617464A3 (en) * 1993-03-22 1995-05-31 Motorola Inc Semiconductor device having X-shaped die support member and method for making the same.
SG97850A1 (en) * 1993-03-22 2003-08-20 Motorola Inc Semiconductor device having x-shaped die support member and method for making the same
CN1118873C (en) * 1993-03-22 2003-08-20 摩托罗拉公司 Semiconductor device having X-shaped die support member and method for making the same
EP0669650A2 (en) * 1994-02-22 1995-08-30 Siemens Aktiengesellschaft Container for semiconductor device and method for manufacturing
EP0669650A3 (en) * 1994-02-22 1997-03-19 Siemens Ag Container for semiconductor device and method for manufacturing.
US5683944A (en) * 1995-09-01 1997-11-04 Motorola, Inc. Method of fabricating a thermally enhanced lead frame
WO1998009329A1 (en) * 1996-08-29 1998-03-05 Hitachi, Ltd. Resin-sealed semiconductor device and method of manufacturing the same
US6558980B2 (en) 1996-12-26 2003-05-06 Yoshinori Miyaki Plastic molded type semiconductor device and fabrication process thereof
US6943456B2 (en) 1996-12-26 2005-09-13 Hitachi Ulsi Systems Co., Ltd. Plastic molded type semiconductor device and fabrication process thereof
US7678706B2 (en) 1998-03-20 2010-03-16 Renesas Technology Corp. Method of manufacturing a semiconductor device
US6989334B2 (en) 1998-03-20 2006-01-24 Renesas Technology Corp. Manufacturing method of a semiconductor device
US7247576B2 (en) 1998-03-20 2007-07-24 Renesas Technology Corp. Method of manufacturing a semiconductor device
US6441400B1 (en) 1998-08-31 2002-08-27 Hitachi, Ltd. Semiconductor device and method of fabricating the same
US6340837B1 (en) 1998-08-31 2002-01-22 Hitachi, Ltd. Semiconductor device and method of fabricating the same
US6476479B2 (en) 1998-08-31 2002-11-05 Hitachi, Ltd. Semiconductor device and method of fabricating the same
US6692989B2 (en) 1999-10-20 2004-02-17 Renesas Technology Corporation Plastic molded type semiconductor device and fabrication process thereof
CN100385658C (en) * 2003-05-28 2008-04-30 雅马哈株式会社 Lead frame and semiconductor device using the same
US7964942B2 (en) 2003-05-28 2011-06-21 Yamaha Corporation Lead frame having a die stage smaller than a semiconductor device and a semiconductor device using the same
JP2010178171A (en) * 2009-01-30 2010-08-12 Kyocera Kinseki Corp Piezoelectric oscillator
JP2010258424A (en) * 2009-03-31 2010-11-11 Sumitomo Bakelite Co Ltd Method for manufacturing semiconductor device
CN109524389A (en) * 2017-09-19 2019-03-26 东芝存储器株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP2534251B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
JPS63204753A (en) Semiconductor device
JPH11147936A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
US4903119A (en) Semi-conductor device
JP4281104B2 (en) Resin composition and electronic component device
JPH04275325A (en) Resin composition for sealing semiconductor
JPH0689112B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH07157537A (en) Epoxy resin composition for sealing semiconductor
JPH0689113B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2953819B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2892343B2 (en) Epoxy resin composition
JPH0794534B2 (en) Semiconductor device
JP2005314566A (en) Epoxy resin composition and semiconductor device
JP2000169677A (en) Epoxy resin composition and semiconductor apparatus
JPH11130937A (en) Epoxy resin composition and semiconductor device
JP4894387B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP3413923B2 (en) Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JPH1160901A (en) Epoxy resin composition and semiconductor device
JP3005328B2 (en) Epoxy resin composition for sealing
JP2954413B2 (en) Epoxy resin composition
JPH1192631A (en) Epoxy resin composition and semiconductor device
JP2005264042A (en) Epoxy resin composition and semiconductor device
JPS6320325A (en) Epoxy resin composition and resin-sealed semiconductor device
JP2002249546A (en) Sealing resin composition and semiconductor device
JP2756342B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH0676539B2 (en) Epoxy-containing composition for semiconductor encapsulation