JPS63200970A - Grinding wheel - Google Patents

Grinding wheel

Info

Publication number
JPS63200970A
JPS63200970A JP3236787A JP3236787A JPS63200970A JP S63200970 A JPS63200970 A JP S63200970A JP 3236787 A JP3236787 A JP 3236787A JP 3236787 A JP3236787 A JP 3236787A JP S63200970 A JPS63200970 A JP S63200970A
Authority
JP
Japan
Prior art keywords
abrasive grains
grinding wheel
grinding
grain
abrasive grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3236787A
Other languages
Japanese (ja)
Inventor
Yuji Ochiai
落合 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3236787A priority Critical patent/JPS63200970A/en
Publication of JPS63200970A publication Critical patent/JPS63200970A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE:To make a grinding wheel into such one that is hard to cause a break in a workpiece even in the case of grinding a hard and fragile material and excellent in abrasive resistance, by setting up two types of abrasive grains; a sort of mean grain size is larger than that of the other, in mixing them with each other. CONSTITUTION:Since a fine abrasive grain 1 and a rough abrasive grain 2 are made so as to be mixedly set up on grinding active surfaces 6a, 6b and 6c, the fine abrasive grain 1 has a function to increase abrasive grain numbers acting on a grinding surface of a workpiece, and with increment of this acting abrasive grain number, force acting on per grain becomes smaller, thus there is hard to cause a break in the workpiece. On the other hand, the rough abrasive grain 2 is large in its area being held by a bond material, and thus it is held by large holding force, so that not only the grain itself is hard to come out but also the fine abrasive grain 1 comes to be hard to come out owing to guidance of this rough abrasive grain 2, thus abrasive resistance in a grinding wheel is sharply improved as a whole.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は研削砥石に係り、特に、たとえばアルミナ系セ
ラミックなどの硬脆材料の被加工物の溝加工、切断加工
に好適な研削砥石に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a grinding wheel, and particularly to a grinding wheel suitable for grooving and cutting workpieces made of hard and brittle materials such as alumina-based ceramics. It is.

〔従来の技術〕[Conventional technology]

アルミナ系セラミック材、たとえば、磁気ディスク装置
用薄膜ヘッド(以下、単に薄膜磁気ヘッドという)のア
ルミナ系セラミック材の基板(以下、単に基板という)
を、従来の研削砥石によって加工する場合の問題点を説
明する。
Alumina ceramic material, for example, a substrate (hereinafter simply referred to as a substrate) of an alumina ceramic material for a thin film head for a magnetic disk device (hereinafter simply referred to as a thin film magnetic head)
We will explain the problems when machining with a conventional grinding wheel.

第3図は、磁気ディスク装置用薄膜ヘッドの一例を示す
斜視図、第4図は、第3図におけるB−B矢視拡大断面
図である。
FIG. 3 is a perspective view showing an example of a thin film head for a magnetic disk device, and FIG. 4 is an enlarged sectional view taken along the line BB in FIG.

図において、11は基板、llaは、浮上したとき磁気
ディスク(図示せず)と対向する。基板11のディスク
対向面、12は薄膜磁気ヘッド素子部(詳細後述)であ
る、この薄膜磁気ヘッドの大きさは、厚さ0 、9 m
 、幅3 、2 m 、長さ4mであり、このうち、薄
膜磁気ヘッド素子部12は、厚さ40pmのものである
。この薄膜磁気ヘッド素子部12は、下地13.磁性膜
14.導体コイル15.この導体コイル15の端部に設
けた端子16、?iii性膜14を保護する保護膜17
.ギャップ18からなるものである。
In the figure, 11 is a substrate, and lla faces a magnetic disk (not shown) when it floats. The surface of the substrate 11 facing the disk, 12 is a thin film magnetic head element section (details will be described later), and the size of this thin film magnetic head is 0.9 m thick.
, width 3.2 m, and length 4 m, of which the thin film magnetic head element section 12 has a thickness of 40 pm. This thin film magnetic head element section 12 is formed by a base layer 13. Magnetic film 14. Conductor coil 15. A terminal 16 provided at the end of this conductor coil 15, ? Protective film 17 that protects the sex film 14
.. It consists of a gap 18.

このように構成した薄膜磁気ヘッドの製造方法の概要を
説明すると、まず、厚さ4mmのアルミナ系セラミック
材の円板の表面に、多数個の薄膜磁気ヘッド素子部12
を縦横に並べて形成したのち、この円板から前記薄膜磁
気ヘッド素子部12が同一方向に5個ないし10個並ん
だ、多数個の基板ブロック(厚さ11m×幅22 m 
X長さ4mm)を基板切断する。そして各基板ブロック
の、ディスク対抗面11aを荒研削し、深溝11bの溝
加工を行ない、さらに前記ディスク対抗面11aをラッ
プ仕上げする。浅溝11cの溝研削を行なったのち、前
記薄膜磁気ヘッド素子部12を1個ずつ具備するように
、その基板ブロックをチップ切断すれば、第3図に示す
ような、所望の薄膜磁気ヘッドが得られる。
To give an overview of the method for manufacturing the thin film magnetic head constructed as described above, first, a large number of thin film magnetic head element parts 12 are placed on the surface of a disk made of alumina ceramic material with a thickness of 4 mm.
After forming the disks in rows and columns, a large number of substrate blocks (11 m thick x 22 m wide) are formed, each of which has 5 to 10 thin film magnetic head element parts 12 arranged in the same direction.
Cut the substrate to a length of 4 mm. Then, the disk opposing surface 11a of each substrate block is roughly ground, deep grooves 11b are formed, and the disk opposing surface 11a is lapped. After grinding the shallow grooves 11c, the substrate block is cut into chips so as to have each of the thin film magnetic head elements 12, thereby producing the desired thin film magnetic head as shown in FIG. can get.

ところで、薄膜磁気ヘッドは、前記磁気ディスク上を0
.3〜0.4μmの微小な間隙をもって安定浮上する必
要があるので、このためには、該薄膜磁気ヘッドは高精
度に加工されていなくてはならない。特に、浮上したと
き前記磁気ディスクと対向するディスク対向面11aは
、その幅、長さの寸法が高精度であるとともに、端部に
欠けなどがあってはならない。
By the way, the thin film magnetic head is capable of moving over the magnetic disk at 0.
.. Since it is necessary to fly stably with a minute gap of 3 to 0.4 μm, the thin film magnetic head must be processed with high precision for this purpose. In particular, the disk facing surface 11a, which faces the magnetic disk when it is levitated, must have highly accurate width and length dimensions, and must not have any chips or the like at the edges.

前記した製造方法において、基板切断、深溝加工、浅溝
研削、チップ切断には、通常、研削砥石が使用されてい
る。
In the manufacturing method described above, a grinding wheel is usually used for cutting the substrate, deep groove processing, shallow groove grinding, and chip cutting.

この場合、硬脆材料である被加工物(すなわち基板)の
欠けを少なくするために、研削作用面に細かい粒径の砥
粒を配設した研削砥石を使用すると、使いこむにつれて
砥粒が脱落し、研削砥石の摩耗が速く、量産加工におい
ては、被加工物の寸法管理がむずかしくなる。他方、こ
の摩耗をきらって、研削作用面に粗い粒径の砥粒を配設
した研削砥石を使用すると、砥粒の脱落は防止できたと
しても、被加工物に欠けが発生しやすくなるという欠点
があった。
In this case, in order to reduce chipping of the workpiece (i.e., the substrate), which is a hard and brittle material, if a grinding wheel with fine abrasive grains arranged on the grinding surface is used, the abrasive grains will fall off as it is used. However, the grinding wheel wears quickly, making it difficult to control the dimensions of the workpiece in mass production processing. On the other hand, if you avoid this wear and use a grinding wheel with coarse abrasive grains arranged on the grinding surface, even if it is possible to prevent the abrasive grains from falling off, the workpiece is more likely to chip. There were drawbacks.

このような欠点を改良するために、たとえば実開昭60
−103656号公報記載のように、被加工物に当たる
外周部が先細形状に成形され、この外周部の先端側に埋
設される砥粒の粒径を、該外周部の基部側に埋設される
砥粒に比べて平均的に大きくすることにより、被加工物
に最初に当接する先端側では粒径の大きい砥粒によって
高速で切削する一方、切削終了間際に、被加工物に当接
する粒径の小さい砥粒によって細かく切削することがで
きるようにしたものが知られている。
In order to improve such drawbacks, for example,
As described in Japanese Patent No. 103656, the outer circumferential portion that contacts the workpiece is formed into a tapered shape, and the particle size of the abrasive grains embedded in the tip side of this outer circumferential portion is determined by the particle size of the abrasive grains embedded in the base side of the outer circumferential portion. By making the grains larger on average compared to the abrasive grains, the abrasive grains with larger diameters cut at high speed on the tip side that first contacts the workpiece, while at the same time, just before the end of cutting, the abrasive grains with larger diameter There are known devices that allow fine cutting using small abrasive grains.

このほかにも、外側に細かい砥粒を、内側に粗い砥粒を
、それぞれ配設した研削砥石も知られている。
In addition, there are also known grinding wheels that have fine abrasive grains on the outside and coarse abrasive grains on the inside.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記した従来の研削砥石は、細かい砥粒、すなわち粒径
の小さい砥粒からなる砥粒層では、これらの砥粒を結合
するボンド剤による保持力が弱く。
In the above-mentioned conventional grinding wheel, in the abrasive grain layer made of fine abrasive grains, that is, abrasive grains with a small particle size, the holding force due to the bonding agent that binds these abrasive grains is weak.

逆に、粗い砥粒、すなわち粒径の大きい砥粒からなる砥
粒層では、ボンド剤による保持力が強い。
On the other hand, in an abrasive layer made of coarse abrasive grains, that is, abrasive grains with a large particle size, the holding force by the bonding agent is strong.

したがって、研削砥石を使いこむにつれて細かい砥粒が
多く脱落し、前記両砥粒層間で摩耗速度の差が生じると
いう点について配慮されておらず、このため、量産加工
において被加工物の寸法精度の維持が困難であるという
問題点を解決するものではなかった。
Therefore, as the grinding wheel is used, many fine abrasive grains fall off and there is a difference in the wear rate between the two abrasive grain layers, which is not considered. This did not solve the problem of difficulty in maintenance.

本発明は、上記した従来技術の問題点を改善して、硬脆
材料の加工において、被加工物に欠けが発生しに<<、
且つ耐摩耗性に優れた研削砥石の提供を、その目的とす
るものである。
The present invention improves the problems of the prior art described above, and prevents chipping of the workpiece when processing hard and brittle materials.
The object of the present invention is to provide a grinding wheel with excellent wear resistance.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を改善するための本発明に係る研削砥石の構
成は、研削作用面に砥粒を配設し、被加工物の溝加工も
しくは切断加工を行なうことができるようにした研削砥
石において、1種の平均粒径が他種の平均粒径よりも大
きい、2種の砥粒を。
The structure of the grinding wheel according to the present invention for improving the above-mentioned problems is a grinding wheel that has abrasive grains arranged on the grinding surface and can groove or cut a workpiece. Two types of abrasive grains, one type of which has a larger average particle size than the other type.

互いに混在して配設したものである。They are arranged in a mixed manner.

さらに詳しくは、研削作用面に、作用砥粒数を多くする
ための、粒径の小さい砥粒、すなりち細砥粒と、結合力
を強めるために、粒径の大きさが前記細砥粒の2〜5倍
程度大きい砥粒、すなわち粗砥粒とを配設するようにし
た研削砥石である。
More specifically, in order to increase the number of working abrasive grains, small abrasive grains and fine abrasive grains are placed on the grinding surface, and in order to strengthen the bonding force, the fine abrasive grains are This is a grinding wheel in which abrasive grains, that is, coarse abrasive grains, which are about 2 to 5 times larger than the grains are arranged.

〔作用〕[Effect]

研削作用面に、細砥粒と粗砥粒とを混在して配設するよ
うにしたので、細砥粒は、被加工物の研削面へ作用する
砥粒数を増す働きがあり、この作用砥粒数の増大によっ
て、砥粒1個当たりに作用する力が小さくなり、被加工
物に欠けが発生しにくくなる。一方、粗砥粒は、ボンド
剤によって保持される保持面積が大きく、大きい保持力
によって保持されているので、それ自体脱落しにくいの
みならず、この粗砥粒のガイドによって細砥粒も脱落し
にくくなり、研削砥石全体として耐摩耗性が著しく向上
する。
Since fine abrasive grains and coarse abrasive grains are mixed and arranged on the grinding surface, the fine abrasive grains have the effect of increasing the number of abrasive grains that act on the grinding surface of the workpiece, and this effect By increasing the number of abrasive grains, the force acting on each abrasive grain becomes smaller, making it difficult for the workpiece to be chipped. On the other hand, coarse abrasive grains have a large holding area held by the bonding agent and are held by a large holding force, so not only are they difficult to fall off themselves, but fine abrasive grains are also difficult to fall off due to the guide of the coarse abrasive grains. This significantly improves the wear resistance of the grinding wheel as a whole.

〔実施例〕〔Example〕

以下、本発明を実施例によって説明する。 Hereinafter, the present invention will be explained by examples.

第1図は、本発明の一実施例に係る研削砥石の外周部を
示す断面図である。
FIG. 1 is a sectional view showing the outer circumference of a grinding wheel according to an embodiment of the present invention.

この研削砥石6は円環状のものであって、その外周部の
研削作用面6a、6b、6cによって、被加工物を研削
するものである。
This grinding wheel 6 has an annular shape, and grinds a workpiece using grinding surfaces 6a, 6b, and 6c on its outer periphery.

さらに詳述すると、この研削砥石6は、アルミナ系セラ
ミック材の溝加工に使用されるものであって、1は、平
均粒径が約5μmのダイヤモンドの細砥粒、2は、平均
粒径が約20μmのダイヤモンドの粗砥粒(粗砥粒の粒
径/細砥粒の粒径勾2015=4) 、3は、ブロンズ
系のボンド剤である。そして、この研削砥石6は、通常
のホットプレス法によって焼結したものである。
More specifically, this grinding wheel 6 is used for grooving an alumina-based ceramic material, and numeral 1 indicates fine diamond abrasive grains with an average grain size of about 5 μm, and numeral 2 has fine diamond abrasive grains with an average grain size of approximately Diamond coarse abrasive grains of approximately 20 μm (particle size of coarse abrasive grains/particle size gradient of fine abrasive grains 2015=4), 3 is a bronze-based bonding agent. This grinding wheel 6 is sintered by a normal hot press method.

このように構成した研削砥石6を使用して被加工物に溝
加工を行なう作用を説明すると、該被加工物の研削に関
与する砥粒は主として細砥粒1であって、その作用砥粒
数が多く、細砥粒1個当たりに作用する力が小さい。し
たがって、加工中に前記被加工物に欠けやチッピングを
発生することはきわめて少ない、粗砥粒2も細砥粒1と
ともに研削に関与するが、その作用砥粒数は少なく、ボ
ンド剤3と広い面積で接しているので強固であり。
To explain the operation of grooving a workpiece using the grinding wheel 6 configured in this way, the abrasive grains involved in grinding the workpiece are mainly fine abrasive grains 1, and the working abrasive grains are There are many fine abrasive grains, and the force acting on each fine abrasive grain is small. Therefore, it is extremely unlikely that chipping or chipping will occur on the workpiece during processing. Coarse abrasive grains 2 also participate in grinding together with fine abrasive grains 1, but the number of active abrasive grains is small and the bonding agent 3 is wide. It is strong because it is in contact with the area.

脱落しにくい、また、この粗砥粒2によってガイドさて
細砥粒1も脱落しにくい、このような状態で加工が進行
すると、細砥粒1は、その近傍にある粗砥粒2のガイド
作用によって脱落が防止されるので、研削砥石6の作用
砥粒数が維持され、切れ味も持続される。そして、被加
工物に欠け、チッピングをほとんど発生することなく、
また研削砥石6の摩耗もきわめて少なくて、加工を終了
することができる。
The coarse abrasive grains 2 do not easily fall off, and the fine abrasive grains 1 are also difficult to fall off.If processing proceeds in this state, the fine abrasive grains 1 will be guided by the guiding action of the coarse abrasive grains 2 nearby. Since falling off is prevented, the number of working abrasive grains of the grinding wheel 6 is maintained, and its sharpness is maintained. And, there is almost no chipping on the workpiece,
Further, the wear of the grinding wheel 6 is extremely small, and the machining can be completed.

以上説明した実施例によれば、被加工物にほとんど欠け
を発生することなく、また、研削砥石6の耐摩耗性もき
わめて優れているので、量産加工における被加工物の寸
法管理が容易になるという効果がある。
According to the embodiment described above, there is almost no chipping of the workpiece, and the wear resistance of the grinding wheel 6 is also extremely excellent, making it easy to manage the dimensions of the workpiece in mass production processing. There is an effect.

次に他の実施例を説明する。Next, another embodiment will be described.

第2図は、本発明の他の実施例に係る研削砥石の外周部
を示す断面図である。
FIG. 2 is a sectional view showing the outer circumference of a grinding wheel according to another embodiment of the present invention.

この研削砥石7も円環状のものであって、その外周部の
研削作用面7a、7b、7cによって。
This grinding wheel 7 is also annular and has grinding surfaces 7a, 7b, and 7c on its outer periphery.

被加工物を研削するものである。さらに詳述すると、こ
の研削砥石7は、アルミナ系セラミック材の切断加工に
使用されるものであって、1は、平均粒径が約16μm
のダイヤモンドの細砥粒、2は、平均粒径が約48μm
のダイヤモンドの粗砥粒(粗砥粒の粒径/細砥粒の粒径
″:48/16=3)、4は、#llI製の円環状の台
金、5は、粗砥粒2用のボンド剤にニッケル)、5′は
、細砥粒1用のボンド剤(これもニッケル)である。
It grinds the workpiece. More specifically, this grinding wheel 7 is used for cutting an alumina-based ceramic material, and the grinding wheel 1 has an average grain size of about 16 μm.
Fine diamond abrasive grains, 2, have an average grain size of approximately 48 μm
diamond coarse abrasive grains (coarse abrasive grain size/fine abrasive grain size'': 48/16 = 3), 4 is an annular base metal made of #llI, 5 is for coarse abrasive grain 2 5' is a bonding agent for the fine abrasive grains 1 (also nickel).

そして、この研削砥石7は、まず台金4の上に、粗砥粒
2を、その粒径の1/2〜2/3の高さまでニッケルを
使用した電着法によって固着したのち、そのニッケルの
ボンド剤5の上に、同じニッケルのボンド剤5′で細砥
粒1を電着法によって固着してなるものである。
The grinding wheel 7 is manufactured by first fixing the coarse abrasive grains 2 on the base metal 4 by electrodeposition using nickel to a height of 1/2 to 2/3 of the grain size, and then The fine abrasive grains 1 are fixed on the bonding agent 5 using the same nickel bonding agent 5' by electrodeposition.

このように構成した研削砥石7の作用も、前記実施例の
研削砥石6と同様であって、被加工物にほとんど欠けを
発生することなく、また耐摩耗性もきわめて優れている
という効果を奏するとともに、さらに、中心部に鋼製の
台金4を使用するようにしたので、ダイヤモンド砥粒の
量が少なくてすみ、研削砥石7が安価であるという利点
もある。
The function of the grinding wheel 7 constructed in this way is similar to that of the grinding wheel 6 of the above-mentioned embodiment, and has the effect of hardly causing any chipping on the workpiece and having extremely excellent wear resistance. Furthermore, since the steel base metal 4 is used in the center, the amount of diamond abrasive grains can be reduced, and the grinding wheel 7 has the advantage of being inexpensive.

なお、前記各実施例においては、砥粒としてダイヤモン
ド砥粒を使用するようにしたが、他の砥粒、たとえばボ
ロンナイトライド系などの砥粒を使用しても同様の効果
を奏するものである。
In each of the above embodiments, diamond abrasive grains were used as the abrasive grains, but the same effect can be achieved by using other abrasive grains, such as boron nitride abrasive grains. .

さらに、ボンド剤としては、ブロンズ系、ニッケルに限
るものではなく、他のボンド剤、たとえばレジンボンド
剤を使用しても同様の効果を奏する。
Further, the bonding agent is not limited to bronze-based or nickel, and the same effect can be obtained even if other bonding agents, such as resin bonding agents, are used.

さらにまた、前記各実施例においては、1種の砥粒に係
る粗砥粒の粒径と、他種の砥粒に係る細砥粒の粒径との
比を、それぞれ4倍、3倍にしたが、この比は2〜5倍
程度の範囲であることが望ましい、1.5倍程度では、
粒径がすべてほぼ同一の砥粒を使用した研削砥石とその
作用は大差なく、また、数倍以上、たとえば8〜10倍
以上になると、細砥粒の作用が発揮されないおそれがあ
るので、上述したように2〜5倍程度の範囲が適正であ
る。
Furthermore, in each of the above examples, the ratio of the particle size of coarse abrasive grains of one type of abrasive grains to the particle size of fine abrasive grains of another type of abrasive grains is increased to 4 times and 3 times, respectively. However, it is desirable that this ratio is in the range of about 2 to 5 times, and at about 1.5 times,
The effect of the grinding wheel is not much different from that of a grinding wheel using abrasive grains that are all approximately the same in size, and if the size is several times larger, for example 8 to 10 times or more, the effect of fine abrasive grains may not be exerted. As shown above, a range of about 2 to 5 times is appropriate.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、硬脆材料の
加工において、被加工物に欠けが発生しにくく、且つ耐
摩耗性に優れた研削砥石を提供することができる。
As described in detail above, according to the present invention, it is possible to provide a grinding wheel that is less likely to chip a workpiece and has excellent wear resistance when processing hard and brittle materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る研削砥石の外周部を
示す断面図、第2図は、本発明の他の実施例に係る研削
砥石の外周部を示す断面図、第3図は、磁気ディスク装
置眉薄膜ヘッド・の−例を示す斜視図、第4図は、第3
図におけるB−B矢視拡大断面図である。 1・・・細砥粒、2・・・粗砥粒、6・・・研削砥石、
6a。 6b、6c・・・研削作用面、7・・・研削砥石、7a
。 7b、7c・・・研削作用面。
FIG. 1 is a sectional view showing the outer periphery of a grinding wheel according to an embodiment of the present invention, FIG. 2 is a sectional view showing the outer periphery of a grinding wheel according to another embodiment of the invention, and FIG. 4 is a perspective view showing an example of a thin film head of a magnetic disk device, and FIG.
It is an enlarged sectional view taken along the line BB in the figure. 1... Fine abrasive grain, 2... Coarse abrasive grain, 6... Grinding wheel,
6a. 6b, 6c... Grinding surface, 7... Grinding wheel, 7a
. 7b, 7c... Grinding surface.

Claims (1)

【特許請求の範囲】[Claims] 1、研削作用面に砥粒を配設し、被加工物の溝加工もし
くは切断加工を行なうことができるようにした研削砥石
において、1種の平均粒径が他種の平均粒径よりも大き
い、2種の砥粒を、互いに混在して配設したことを特徴
とする研削砥石。
1. In a grinding wheel that has abrasive grains arranged on the grinding surface and can groove or cut the workpiece, the average grain size of one type is larger than the average grain size of the other type. A grinding wheel characterized in that two types of abrasive grains are arranged in a mixed manner.
JP3236787A 1987-02-17 1987-02-17 Grinding wheel Pending JPS63200970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3236787A JPS63200970A (en) 1987-02-17 1987-02-17 Grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3236787A JPS63200970A (en) 1987-02-17 1987-02-17 Grinding wheel

Publications (1)

Publication Number Publication Date
JPS63200970A true JPS63200970A (en) 1988-08-19

Family

ID=12356977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3236787A Pending JPS63200970A (en) 1987-02-17 1987-02-17 Grinding wheel

Country Status (1)

Country Link
JP (1) JPS63200970A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05104446A (en) * 1991-10-17 1993-04-27 Nikko Kyodo Co Ltd Brittle material cutting blade
JP2015202529A (en) * 2014-04-11 2015-11-16 京セラ株式会社 Grinding wheel and cutting tool processed thereby

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890466A (en) * 1982-11-04 1983-05-30 Toshiba Corp Grinding wheel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890466A (en) * 1982-11-04 1983-05-30 Toshiba Corp Grinding wheel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05104446A (en) * 1991-10-17 1993-04-27 Nikko Kyodo Co Ltd Brittle material cutting blade
JP2015202529A (en) * 2014-04-11 2015-11-16 京セラ株式会社 Grinding wheel and cutting tool processed thereby

Similar Documents

Publication Publication Date Title
KR100609361B1 (en) Ultra fine groove chip and ultra fine groove tool
CN109333385B (en) Diamond grinding wheel with microstructure and preparation method thereof
JP2006198743A (en) Small-diameter rotary tool, and method of cutting workpiece formed of high-hardness material
JPH09254042A (en) Grinding wheel for cutting groove and manufacture thereof
JPS63200970A (en) Grinding wheel
JPH07136936A (en) Diamond grinding wheel
KR100446981B1 (en) Segment of cutting tool
JP4215570B2 (en) Dresser
JP2001025948A (en) Spherical grinding wheel
JPH08192305A (en) Throwaway tip and manufacture thereof
JP2001038630A (en) Superfine abrasive grain tool, and its manufacture
KR920005304Y1 (en) Grinding type cutting wheel
JP2011093191A (en) Scribing wheel
JPH11207731A (en) Narrow width cutting and narrow groove working method
JPS62264869A (en) Grinding stone for precision processing
JPH11207635A (en) Cup-like grinding wheel and wafer surface grinding method
JP2543660B2 (en) Diamond dresser
JP2001212769A (en) Super-abrasive grain wheel
JP2004042215A (en) Polishing stone, and apparatus and method for mirror-finishing cut surface
JP2001300855A (en) Diamond saw blade
JPS6176273A (en) Grinding wheel
JP2001038506A (en) Single crystal diamond tool and manufacture thereof
JP2596448B2 (en) Wrap tool for pore
JP3035486B2 (en) Diamond dresser
JP2000061929A (en) Wire saw having tapered part in base metal