JPS6319982B2 - - Google Patents

Info

Publication number
JPS6319982B2
JPS6319982B2 JP56011009A JP1100981A JPS6319982B2 JP S6319982 B2 JPS6319982 B2 JP S6319982B2 JP 56011009 A JP56011009 A JP 56011009A JP 1100981 A JP1100981 A JP 1100981A JP S6319982 B2 JPS6319982 B2 JP S6319982B2
Authority
JP
Japan
Prior art keywords
graphite
intercalation compound
catalyst layer
gas
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56011009A
Other languages
Japanese (ja)
Other versions
JPS57124864A (en
Inventor
Takashi Sakai
Masahiro Ide
Yasuo Myake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP56011009A priority Critical patent/JPS57124864A/en
Publication of JPS57124864A publication Critical patent/JPS57124864A/en
Publication of JPS6319982B2 publication Critical patent/JPS6319982B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 本発明は燃料電池用ガス拡散電極に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas diffusion electrode for a fuel cell.

一般にガス拡散電極は、防水処理を施したカー
ボンペーパー(拡散層)上に触媒金属を含む黒鉛
を塗着するか予めシート状に成形して貼着し、拡
散層と触媒層の二重層に構成される。
Generally, gas diffusion electrodes are constructed by coating graphite containing catalyst metal on waterproofed carbon paper (diffusion layer) or by forming it into a sheet in advance and pasting it, forming a double layer consisting of a diffusion layer and a catalyst layer. be done.

酸性燃料電池は、陰陽のガス電極と電解液保持
マトリツクスとよりなる単位セル間に炭素質ガス
分離板を介し多数積層して使用されるが、触媒層
の電気抵抗による電圧降下が無視できなくなる。
Acid fuel cells are used by stacking a large number of unit cells with carbonaceous gas separation plates interposed between unit cells consisting of positive and negative gas electrodes and an electrolyte holding matrix, but the voltage drop due to the electrical resistance of the catalyst layer cannot be ignored.

本発明は、かかる点に鑑み、触媒層の基体とし
て通常用いられている黒鉛の代りに、黒鉛の層間
に酸を浸入させた黒鉛層間化合物を用いることに
より電気伝導性を改善することを目的とする。
In view of this, the present invention aims to improve electrical conductivity by using a graphite intercalation compound in which acid is infiltrated between graphite layers instead of graphite, which is normally used as a substrate for a catalyst layer. do.

黒鉛の結晶は炭素原子の六角板状面が層状に積
重なつた構造を持ち、各層面内の結合は強いが層
間の結合は弱く、多くの化学種が層間に入り、黒
鉛層間化合物を形成する。層間に侵入可能な化学
種としてアルカリ金属(Li、Na、K等)、金属ハ
ロゲン化物(AlCl3、MgCl2等)、酸(HNO3
H2SO4、等)があるが、アルカリ金属・金属ハ
ロゲン化合物等の層間化合物は酸性電解液による
腐蝕のため使用できないので、酸を使用した。こ
れら層間化合物は黒鉛の平面構造は保たれたまゝ
であるが、黒鉛に比し電気伝導度は良くなる。
Graphite crystals have a structure in which hexagonal plate-like planes of carbon atoms are stacked in layers, and the bonds within each layer are strong, but the bonds between the layers are weak, and many chemical species enter between the layers, forming graphite intercalation compounds. do. Chemical species that can penetrate between layers include alkali metals (Li, Na, K, etc.), metal halides (AlCl 3 , MgCl 2 , etc.), acids (HNO 3 ,
H 2 SO 4 , etc.), but since intercalation compounds such as alkali metal/metal halide compounds cannot be used because they are corroded by acidic electrolytes, acids were used. These intercalation compounds maintain the planar structure of graphite, but have better electrical conductivity than graphite.

本発明によるガス拡散電極の作成例を説明す
る。化学種として硫酸を用いた黒鉛層間化合物の
場合、黒鉛と濃硫酸を乾燥雰囲気中で混合し、不
活性ガス中で300℃、5時間反応させた。この生
成物を粉砕し400メツシユパスの黒鉛層間化合物
微粉末を得る。次にこの微粉末50gに対し塩化白
金酸13gを水100c.c.に溶解した溶液を混合し、
過後真空乾燥を行い、ついで水素ガス中300〜350
℃で1時間還元して粒子表面に白金黒を付着させ
る。この処理済層間化合物粉末とフツ素樹脂粉末
とを重量比1:1で混合し、ケロシンを適量加え
てペースト状とした。これをローラーにかけてシ
ートとし、このシートを自然乾燥しケロシンを蒸
発させた。この触媒層シートを予め防水処理した
カーボンペーパー上に添着し加圧後加熱して二重
層電極とした。
An example of creating a gas diffusion electrode according to the present invention will be described. In the case of a graphite intercalation compound using sulfuric acid as a chemical species, graphite and concentrated sulfuric acid were mixed in a dry atmosphere and reacted at 300° C. for 5 hours in an inert gas. This product is crushed to obtain a graphite intercalation compound fine powder of 400 mesh passes. Next, a solution of 13 g of chloroplatinic acid dissolved in 100 c.c. of water was mixed with 50 g of this fine powder.
After evaporation, vacuum dry and then dry in hydrogen gas at 300~350℃.
Platinum black is attached to the particle surface by reduction at ℃ for 1 hour. This treated intercalation compound powder and fluororesin powder were mixed at a weight ratio of 1:1, and an appropriate amount of kerosene was added to form a paste. This was rolled to form a sheet, and this sheet was air-dried to evaporate the kerosene. This catalyst layer sheet was applied onto carbon paper that had been waterproofed in advance, and heated after pressurizing to form a double layer electrode.

又酸として燐酸を用いる場合、黒鉛と乾燥した
燐酸を乾燥雰囲気中で混合し、不活性ガス中で
400℃、24時間反応させた。この生成物を粉砕し
て400メツシユパスの黒鉛層間化合物の微粉末を
得る。この微粉末に微量の白金黒微粉末と結着剤
とを加えてペースト状とし、これを予め防水処理
したカーボンペーパー上に塗着する。
When using phosphoric acid as the acid, graphite and dry phosphoric acid are mixed in a dry atmosphere, and then mixed in an inert gas atmosphere.
The reaction was carried out at 400°C for 24 hours. This product is crushed to obtain a fine powder of graphite intercalation compound of 400 mesh passes. A small amount of platinum black fine powder and a binder are added to this fine powder to form a paste, and this is applied onto carbon paper that has been previously waterproofed.

第1図はマトリツクス型燃料電池の要部断面図
を示し、N,Pは陰・陽のガス電極で、1は本発
明による黒鉛層間化合物を基体とする触媒層、2
は防水カーボンペーパーよりなる拡散層である。
又Eは燐酸電解液を保持するマトリツクス、Sは
水素及び酸素の各ガス供給通路3,4を形成した
カーボン製のガス分離板である。
FIG. 1 shows a sectional view of the main parts of a matrix fuel cell, where N and P are negative and positive gas electrodes, 1 is a catalyst layer based on a graphite intercalation compound according to the present invention, and 2
is a diffusion layer made of waterproof carbon paper.
Further, E is a matrix holding a phosphoric acid electrolyte, and S is a carbon gas separation plate forming hydrogen and oxygen gas supply passages 3 and 4.

第2図、第3図は3セル積層電池について電流
密度と電圧との関係を示す放電特性図で、第2図
は硫酸を侵入させた黒鉛層間化物、第3図は燐酸
を侵入させた黒鉛層間化合物を夫々用いた場合で
ある。又比較のため従来の黒鉛を用いた場合を点
線で示した。
Figures 2 and 3 are discharge characteristic diagrams showing the relationship between current density and voltage for a 3-cell stacked battery. Figure 2 shows graphite intercalated with sulfuric acid, and Figure 3 shows graphite with phosphoric acid penetrated. This is a case where each intercalation compound is used. For comparison, the case where conventional graphite is used is shown by a dotted line.

これら特性図に見られるように本発明による電
池は従来電池に比し特性が向上したが、これは触
媒層の電気伝導度が改善されたためである。本発
明触媒層の抵抗値は黒鉛層間化合物の層間侵入種
として硫酸及び燐酸を使用したものは夫々4×
10-4Ω−cm、及び6×10-4Ω−cmであるに対し、
従来の黒鉛使用触媒層は1〜3×10-3Ωcmであつ
た。そのため積層セル数が増加すればする程抵抗
損失に差が生じる。
As seen in these characteristic diagrams, the battery according to the present invention has improved characteristics compared to the conventional battery, and this is due to the improved electrical conductivity of the catalyst layer. The resistance value of the catalyst layer of the present invention is 4× when sulfuric acid and phosphoric acid are used as the intercalating species of the graphite intercalation compound.
10 -4 Ω-cm, and 6 × 10 -4 Ω-cm, whereas
Conventional catalyst layers using graphite had a thickness of 1 to 3 x 10 -3 Ωcm. Therefore, as the number of stacked cells increases, the difference in resistance loss occurs.

上述の如く本発明によればガス電極触媒層の基
体として黒鉛の代りに、硫酸や燐酸などの酸を層
間侵入種とした黒鉛層間化合物を用いることによ
り、触媒層の電気伝導性を改善し、分極特性の良
好なガス拡散電極を提供して電池性能の向上が達
成される。
As described above, according to the present invention, the electrical conductivity of the catalyst layer is improved by using a graphite intercalation compound containing an interlayer intercalating acid such as sulfuric acid or phosphoric acid instead of graphite as the base of the gas electrode catalyst layer. Improved battery performance is achieved by providing a gas diffusion electrode with good polarization properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電極を備えるマトリツクス型燃
料電池の要部断面図、第2図、第3図は同上電池
の放電特性比較図である。 N,P……陰・陽ガス拡散電極、1……触媒
層、2……拡散層、E……電解質マトリツクス、
S……ガス分離板。
FIG. 1 is a sectional view of a main part of a matrix type fuel cell equipped with an electrode of the present invention, and FIGS. 2 and 3 are comparison diagrams of discharge characteristics of the same battery. N, P... negative/positive gas diffusion electrode, 1... catalyst layer, 2... diffusion layer, E... electrolyte matrix,
S...Gas separation plate.

Claims (1)

【特許請求の範囲】 1 触媒層の基体として黒鉛の層間に酸を侵入さ
せた黒鉛層間化合物を用いることを特徴とする燃
料電池のガス拡散電極。 2 前記黒鉛層間化合物は触媒を付着した粒子と
して結着されていることを特徴とする特許請求の
範囲第1項記載の燃料電池のガス拡散電極。 3 前記黒鉛層間化合物は、触媒粒子と混合して
結着されていることを特徴とする特許請求の範囲
第1項記載の燃料電池のガス拡散電極。
[Scope of Claims] 1. A gas diffusion electrode for a fuel cell, characterized in that a graphite intercalation compound in which an acid is introduced between layers of graphite is used as a substrate of a catalyst layer. 2. The gas diffusion electrode for a fuel cell according to claim 1, wherein the graphite intercalation compound is bound as particles to which a catalyst is attached. 3. The gas diffusion electrode for a fuel cell according to claim 1, wherein the graphite intercalation compound is mixed with and bound to catalyst particles.
JP56011009A 1981-01-28 1981-01-28 Gas diffusion electrode of fuel cell Granted JPS57124864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56011009A JPS57124864A (en) 1981-01-28 1981-01-28 Gas diffusion electrode of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56011009A JPS57124864A (en) 1981-01-28 1981-01-28 Gas diffusion electrode of fuel cell

Publications (2)

Publication Number Publication Date
JPS57124864A JPS57124864A (en) 1982-08-03
JPS6319982B2 true JPS6319982B2 (en) 1988-04-26

Family

ID=11766115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56011009A Granted JPS57124864A (en) 1981-01-28 1981-01-28 Gas diffusion electrode of fuel cell

Country Status (1)

Country Link
JP (1) JPS57124864A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60151968A (en) * 1984-01-20 1985-08-10 Mitsubishi Electric Corp Manufacture of electrode for fuel cell
JPS60208057A (en) * 1984-04-02 1985-10-19 Hitachi Ltd Fuel cell
DE3583170D1 (en) * 1984-04-02 1991-07-18 Hitachi Ltd ELECTRODE FOR FUEL CELL, METHOD FOR PRODUCING THE SAME AND FUEL CELL USING THIS ELECTRODE.
JPS6199272A (en) * 1984-10-22 1986-05-17 Mitsubishi Electric Corp Method of treating electrode base for fuel cell
JPS63139012A (en) * 1986-11-29 1988-06-10 Koa Sekiyu Kk Production of graphitic material for electric cell
WO2001005268A1 (en) 1999-07-21 2001-01-25 Kanebo, Limited Cosmetic material sheet and method for manufacture of the sheet and apparatus for use in the manufacture

Also Published As

Publication number Publication date
JPS57124864A (en) 1982-08-03

Similar Documents

Publication Publication Date Title
US5705259A (en) Method of using a bipolar electrochemical storage device
US8506851B2 (en) Electrode materials with high surface conductivity
US7824795B2 (en) Solid electrolyte structure for all-solid-state battery, all-solid-state battery, and their production methods
US7745037B2 (en) Membrane electrode assembly for solid polymer electrolyte fuel cell
CN108963317B (en) Mixed type all-solid-state battery
US20070175020A1 (en) Method for producing solid state battery
CN101494286A (en) Secondary battery material
CN110571413B (en) Electrode and lithium cell with composite bed structure
JP5792567B2 (en) Electrocatalyst with oxygen reduction ability
CN113410442A (en) Silicon-based negative electrode material and preparation method thereof, negative plate and secondary battery
Miyashiro et al. All-solid-state lithium polymer secondary battery with LiNi0. 5Mn1. 5O4 by mixing of Li3PO4
JPS6319982B2 (en)
Vinod et al. Materials for all-solid-state thin-film rechargeable lithium batteries by sol-gel processing
Ding et al. Dual‐Carbon Network for the Effective Transport of Charged Species in a LiFePO4 Cathode for Lithium‐Ion Batteries
CN114455633A (en) Electrolyte for solid-state battery, method for producing same, solid-state battery, and vehicle
JPH0529005A (en) Electrode/electrolyte joined body, manufacture thereof and fuel cell using the same
CN110718678A (en) Electrode piece containing physically-stripped graphene, and preparation method and application thereof
JPH0157465B2 (en)
JP2616061B2 (en) Phosphoric acid fuel cell
JPH0722020B2 (en) Method for manufacturing gas diffusion electrode
JPH061700B2 (en) Composite electrode for fuel cell
CN113314719B (en) Integrated cathode with high catalytic performance, preparation method thereof and battery
CN113439351B (en) Composite material
CN109935831B (en) Electrode inert material, composite electrode, manufacturing method and lithium ion battery
CN112768751B (en) Sodium ion conductor and sodium ion solid battery