JPS63199417A - Exposure device - Google Patents

Exposure device

Info

Publication number
JPS63199417A
JPS63199417A JP62031862A JP3186287A JPS63199417A JP S63199417 A JPS63199417 A JP S63199417A JP 62031862 A JP62031862 A JP 62031862A JP 3186287 A JP3186287 A JP 3186287A JP S63199417 A JPS63199417 A JP S63199417A
Authority
JP
Japan
Prior art keywords
mirror
beams
stage
carriage
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62031862A
Other languages
Japanese (ja)
Inventor
Junji Isohata
磯端 純二
Sekinori Yamamoto
山本 碩徳
Koichi Matsushita
松下 光一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62031862A priority Critical patent/JPS63199417A/en
Publication of JPS63199417A publication Critical patent/JPS63199417A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To measure the position of a substrate stage to a mask placed on a carriage accurately at all times without being affected by the positional factor of the carriage by mounting a laser interference generating section for detecting displacement in at least two directions onto a scanning means scanning an original plate and a body to be exposed to an exposure means. CONSTITUTION:A laser interference generating section 16 for detecting displacement in at least two directions of an original plate 1 or a body to be exposed 3 is set up onto a scanning means relatively scanning the original plate 1 and the body to be exposed 1 to an exposure means. Beams from a laser tube 14 are reflected by a mirror 33, and divided by a half mirror 22a, and reflected beams are directed toward an interference section 16a for detecting displacement in the X direction. Transmitting beams are divided by a half mirror 22b through a mirror 23a, and reflected beams are directed toward an interference section 16b for detecting displacement in the Y direction. Transmitting beams are projected to an interference section 16c for detecting displacement in the thetadirection through a mirror 23b. A detector 20 detects the change of intensity of beams, and displacement in each direction and a current position are computed by CPU 30.

Description

【発明の詳細な説明】 〔発明の属する分野〕 本発明は、被露光体に原版上のパターン像、例えば半導
体回路パターンを位置整合良く焼付ける投影露光装置に
関し、特に液晶パネル等の大画面を分割して露光する分
割走査(ステップアンドスキャン)型の投影露光装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a projection exposure apparatus that prints a pattern image on an original plate, such as a semiconductor circuit pattern, onto an exposed object with good positional alignment, and particularly relates to a projection exposure apparatus that prints a pattern image on an original plate, such as a semiconductor circuit pattern, onto an exposed object with good alignment, and in particular, it The present invention relates to a step-and-scan type projection exposure apparatus that performs divided exposure.

〔従来の技術〕[Conventional technology]

ミラープロジェクション方式の半導体露光装置において
は、マスク(またはレチクル)と基板(またはウェハ)
をキャリッジ上に乗せ、これを露光面上にスキャン移動
させることにより画面全体を露光している。
In mirror projection type semiconductor exposure equipment, a mask (or reticle) and a substrate (or wafer) are used.
The entire screen is exposed by placing it on a carriage and scanning it over the exposure surface.

しかし、最近の傾向として、チップコストの低減を目的
としたウェハの大口径化や液晶TV用等の大型の液晶表
示板の製造のため、画面が大型化してくると、投影光学
系を大きくし、かつスキャン長を伸ばさなければならな
いことにより装置が大型化してくるという問題があった
However, as the screens have become larger due to larger diameter wafers to reduce chip costs and the manufacture of larger LCD panels for LCD TVs, the projection optical system has become larger. In addition, there is a problem in that the apparatus becomes larger due to the need to increase the scan length.

この対策として、画面を分割してスキャン焼を複数回に
分けて行うステップアンドスキャン焼方式が考えられて
いる。そして、このステップアンドスキャン焼を高精度
で行うために、該キャリッジの基板側にX、  Y平面
内で移動可能なステージを搭載することが考えられてい
る。
As a countermeasure to this problem, a step-and-scan printing method is being considered in which the screen is divided and scan printing is performed multiple times. In order to perform this step-and-scan printing with high precision, it has been considered to mount a stage movable within the X and Y planes on the substrate side of the carriage.

ところで、ステップアンドスキャン露光方式の露光装置
は画面を分割してスキャン焼を複数回に分けて行うもの
である。そのため、基板およびマスクの位置を精度良<
 (0,1〜0.2μm)絶対位置決めする必要がある
。基板ないしマスクの位置決め精度が悪い場合、基板上
に転写されたマスクのパターン像はショット間にてずれ
てしまうため、ショットの境界位置にてパターンの不良
が発生してしまう。このことからマスクを装置側の絶対
位置基準に精度良く位置決めすることが必要である。
Incidentally, a step-and-scan exposure type exposure apparatus divides the screen and performs scan printing in multiple steps. Therefore, the position of the substrate and mask can be adjusted with high precision.
(0.1 to 0.2 μm) Absolute positioning is required. If the positioning accuracy of the substrate or mask is poor, the pattern image of the mask transferred onto the substrate will shift between shots, resulting in pattern defects at shot boundary positions. For this reason, it is necessary to accurately position the mask using the absolute position reference on the apparatus side.

このような技術として、既に知られているものにIC,
LSI等を製造するいわゆるステッパがある。
Some of the already known technologies are IC,
There are so-called steppers that manufacture LSIs and the like.

ステッパ方式とは、レンズ投影系を用いてウェハのステ
ップアンドリピート動作によりレチクルパターンをウェ
ハ上に分割露光してい(露光方式である。ステッパの場
合、レチクルは光電検知等の方法を用いて絶対位置基準
に位置決めし、ウェハ側はステージの位置をレーザ干渉
計を用い高精度(0,1〜0.2μm)で計測して、サ
ーボモータとボールネジ等によりステージを駆動し位置
決めが行われる。
The stepper method is an exposure method in which a reticle pattern is dividedly exposed onto a wafer by step-and-repeat operation of the wafer using a lens projection system.In the case of a stepper, the reticle is positioned at its absolute position using a method such as photoelectric detection. Positioning is performed using a reference, and on the wafer side, the position of the stage is measured with high accuracy (0.1 to 0.2 μm) using a laser interferometer, and positioning is performed by driving the stage using a servo motor, a ball screw, or the like.

ステッパにおけるウェハ側の位置計測方式としては、ス
テージがベース上に固定されているため、レーザ干渉計
も同一ベース上に固定して計測するのが一般的である。
As a method for measuring the position on the wafer side in a stepper, since the stage is fixed on a base, it is common to use a laser interferometer fixed on the same base for measurement.

ところが、ステップアンドスキャン方式の露光方式にお
いては、基板ステージはマスクと一体になって走査、さ
れる構造部材(キャリッジ)上に載置され、流体軸受け
をガイドとして走査される。
However, in the step-and-scan exposure method, the substrate stage is placed on a structural member (carriage) that is scanned integrally with the mask, and is scanned using a fluid bearing as a guide.

この場合、従来のステッパと同様にレーザ干渉計をベー
ス上に固定して計測したとすると、その計測値はキャリ
ッジ、又はこれに載置されたマスクに対する基板ステー
ジの位置を示すものではなく、キャリッジの位置と基板
ステージの位置を複合したものとして計測した値である
こととなる。この複合された計測値から基板ステージの
位置を分離することは、キャリッジの振動およびステー
ジの重心移動によるキャリッジの変形等を考えた場合、
非常に困難である。すなわち、このような場合はマスク
に対するステージの位置がキャリッジの位置要因に左右
されてしまいステージの位置を精度良(計測することが
できないという不具合があった。
In this case, if the laser interferometer is fixed on the base and measured like a conventional stepper, the measured value does not indicate the position of the substrate stage with respect to the carriage or the mask placed on it, but rather This is the value measured as a composite of the position of , and the position of the substrate stage. Separating the position of the substrate stage from this composite measurement value is important when considering the vibration of the carriage and the deformation of the carriage due to the movement of the center of gravity of the stage.
Very difficult. That is, in such a case, the position of the stage with respect to the mask is affected by the positional factors of the carriage, and there is a problem that the position of the stage cannot be accurately measured.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述の従来形の問題点に鑑み、ステッ
プアンドスキャン方式による投影露光装置において、キ
ャリッジに載置されたマスクに対する基板ステージの位
置の計測を、キャリッジの位置要因に影響されることな
く常に精度良く行うことにある。
In view of the above-mentioned problems of the conventional method, an object of the present invention is to measure the position of a substrate stage with respect to a mask placed on a carriage in a step-and-scan projection exposure apparatus, which is not affected by the carriage position factor. The goal is to always perform the process with high precision.

〔実施例の説明〕[Explanation of Examples]

以下、図面を用いて本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail using the drawings.

第1図は、本発明の一実施例に係る投影露光装置の概略
構成を示す。同図の装置は、ミラー投影系を用いて分割
走査により大画面を露光するステップアンドスキャン型
の露光装置である。
FIG. 1 shows a schematic configuration of a projection exposure apparatus according to an embodiment of the present invention. The apparatus shown in the figure is a step-and-scan type exposure apparatus that uses a mirror projection system to expose a large screen by divided scanning.

同図において、1は焼付パターンが形成されているフォ
トマスク、2はマスクlを搭載してx、  y。
In the same figure, 1 is a photomask on which a printed pattern is formed, and 2 is a photomask equipped with a mask L.

θ方向に移動可能なマスクステージである。3は基板、
4は基板3を保持してX、Y方向にステップ移動させる
ためのXYステージである。XYステージ4のステップ
移動は、後述するレーザ干渉計を用いた精密測長システ
ムによって制御される。5は凹面鏡と凸面鏡の組み合わ
せからなる周知のミラー投影系で、マスクステージ2に
よって所定位置にアライメントされたマスク1のパター
ン像を基板3上へ等倍投影する。6は不図示の光源から
の特定の波長の光で露光位置にあるマスク1を照明する
照明光学系で、マスク上のパターンを介して基板3上の
感光層を露光することにより、マスク上のパターンを基
板3に転写可能とするためのものである。
This is a mask stage that can be moved in the θ direction. 3 is the board,
4 is an XY stage for holding the substrate 3 and moving it step by step in the X and Y directions. The step movement of the XY stage 4 is controlled by a precision length measurement system using a laser interferometer, which will be described later. Reference numeral 5 denotes a well-known mirror projection system consisting of a combination of a concave mirror and a convex mirror, which projects the pattern image of the mask 1 aligned at a predetermined position by the mask stage 2 onto the substrate 3 at the same magnification. Reference numeral 6 denotes an illumination optical system that illuminates the mask 1 at the exposure position with light of a specific wavelength from a light source (not shown), and by exposing the photosensitive layer on the substrate 3 through the pattern on the mask, This is to enable the pattern to be transferred onto the substrate 3.

なお、投影系5の光軸は照明系6の光軸と一致させであ
る。
Note that the optical axis of the projection system 5 is made to coincide with the optical axis of the illumination system 6.

7はY方向(紙面に垂直な方向)に設けられた2つのガ
イドレール8に沿って移動可能なLAB (リニアエア
ベアリング)で、右側はX方向(紙面の左右方向)、Z
方向(紙面の上下方向)拘束タイプ、左側はZ方向拘束
タイプである。9はマスクステージ2とXYステージ4
を一定の関係で保持するホルダ(キャリッジ)で、LA
B7に支持されることによりマスクステージ2上のマス
ク1とXYステージ4上の基板3とを一体的に移送可能
としている。
7 is an LAB (linear air bearing) that can be moved along two guide rails 8 provided in the Y direction (perpendicular to the page);
The direction (vertical direction on the page) is a restraint type, and the one on the left is a Z direction restraint type. 9 is mask stage 2 and XY stage 4
A holder (carriage) that holds the LA in a certain relationship.
By being supported by B7, the mask 1 on the mask stage 2 and the substrate 3 on the XY stage 4 can be integrally transferred.

また、11はマスク1を順次マスクステージ2へ搬送し
交換するマスクチェンジャであり、13は投影系5.照
明系6およびガイドレール8を一定の関係で取付けるた
めの基台である。14はレーザチュ−ブ、15は反射ミ
ラー(スコヤ)、16はレーザ干渉計の干渉部分(変移
検出の為2光束を重ね合わせて干渉させる部分)である
。なお、レーザチューブ14からの光の経路を示すため
、L A B 7やホルダ9の一部分等は省略している
。又、レーザチューブ14、スコヤ15.干渉部分I6
の位置関係は模式的に示しである。
Further, 11 is a mask changer that sequentially transports the masks 1 to the mask stage 2 and exchanged them, and 13 is a projection system 5. This is a base for mounting the illumination system 6 and guide rail 8 in a fixed relationship. 14 is a laser tube, 15 is a reflecting mirror (SCOYA), and 16 is an interference part of a laser interferometer (a part where two beams of light are superimposed and interfered to detect a displacement). Note that in order to show the path of light from the laser tube 14, parts of LAB 7, holder 9, etc. are omitted. Also, laser tube 14, Scoya 15. Interference part I6
The positional relationship is shown schematically.

第2図は本実施例のレーザ干渉計システムの上面詳細図
である。図中、33はミラーであり、レーザチューブ】
4とミラー33は基台13に対し固定されている。レー
ザチューブ14からのビームはミラー33によりキャリ
ッジの進行方向に平行になるよう反射される。ミラー3
3からのビームはハーフミラ−22aにより分割され、
反射ビームはX方向変位を検出する為の干渉部分16a
に向う。又、透過ビームはミラー23aを経由して、ハ
ーフミラ−22bにより分割され、反射光はY方向変位
を検出する為の干渉部分16bに向う。更に、透過した
ビームはミラー23bを経由してθ方向変位を検出する
為の干渉部分16cに入射する。各干渉部分に入射した
ビームは干渉部分内の光分割面24により、例えばP波
は反射、S波は透過して分割される。X、 Y方向用干
渉部分16a、  16bの場合、透過したS波は固定
鏡21を経由し、ステージ4の位置にかかわらず常に一
定の光路長で直接ディテクタ20に入射する。反射した
P波はスコヤ15に入射し、反射して再び干渉部分にも
どって来るが、この時λ/4板25を2回通過するので
、もどって来たビームはS波になる。従ってビームは光
分割面24を通過し、固定鏡21を経由して再びスコヤ
15との間を往復する。
FIG. 2 is a detailed top view of the laser interferometer system of this embodiment. In the figure, 33 is a mirror and a laser tube]
4 and the mirror 33 are fixed to the base 13. The beam from the laser tube 14 is reflected by the mirror 33 so as to be parallel to the traveling direction of the carriage. mirror 3
The beam from 3 is split by a half mirror 22a,
The reflected beam is an interference portion 16a for detecting displacement in the X direction.
heading to Further, the transmitted beam passes through the mirror 23a and is split by the half mirror 22b, and the reflected light heads toward the interference portion 16b for detecting displacement in the Y direction. Further, the transmitted beam passes through the mirror 23b and enters the interference portion 16c for detecting the displacement in the θ direction. The beams incident on each interference part are split by a light splitting surface 24 in the interference part, with P waves being reflected and S waves being transmitted, for example. In the case of the interference portions 16a and 16b for the X and Y directions, the transmitted S wave passes through the fixed mirror 21 and directly enters the detector 20 with a constant optical path length regardless of the position of the stage 4. The reflected P wave enters the Scoya 15, is reflected, and returns to the interference part, but at this time it passes through the λ/4 plate 25 twice, so the returning beam becomes an S wave. Therefore, the beam passes through the light splitting plane 24, passes through the fixed mirror 21, and travels back and forth to the Scoya 15 again.

ここで又λ/4板25を2回通過するので、再びP波に
なって光分割面24で反射してディテクタ20に入射す
る。このP波(途中一部S波)の光路長は、ステージ4
.スコヤ15が変位するとその変位の4倍変化し、S波
と重ね合わせる事によりディテクタはドツプラー効果に
よるこの変化速度に見合った数の光強度変化を検出し、
信号をCPUに送り、CPU30でそれぞれの方向の変
位及び現在位置が算出される。θ方向用干渉部分の場合
、P波は同様の経路でディテクタに入射するが、S波も
図面再上部のλ/4板25とミラー23Cを経由し、ス
コヤとの間を2往復してディテクタ20に入射する。ス
コヤ15がθ方向に変位するとP波とS波の間で光路長
に差が生じ、この差の発生速度即ちθ方向速度に見合っ
た数の光強度変化が生じる。これをディテクタ20で検
出して、信号を受けたCPU30がθ方向変位及び現在
位置を算出する。
Here, since the light passes through the λ/4 plate 25 twice, it becomes a P wave again, is reflected by the light splitting surface 24, and enters the detector 20. The optical path length of this P wave (with some S waves on the way) is
.. When the Scoya 15 is displaced, it changes four times the displacement, and by superimposing it with the S wave, the detector detects a number of changes in light intensity commensurate with this speed of change due to the Doppler effect.
The signals are sent to the CPU, and the CPU 30 calculates the displacement in each direction and the current position. In the case of the interference part for the θ direction, the P wave enters the detector through the same path, but the S wave also passes through the λ/4 plate 25 and the mirror 23C at the top of the drawing, and travels back and forth between the Scoya and the detector twice. 20. When the Scoya 15 is displaced in the θ direction, a difference occurs in the optical path length between the P wave and the S wave, and a number of changes in light intensity occur corresponding to the speed at which this difference occurs, that is, the speed in the θ direction. This is detected by the detector 20, and the CPU 30 receiving the signal calculates the displacement in the θ direction and the current position.

第2図では省略しであるが、ハーフミラ−22a。Although omitted in FIG. 2, there is a half mirror 22a.

22b、22c、ミラー23a、23b、23c、干渉
部分16a、  16b、  16c、λ/4板25、
ディテクタ20はすべてキャリッジ9に固定されており
、キャリッジ9とは一体的に移動するが、ステージ4が
キャリッジ9上で移動しても、それぞれのキャリッジ9
上での位置は変化しない。ミラー33からのビームはキ
ャリッジ9の進行方向と平行なので、キャリッジが移動
しても常にハーフミラ−22aに入射し、各干渉計に振
分けられる。この時、各干渉部分とスコヤ15との間隔
は、キャリッジ9の位置に左右されないのでステージの
位置を精度良く計測できる。
22b, 22c, mirrors 23a, 23b, 23c, interference portions 16a, 16b, 16c, λ/4 plate 25,
The detectors 20 are all fixed to the carriage 9 and move integrally with the carriage 9, but even if the stage 4 moves on the carriage 9, each
The position above does not change. Since the beam from the mirror 33 is parallel to the traveling direction of the carriage 9, it always enters the half mirror 22a even if the carriage moves, and is distributed to each interferometer. At this time, since the distance between each interference portion and the scorer 15 is not affected by the position of the carriage 9, the position of the stage can be measured with high accuracy.

第1図の装置において、第1シヨツトの露光を行う場合
、まず、マスクlを装置側のマスク基準マークに対し顕
微鏡を用いて位置決めする。その後、マスク1の位置決
めマークと基板3の位置決めマークとを顕微鏡を用いて
計測してマスクlと基板3の位置決めをし、第51シヨ
ツトの露光を行う。
In the apparatus shown in FIG. 1, when exposing the first shot, first, the mask 1 is positioned with respect to the mask reference mark on the apparatus side using a microscope. Thereafter, the positioning marks of the mask 1 and the substrate 3 are measured using a microscope to position the mask 1 and the substrate 3, and the 51st shot is exposed.

次に、第2シヨツト以降の露光を行う場合は、レーザチ
ューブ14.スコヤ15.干渉部分16により構成され
るレーザ干渉計を用いて基板3を搭載したステージ4の
位置を計測しつつ、基板3が所定の位置〔発明の効果〕 以上説明したように、本実施例によればステップアンド
スキャン方式等による投影露光装置において、被露光体
を搭載するステージとそのステージの位置計測をするた
めのレーザ干渉発生部を原板と被露光体とを一体的に移
送する部材上に設けているので、原板に対するステージ
の位置の計測はこの移送部材の位置要因に影響されるこ
となく常に精度良く行うことができる。
Next, when performing exposure after the second shot, the laser tube 14. Scoya 15. While measuring the position of the stage 4 on which the substrate 3 is mounted using a laser interferometer constituted by the interference portion 16, the substrate 3 is placed at a predetermined position [Effects of the Invention] As described above, according to this embodiment In a projection exposure apparatus using a step-and-scan method, a stage on which an object to be exposed is mounted and a laser interference generating section for measuring the position of the stage are provided on a member that integrally transports the original and the object to be exposed. Therefore, the position of the stage relative to the original plate can always be measured with high accuracy without being affected by the positional factors of the transfer member.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る投影露光装置の概略
構成図である。 第2図は、同装置〜のレーザ干渉計の構成を示す上面図
である。
FIG. 1 is a schematic diagram of a projection exposure apparatus according to an embodiment of the present invention. FIG. 2 is a top view showing the configuration of the laser interferometer of the apparatus.

Claims (1)

【特許請求の範囲】[Claims] (1)原版と被露光体とを露光手段に対して相対的に走
査させる為の走査手段上に、原版又は被露光体の少なく
とも2方向の変位検出用レーザ干渉発生部を設置した事
を特徴とする露光装置。
(1) A laser interference generator for detecting displacement of the original or the exposed object in at least two directions is installed on the scanning means for scanning the original and the exposed object relative to the exposure means. exposure equipment.
JP62031862A 1987-02-14 1987-02-14 Exposure device Pending JPS63199417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62031862A JPS63199417A (en) 1987-02-14 1987-02-14 Exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62031862A JPS63199417A (en) 1987-02-14 1987-02-14 Exposure device

Publications (1)

Publication Number Publication Date
JPS63199417A true JPS63199417A (en) 1988-08-17

Family

ID=12342859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62031862A Pending JPS63199417A (en) 1987-02-14 1987-02-14 Exposure device

Country Status (1)

Country Link
JP (1) JPS63199417A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03214721A (en) * 1990-01-19 1991-09-19 Canon Inc Aligner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940532A (en) * 1982-08-30 1984-03-06 Hitachi Ltd Projecting exposure and device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940532A (en) * 1982-08-30 1984-03-06 Hitachi Ltd Projecting exposure and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03214721A (en) * 1990-01-19 1991-09-19 Canon Inc Aligner

Similar Documents

Publication Publication Date Title
JP4332486B2 (en) Method and apparatus for repeatedly projecting a mask pattern onto a substrate using time-saving height measurement
US4952060A (en) Alignment method and a projection exposure apparatus using the same
US5003342A (en) Exposure apparatus
KR100922397B1 (en) Lithographic apparatus and method
JP5507875B2 (en) Exposure apparatus, exposure method, and device manufacturing method
US7119886B2 (en) Lithographic apparatus, device manufacturing method, and angular encoder
US6975384B2 (en) Exposure apparatus and method
US4595282A (en) Recording apparatus
WO2006068288A1 (en) Method for measuring position of mask surface in height direction, exposure apparatus and exposure method
JPH0743245B2 (en) Alignment device
KR20010091971A (en) Alignment apparatus, alignment method, exposure apparatus, and exposure method
US5671057A (en) Alignment method
JP5137526B2 (en) Shape measuring apparatus, shape measuring method, and exposure apparatus
JP2000299276A (en) Aligner
JPS62150106A (en) Apparatus for detecting position
JP3290233B2 (en) Positioning method
JPS63199417A (en) Exposure device
JPH1050600A (en) Method and device for projection exposure
US4808002A (en) Method and device for aligning first and second objects relative to each other
JPH11233420A (en) Projection aligner and position detection method
JP3237022B2 (en) Projection exposure equipment
JPH08227845A (en) Method for inspecting projection optical system and projection exposure apparatus for executing method thereof
JPS62200724A (en) Projection and exposure device
JPH06163354A (en) Projection exposure device
JPH0630335B2 (en) Exposure equipment