JPS6319840Y2 - - Google Patents

Info

Publication number
JPS6319840Y2
JPS6319840Y2 JP1979029053U JP2905379U JPS6319840Y2 JP S6319840 Y2 JPS6319840 Y2 JP S6319840Y2 JP 1979029053 U JP1979029053 U JP 1979029053U JP 2905379 U JP2905379 U JP 2905379U JP S6319840 Y2 JPS6319840 Y2 JP S6319840Y2
Authority
JP
Japan
Prior art keywords
neutron
moderator
neutrons
aluminum
heavy water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1979029053U
Other languages
Japanese (ja)
Other versions
JPS55130300U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1979029053U priority Critical patent/JPS6319840Y2/ja
Publication of JPS55130300U publication Critical patent/JPS55130300U/ja
Application granted granted Critical
Publication of JPS6319840Y2 publication Critical patent/JPS6319840Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Particle Accelerators (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

この考案は中性子照射装置に関する。 従来の中性子照射装置においては、重水などか
らなる減速材を用い、これを中性子取出口に差入
れたり、中性子取出口から引抜いたりすることに
より、熱中性子(エネルギ範囲が0.5eV以下の中
性子)と高速中性子(エネルギ範囲が0.1MeV以
上の中性子)を選択して取出している。ところ
が、近年、放射線医療の分野において熱外中性子
(エネルギ範囲が0.5ev〜0.1MeVの中性子)を用
いた照射方法が行なわれるようになり、熱外中性
子のみを取出すことができる中性子照射装置に対
する要望が高まつている。すなわち、放射線医療
の分野では、患者の被曝を低減するため、とくに
高速中性子を嫌い、熱外中性子とくにそのうち約
0.5eV〜100eVの範囲を主体にして照射する中性
子のエネルギをある程度操作しうる装置が求めら
れている。 この考案は、上記の実情に鑑みてなされたもの
であつて、熱外中性子のみを選択して取出すこと
ができる中性子照射設備を堤供することを目的と
する。 以下この考案を図面に示す実施例を参照して説
明する。 図面は中性子照射装置の一部分を示し、炉心1
の壁2に設けられた中性子取出口(照射口)3
に、炉心1側から取出口3の外側に向つて、アル
ミニウムからなる減速材4、重水からなる減速材
5、熱中性子吸収材6およびγ線遮蔽体7が配置
されている。 アルミニウムからなる減速材4は3個設けられ
ており、各減速材4はそれぞれ別個に中性子取出
口3の長手方向に対して直角な方向に移動自在で
あり、中性子取出口3内に差入れられて取出口3
を遮蔽する位置(以下、作用位置という)および
中性子取出口3から引抜かれて、取出口3側方に
設けられた凹所8に退入した位置(以下、不作用
位置という)のいずれかに位置している。重水か
らなる減速材5は中性子取出口3の中間部にこれ
を塞ぐように固定された容器9に入れられる。こ
の容器9は、取出口3の長手方向に配置されて互
いに独立した3つの室10に分けられており、各
室10は開閉弁11,12を有する管13,14
により減速材貯蔵タンク15および減速材移送ポ
ンプ16に接続されている。熱中性子吸収材6お
よびγ線遮蔽体7は、それぞれ、アルミニウムか
らなる減速材4と同様、中性子取出口3の長手方
向に対して直角な方向に移動自在であり、作用位
置と不作用位置のいずれかに位置している。 3つのアルミニウムからなる減速材4のうちの
任意のもののみを作用位置に位置決めさせること
により、アルミニウムからなる減速材4全体の厚
さを調節することができる。また、容器9の3つ
の室10にはそれぞれ別個に重水を供給すること
ができるので、任意の室10にのみ重水を供給す
ることにより、重水からなる減速材5全体の厚さ
を調節することができる。 中性子取出口3から高速中性子を取出す場合に
は、アルミニウムからなる減速材4を全て不作用
位置に移動させ、容器9の全ての室10から重水
を排出し、熱中性子吸収材6とγ線遮蔽体7とを
作用位置に移動させる。 熱中性子を取出す場合には、全てのアルミニウ
ムからなる減速材4とγ線遮蔽体7とを作用位置
に移動させ、容器9の全ての室10に重水を供給
し、熱中性子吸収材6を不作用位置に移動させ
る。 熱外中性子を取出す場合には、熱中性子吸収材
6とγ線遮蔽体7とを作用位置に移動させ、アル
ミニウムからなる減速材4全体の厚さと重水から
なる減速材5全体の厚さを、必要な熱外中性子の
エネルギに応じて調節する。厚さ20cmの重水の炉
心側に、同じ厚さの黒鉛を設けた場合と、同じ厚
さのアルミニウムを設けた場合のそれぞれについ
て、重水出口点の中性子束の比率を計算してみる
と、次表のようになる。
This invention relates to a neutron irradiation device. Conventional neutron irradiation equipment uses a moderator made of heavy water, etc., and by inserting it into the neutron extraction port or pulling it out from the neutron extraction port, thermal neutrons (neutrons with an energy range of 0.5 eV or less) and high-velocity neutrons are generated. Neutrons (neutrons with an energy range of 0.1 MeV or higher) are selected and extracted. However, in recent years, irradiation methods using epithermal neutrons (neutrons with an energy range of 0.5ev to 0.1MeV) have been used in the field of radiation medicine, and there has been a demand for neutron irradiation equipment that can extract only epithermal neutrons. is increasing. In other words, in the field of radiation medicine, in order to reduce patient exposure, fast neutrons are particularly disliked, and epithermal neutrons, especially about
There is a need for a device that can manipulate the energy of irradiated neutrons to a certain extent, mainly in the range of 0.5eV to 100eV. This invention was made in view of the above-mentioned circumstances, and the purpose is to provide a neutron irradiation facility that can selectively extract only epithermal neutrons. This invention will be explained below with reference to embodiments shown in the drawings. The drawing shows a part of the neutron irradiation equipment, and shows the reactor core 1.
Neutron extraction port (irradiation port) 3 provided in the wall 2 of
A moderator 4 made of aluminum, a moderator 5 made of heavy water, a thermal neutron absorber 6, and a γ-ray shield 7 are arranged from the core 1 side toward the outside of the extraction port 3. Three moderators 4 made of aluminum are provided, and each moderator 4 is separately movable in a direction perpendicular to the longitudinal direction of the neutron extraction port 3, and is inserted into the neutron extraction port 3. Outlet 3
(hereinafter referred to as the working position) and a position where the neutron is pulled out from the neutron extraction port 3 and retreats into the recess 8 provided on the side of the neutron extraction port 3 (hereinafter referred to as the non-working position). positioned. The moderator 5 made of heavy water is placed in a container 9 fixed to the middle of the neutron extraction port 3 so as to close it. This container 9 is divided into three mutually independent chambers 10 arranged in the longitudinal direction of the outlet 3, and each chamber 10 has a pipe 13, 14 having an on-off valve 11, 12.
The moderator storage tank 15 and the moderator transfer pump 16 are connected to the moderator storage tank 15 and the moderator transfer pump 16. Like the moderator 4 made of aluminum, the thermal neutron absorber 6 and the γ-ray shield 7 are movable in a direction perpendicular to the longitudinal direction of the neutron extraction port 3, and have an active position and a non-active position. located in either. By positioning only any one of the three moderators 4 made of aluminum to the active position, the overall thickness of the moderator 4 made of aluminum can be adjusted. Moreover, since heavy water can be supplied to each of the three chambers 10 of the container 9 separately, by supplying heavy water only to an arbitrary chamber 10, the overall thickness of the moderator 5 made of heavy water can be adjusted. I can do it. When extracting fast neutrons from the neutron extraction port 3, all moderators 4 made of aluminum are moved to non-active positions, heavy water is discharged from all chambers 10 of the container 9, and the thermal neutron absorber 6 and gamma ray shielding material are removed. body 7 to the working position. When extracting thermal neutrons, the moderator 4 and the γ-ray shield 7 made entirely of aluminum are moved to the active position, heavy water is supplied to all the chambers 10 of the container 9, and the thermal neutron absorber 6 is completely removed. Move to working position. When extracting epithermal neutrons, the thermal neutron absorber 6 and the γ-ray shield 7 are moved to the active position, and the entire thickness of the moderator 4 made of aluminum and the entire thickness of the moderator 5 made of heavy water are Adjust according to the required epithermal neutron energy. Calculating the ratio of neutron flux at the heavy water exit point for the case where graphite of the same thickness is provided on the core side of heavy water with a thickness of 20 cm, and the case where aluminum of the same thickness is provided, respectively, are as follows. It will look like a table.

【表】 この表から明らかなように、黒鉛の代りにアル
ミニウムを用いることにより、熱外中性子の中性
子束は2倍強となる。これは、アルミニウムにお
いては、中性子エネルギが高くなるにつれて全断
面積が大きくなることによる。アルミニウムの代
りにジルコニウムを用いても、中性子エネルギが
高くなるにつれて全断面積が大きくなるため、同
様の結果が得られる。 すなわち、黒鉛の場合、全断面積は0.1MeV以
上で低下するため、黒鉛層を通過した中性子は高
速中性子成分が多くなり、この考案の目的には適
していない。これに対し、アルミニウムおよびジ
ルコニウムは0.1MeV以上のエネルギでの全断面
積が低下せずかえつて大きくなつているため、こ
の考案の目的に最適である。また、この考案の目
的のためには、熱外中性子のエネルギ範囲(とく
に0.5eV〜100eV)での吸収断面積が小さいこと
も必須の条件であるが、アルミニウムおよびジル
コニウムはもちろんこの条件を満たしている。 以上のように、この実施例によれば、高速中性
子、熱外中性子および熱中性子を選択的に効率よ
く取出すことができる。 この考案による中性子照射装置は、炉心と中性
子取出口の間に、アルミニウムまたはジルコニウ
ムからなる減速材、重水からなる減速材、熱中性
子吸収材およびγ線遮蔽体を備えているので、こ
れらの厚さを調節することにより、任意のエネル
ギをもつ熱外中性子のみを選択して取出すことが
できる。
[Table] As is clear from this table, by using aluminum instead of graphite, the neutron flux of epithermal neutrons is more than doubled. This is because in aluminum, the total cross-sectional area increases as the neutron energy increases. Similar results can be obtained by using zirconium instead of aluminum, since the total cross-sectional area increases as the neutron energy increases. That is, in the case of graphite, the total cross-sectional area decreases above 0.1 MeV, so the neutrons that pass through the graphite layer contain many fast neutron components, which is not suitable for the purpose of this invention. On the other hand, aluminum and zirconium are ideal for the purpose of this invention because their total cross-sectional area does not decrease at energies above 0.1 MeV, but rather increases. Furthermore, for the purpose of this invention, it is essential that the absorption cross section of epithermal neutrons be small in the energy range (especially 0.5eV to 100eV), and of course aluminum and zirconium meet this condition. There is. As described above, according to this embodiment, fast neutrons, epithermal neutrons, and thermal neutrons can be selectively and efficiently extracted. The neutron irradiation equipment according to this invention is equipped with a moderator made of aluminum or zirconium, a moderator made of heavy water, a thermal neutron absorber, and a gamma ray shield between the core and the neutron extraction port. By adjusting , only epithermal neutrons with arbitrary energy can be selected and extracted.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの考案の実施例の一部分を示す垂直断
面図である。 1……炉心、3……中性子取出口、4……アル
ミニウムからなる減速材、5……重水からなる減
速材、6……熱中性子吸収材、7……γ線遮蔽
体。
The drawing is a vertical sectional view showing a part of an embodiment of the invention. 1... Reactor core, 3... Neutron extraction port, 4... Moderator made of aluminum, 5... Moderator made of heavy water, 6... Thermal neutron absorber, 7... γ-ray shield.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 炉心1と中性子取出口3の間に、アルミニウム
またはジルコニウムからなる減速材4、重水から
なる減速材5、熱中性子吸収材6およびγ線遮蔽
体7を備えている中性子照射装置。
A neutron irradiation device comprising a moderator 4 made of aluminum or zirconium, a moderator 5 made of heavy water, a thermal neutron absorber 6, and a γ-ray shield 7 between a reactor core 1 and a neutron extraction port 3.
JP1979029053U 1979-03-06 1979-03-06 Expired JPS6319840Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1979029053U JPS6319840Y2 (en) 1979-03-06 1979-03-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979029053U JPS6319840Y2 (en) 1979-03-06 1979-03-06

Publications (2)

Publication Number Publication Date
JPS55130300U JPS55130300U (en) 1980-09-13
JPS6319840Y2 true JPS6319840Y2 (en) 1988-06-02

Family

ID=28876155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979029053U Expired JPS6319840Y2 (en) 1979-03-06 1979-03-06

Country Status (1)

Country Link
JP (1) JPS6319840Y2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6156970B2 (en) * 2012-12-06 2017-07-05 三菱重工メカトロシステムズ株式会社 Neutron velocity adjusting device and neutron generator
JP6261919B2 (en) * 2013-09-06 2018-01-17 三菱重工機械システム株式会社 Neutron irradiation equipment
NL2013872B1 (en) * 2014-11-25 2016-10-11 Univ Delft Tech Flexible Irradiation Facility.
EP3342458B1 (en) * 2015-09-30 2019-06-05 Neuboron Medtech Ltd. Beam shaper for neutron capture therapy
CN111821580A (en) * 2019-04-17 2020-10-27 中硼(厦门)医疗器械有限公司 Neutron capture therapy system and beam shaper for neutron capture therapy system

Also Published As

Publication number Publication date
JPS55130300U (en) 1980-09-13

Similar Documents

Publication Publication Date Title
US5433693A (en) Neutron-capture therapy apparatus and method
US5703918A (en) Moderator material for neutrons and use of said material
CN207575566U (en) A kind of neutron capture therapy device
EP3026673B1 (en) Neutron regulation apparatus and neutron irradiation apparatus
US5903622A (en) Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method
CN111420307A (en) Neutron beam device and neutron irradiation device
JPS6319840Y2 (en)
CN1277591C (en) Neutron radiating device in hospital
Aizawa et al. Remodeling and dosimetry on the neutron irradiation facility of the Musashi Institute of Technology Reactor for boron neutron capture therapy
CN104771837A (en) Cancericidal nuclide neutron knife adopting one-reactor and three-irradiation-seat layout
Hang et al. Monte Carlo study of the beam shaping assembly optimization for providing high epithermal neutron flux for BNCT based on D–T neutron generator
CN109925606B (en) Neutron capture therapy system
CN109420261B (en) Neutron capture therapy system
DE212022000081U1 (en) A beamformer for neutron capture therapy
Tahara et al. Engineering design of a spallation reaction-based neutron generator for boron neutron capture therapy
CN106938124B (en) The slow material of neutron
CN116600856A (en) Apparatus for generating, moderating and configuring neutron beams for neutron capture therapy
RU2252798C2 (en) Irradiating device for carrying out neutron capture therapy
Taheri et al. Dose mapping simulation and BSA design for improving the dosimetry accuracy for research reactor BNCT
TW201912201A (en) Neutron capture therapy system
Ghal-Eh et al. A variable-geometry beam-shaping assembly for accelerator-based BNCT
Kishi et al. Status of the medical irradiation facility at JRR-4
CN107240430B (en) Shielding device for beam shaping body
Russell Jr et al. Georgia Tech Research Reactor Epithermal Beam
Sakurai et al. Medical irradiation facility at JRR-4