JPS63198068A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS63198068A
JPS63198068A JP3122887A JP3122887A JPS63198068A JP S63198068 A JPS63198068 A JP S63198068A JP 3122887 A JP3122887 A JP 3122887A JP 3122887 A JP3122887 A JP 3122887A JP S63198068 A JPS63198068 A JP S63198068A
Authority
JP
Japan
Prior art keywords
group
electrophotographic photoreceptor
atom
titanium phthalocyanine
charge transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3122887A
Other languages
Japanese (ja)
Inventor
Toshio Enokida
年男 榎田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP3122887A priority Critical patent/JPS63198068A/en
Publication of JPS63198068A publication Critical patent/JPS63198068A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0672Dyes containing a methine or polymethine group containing two or more methine or polymethine groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain an electrophotographic sensitive body high in sensitivity and good in stability during repeated uses and good in photomemory by using titanium phthalocyanine compound as an electric charge generating material and a specified compound as an electric charge transfer material. CONSTITUTION:The titanium phthalocyanine compound to be used as the charge generating material formed on a conductive substrate is represented by formula I in which R1 is halogen, 0 atom, or alkoxy group; each of R2-R5 is H, halogen atom, alkyl, or alkoxy group; (j) is 1 or 2; each of (k), (l), (m), and (n) is an integer of 0-4; each of R6-R9 is H atom, alkyl, aralkyl, aryl, or alkoxy group, or each of (R6 and R7) and (R8 and R9) are residual group which may form a cyclic amino group together with each adjacent N atom, thus permitting the obtained electrophotographic sensitive body to be superior in exposure sensitivity characteristics, high in sensitivity in the long wavelength region of >=780nm, stable during repeated uses, and good in photomemory.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、電子写真感光体に関し、更に詳細に言えば、
優れた露光感光特性、波長特性を有する電子写真感光体
に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to an electrophotographic photoreceptor, and more specifically,
The present invention relates to an electrophotographic photoreceptor having excellent exposure sensitivity characteristics and wavelength characteristics.

(従来の技術) 従来、電子写真感光体の感光体としては、セレン。(Conventional technology) Conventionally, selenium has been used as the photoreceptor for electrophotographic photoreceptors.

セレン合金、酸化亜鉛、硫化カドミウムおよびテルルな
どの無機光導電体を用いたものが主として使用されて来
た。近年、半導体レーザーの発展は目覚ましく、小型で
安定したレーザー発振器が安価に入手出来るようになり
、電子写真用光源として用いられ始めている。しかし、
これらの装置に短波長光を発振する半導体レーザーを用
いるのは、寿命、出力等を考えれば問題が多い、従って
、従来用いられて来た短波長領域に感度を持つ材料を半
導体レーザー用に使うには不適当であり、長波長領域(
780nm以上)に高感度を持つ材料を研究する必要が
生じて来た。最近は有機系の材料、特に長波長領域に感
度を持つことが期待されるフタロシアニンを使用し、こ
れを積層した積層型有機感光体の研究が盛んに行なわれ
ている。長波長領域に高感度を持つフタロシアニン(P
c)系材料としては、既に、ε型銅フタロシアニン(ε
−CuPc)、X型無金属フタロシアニン(X−R2P
c)およびτ型無金属フタロシアニン(τ−H2Pc)
が公知であるが、従来の電荷移動剤と組み合わせて形成
された電子写真感光体は。
Inorganic photoconductors such as selenium alloys, zinc oxide, cadmium sulfide and tellurium have been used primarily. In recent years, the development of semiconductor lasers has been remarkable, and small and stable laser oscillators have become available at low cost and are beginning to be used as light sources for electrophotography. but,
Using semiconductor lasers that emit short wavelength light in these devices has many problems in terms of lifespan, output, etc. Therefore, materials that are sensitive to the short wavelength region that have been used in the past should be used for semiconductor lasers. It is unsuitable for long wavelength region (
It has become necessary to research materials with high sensitivity to wavelengths of 780 nm and above. Recently, research has been actively conducted on multilayer organic photoreceptors using organic materials, especially phthalocyanine, which is expected to have sensitivity in the long wavelength region. Phthalocyanine (P) has high sensitivity in the long wavelength region.
As a c) type material, ε-type copper phthalocyanine (ε
-CuPc), X-type metal-free phthalocyanine (X-R2P
c) and τ-type metal-free phthalocyanine (τ-H2Pc)
is known, but electrophotographic photoreceptors formed in combination with conventional charge transfer agents.

感度、繰り返し使用時の安定性およびフォトメモリー性
等に問題があり、実際に使用する場合充分とは言えない
レベルであった。
There were problems with sensitivity, stability during repeated use, photomemory properties, etc., and the level was not sufficient for actual use.

(発明が解決しようとする問題点) 本発明の目的は、優れた露光感度特性、780nm以上
の長波長領域に高感度、繰り返し使用時に安定で、フォ
トメモリー性の良好である電子写真感光体を得ることに
ある。
(Problems to be Solved by the Invention) An object of the present invention is to provide an electrophotographic photoreceptor that has excellent exposure sensitivity characteristics, high sensitivity in the long wavelength region of 780 nm or more, is stable during repeated use, and has good photomemory properties. It's about getting.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段および作用)上記の目的
は、導電性支持体上に、電荷発生剤として一般式(1)
で示されるチタンフタロシアニン系化合物を使用し、電
荷移動剤として一般式(n)で示される化合物を使用す
ることを特徴とする本発明の電子写真感光体により達成
される。
(Means and effects for solving the problem) The above object is to apply a compound of the general formula (1) as a charge generating agent on a conductive support.
This is achieved by the electrophotographic photoreceptor of the present invention, which is characterized in that it uses a titanium phthalocyanine compound represented by the formula (n) and a compound represented by the general formula (n) as a charge transfer agent.

本発明で使用するチタンフタロシアニン系化合物は、モ
ーザーおよびトーマスの「フタロシアニン化合物J (
Mo5er and Thon+as ”Phthal
ocyanine Comp。
The titanium phthalocyanine compound used in the present invention is ``phthalocyanine compound J'' by Moser and Thomas.
Mo5er and Thon+as ”Phthal
ocyanine Comp.

unds’ )記載の方法、USP3825422号、
特開昭59−49544号、特開昭59−166959
号、特開昭61−109056号、特開昭61−171
771号、特開昭61−217050号および特開昭6
1−239248号公報記載の方法やその他の公知方法
により製着されたものでも良い、チタンフタロシアニン
系化合物は、一般式〔I〕で表されるが、フタロシアニ
ンの中心核にチタニウムが配位したものであれば、いず
れの結晶状態、を換基を有していても良い、また、X線
回折図は置換基の種類や数により影響を受けず、結晶状
態により差異(式中+R1はハロゲン原子、酸素原子、
アルコキシ基を表し、RオI Rs l R4およびR
3は、水素原子、ハロゲン原子、アルキル基、アルコキ
シ基。
unds'), USP No. 3,825,422,
JP-A-59-49544, JP-A-59-166959
No., JP-A-61-109056, JP-A-61-171
No. 771, JP-A-61-217050 and JP-A-6
The titanium phthalocyanine compound, which may be produced by the method described in Publication No. 1-239248 or other known methods, is represented by the general formula [I], and is a compound in which titanium is coordinated to the central core of phthalocyanine. If so, any crystal state may have a substituent. In addition, the X-ray diffraction pattern is not affected by the type or number of substituents, and differs depending on the crystal state (in the formula, +R1 is a halogen atom). , oxygen atom,
Represents an alkoxy group, R o I Rs l R4 and R
3 is a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group.

了り−ル基、アリールオキシ基、ニトロ基、シアノ基、
水酸基、ベンジルオキシ基、アミノ基等の置換基を表し
、jは1または2の整数、 k、  l、 mおよ“″
。〜4′)整数を表1・ゝ     〔1コ電荷移動剤
は、一般式(II)で示される化合物である。
Aryl group, aryloxy group, nitro group, cyano group,
Represents a substituent such as a hydroxyl group, a benzyloxy group, an amino group, j is an integer of 1 or 2, k, l, m and ""
. ~4') Integers are shown in Table 1. [1] The charge transfer agent is a compound represented by the general formula (II).

(式中+ Rh+ Rtl RsおよびR1は、水素原
子。
(In the formula, + Rh + Rtl Rs and R1 are hydrogen atoms.

アルキル基、アラルキル基、アリル基、アルコキシ基、
またはR8とRt、RsとR9とが結合する窒素原子と
共に環式アミノ基を形成する残基を表す。)感光体は、
導電性基板上に、下引き層、電荷発生層、電荷移動層の
順に積層されたものが、高感度であるため望ましいが、
下引き層、電荷移動層、電荷発生層の順で積層されたも
の、下引き層上に電荷発生剤と電荷移動剤とを適当な樹
脂で分散して単層塗布されたものでも良い。
Alkyl group, aralkyl group, allyl group, alkoxy group,
Alternatively, it represents a residue that forms a cyclic amino group together with the nitrogen atom to which R8 and Rt or Rs and R9 are bonded. ) The photoreceptor is
A structure in which an undercoat layer, a charge generation layer, and a charge transfer layer are laminated in this order on a conductive substrate is desirable because of its high sensitivity.
It may be one in which an undercoat layer, a charge transfer layer, and a charge generation layer are laminated in this order, or one in which a charge generation agent and a charge transfer agent are dispersed in a suitable resin and coated in a single layer on the undercoat layer.

また、必要に応じて下引き層を除いたもの、樹脂または
無機化合物で最上層にオーバーコート層を設けたもので
も良い。
Alternatively, the undercoat layer may be removed or an overcoat layer made of a resin or an inorganic compound may be provided as the uppermost layer, if necessary.

電荷発生層は、蒸着法または分散塗工法により形成され
る。
The charge generation layer is formed by a vapor deposition method or a dispersion coating method.

蒸着は、400℃〜600℃の温度範囲で10−s〜1
0−”Torrの真空下で行われる。分散塗工は、樹脂
なしで、あるいは接着性向上などの目的で、適当な樹脂
溶液中にチタンフタロシアニン系化合物を分散した塗液
を使用して行われる。塗工は、スピンコーター、アプリ
ケーター、浸漬コーターおよびスプレーコーター等の装
置を用いて行い、乾燥は、望ましくは加熱乾燥で40〜
200℃、10分〜6時間の範囲で静止または送風条件
下で行なう。乾燥後膜厚は0.01から5ミクロン、望
ましくは0.1から1ミクロンになるように塗工される
Vapor deposition was performed for 10-s to 1 at a temperature range of 400°C to 600°C.
It is carried out under a vacuum of 0-'' Torr. Dispersion coating is carried out without a resin or by using a coating liquid in which a titanium phthalocyanine compound is dispersed in a suitable resin solution for the purpose of improving adhesion. Coating is performed using equipment such as a spin coater, applicator, dip coater, and spray coater, and drying is preferably performed by heating for 40 to 40 minutes.
The test is carried out at 200° C. for 10 minutes to 6 hours under stationary or ventilation conditions. After drying, the film is coated to a thickness of 0.01 to 5 microns, preferably 0.1 to 1 micron.

電荷発生層を塗工によって形成する際に用いうるバイン
ダーとしては広範な絶縁性樹脂から選択でき。
The binder that can be used when forming the charge generation layer by coating can be selected from a wide variety of insulating resins.

ポリ−N−ビニルカルバゾール、ポリビニルアントラセ
ンやポリビニルピレンなどの有機光導電性ポリマーも使
用出来る。好ましくは、ポリビニルブチラール、ポリエ
ステル、ポリカーボネート、ポリメチルメタクリレート
、アクリル、シリコン、ウレタン、エポキシ、フェノキ
シ、塩化ビニル、塩化ビニル−酢酸ビニル共重合体等の
樹脂が使用されるが。
Organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene and polyvinylpyrene can also be used. Preferably, resins such as polyvinyl butyral, polyester, polycarbonate, polymethyl methacrylate, acrylic, silicone, urethane, epoxy, phenoxy, vinyl chloride, and vinyl chloride-vinyl acetate copolymer are used.

絶縁性樹脂であれば、いずれのものでも良い。電荷発生
層中に含有する樹脂は、電荷発生剤に対して。
Any insulating resin may be used. The resin contained in the charge generation layer is different from the charge generation agent.

100重量%以下、好ましくは40重量%以下が適して
いる。また、これらの樹脂は、1種または2種以上組み
合わせても良く、必要に応じて、熱硬化性樹脂を架橋す
る目的でイソシアネート、メラミン樹脂などの架橋用樹
脂を添加して使用することも可能である。
A content of 100% by weight or less, preferably 40% by weight or less is suitable. In addition, these resins may be used alone or in combination of two or more, and if necessary, it is also possible to add a crosslinking resin such as isocyanate or melamine resin for the purpose of crosslinking the thermosetting resin. It is.

使用する溶剤は、樹脂の種類により異なり、後述する電
荷移動層や下引き層に、悪影響を及ぼさないものが選択
される。具体的にはベンゼン、キシレン。
The solvent to be used varies depending on the type of resin, and a solvent is selected that does not adversely affect the charge transfer layer and undercoat layer, which will be described later. Specifically benzene and xylene.

リグロイン、モノクロルベンゼン、ジクロルベンゼンな
どの芳香族炭化水素、アセトン、メチルエチルケトン、
シクロヘキサノンなどのケトン類、メタノール、エタノ
ール、イソプロパツールなどのアルコール類、酢酸エチ
ル、メチルセロソルブ、などのエステル類、四塩化炭素
、クロロホルム、ジクロルメタン、ジクロルエタン、ト
リクロルエチレンなどの脂肪族ハロゲン化炭化水素類、
テトラヒドロフラン、ジオキサン、エチレングリコール
モノメチルエーテルなどのエーテル類、N、N−ジメチ
ルホルムアミド、N、N−ジメチルアセトアミドなどの
アミド類、およびジメチルスルホキシドなどのスルホキ
シド類が用いられる。
Aromatic hydrocarbons such as ligroin, monochlorobenzene, dichlorobenzene, acetone, methyl ethyl ketone,
Ketones such as cyclohexanone, alcohols such as methanol, ethanol, and isopropanol, esters such as ethyl acetate and methyl cellosolve, and aliphatic halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, dichloroethane, and trichlorethylene. ,
Ethers such as tetrahydrofuran, dioxane and ethylene glycol monomethyl ether, amides such as N,N-dimethylformamide and N,N-dimethylacetamide, and sulfoxides such as dimethylsulfoxide are used.

電荷移動層は、電荷移動剤を単体または結着剤樹脂と共
に適切な溶剤に溶解分散して塗工形成される。
The charge transfer layer is formed by coating and dispersing a charge transfer agent alone or together with a binder resin in an appropriate solvent.

電荷移動剤は、一般式(n)で示される化合物を使用す
る。電荷移動層に用いられる樹脂は、電荷発生層で使用
される樹脂として挙げたものの中から選択される。塗工
は、スピンコーター、アプリケーター。
As the charge transfer agent, a compound represented by general formula (n) is used. The resin used in the charge transport layer is selected from those listed as resins used in the charge generation layer. Coating is done using a spin coater or applicator.

浸漬コーターおよびスプレーコーター等の装置を用いて
行い、乾燥後の膜厚は、5から50μm、望ましくは、
10〜20μmが良い。
It is carried out using a device such as a dip coater or a spray coater, and the film thickness after drying is 5 to 50 μm, preferably,
The thickness is preferably 10 to 20 μm.

樹脂と一般式(II)の化合物との配合割合は、樹脂1
00重量部当たり、一般式(II)の化合物を10〜5
00重量部とすることが好ましい。また、これらの樹脂
は、1種または2種以上組み合わせて用いても良い。
The blending ratio of the resin and the compound of general formula (II) is as follows: resin 1
10 to 5 parts of the compound of general formula (II) per 00 parts by weight
It is preferable to set it as 00 parts by weight. Further, these resins may be used alone or in combination of two or more.

また1本発明の電荷移動層を形成させる際に使用する溶
剤は多数の有用な有機溶剤を包含している。
Furthermore, the solvent used in forming the charge transport layer of the present invention includes many useful organic solvents.

例えば、ベンゼン、トルエン、キシレン、クロルベンゼ
ン、ナフタリンなどの芳香族炭化水素類、アセトン2−
ブタノンなどのケトン類、塩化メチレン。
For example, aromatic hydrocarbons such as benzene, toluene, xylene, chlorobenzene, naphthalene, acetone 2-
Ketones such as butanone, methylene chloride.

塩化エチレン、クロロホルムなどのハロゲン化脂肪族炭
化水素類、テトラヒドロフラン、1.4−ジオキサン、
エチルエーテルなどの環状、もしくは直鎖状のエーテル
類など、あるいはこれらの混合溶剤を挙げることが出来
る。
Halogenated aliphatic hydrocarbons such as ethylene chloride and chloroform, tetrahydrofuran, 1,4-dioxane,
Examples include cyclic or linear ethers such as ethyl ether, and mixed solvents thereof.

これらの各層に加えて、帯電安定性や接着性向上の目的
で、下引き層を導電性基板上に設けることが出来る。下
引き層としては、ナイロン、共重合ナイロン、アルコキ
シメチル化ナイロンなどのポリアミド樹脂、カゼイン、
ポリビニルアルコール、ゼラチン、ポリビニルブチラー
ル等の樹脂、酸化アルミニウムなどの無機化合物、およ
び導電性基板自身を酸化処理などにより絶縁性付与した
ものがある。また。
In addition to these layers, an undercoat layer can be provided on the conductive substrate for the purpose of improving charging stability and adhesion. For the undercoat layer, polyamide resins such as nylon, copolymerized nylon, alkoxymethylated nylon, casein,
There are resins such as polyvinyl alcohol, gelatin, and polyvinyl butyral, inorganic compounds such as aluminum oxide, and conductive substrates that have been given insulation properties by oxidation treatment or the like. Also.

酸化亜鉛や酸化チタンなどの金属酸化物やカーボンブラ
ンク、炭化ケイ素および窒化ケイ素などの導電性および
誘電性粒子を樹脂中に含有させて下引き層の導電性を調
整することも出来る。膜厚は0.01から50μm、望
ましくは0.1から1μmが良い。
The conductivity of the undercoat layer can also be adjusted by incorporating conductive and dielectric particles such as metal oxides such as zinc oxide and titanium oxide, carbon blanks, silicon carbide and silicon nitride into the resin. The film thickness is preferably 0.01 to 50 μm, preferably 0.1 to 1 μm.

本発明の電子写真感光体に用いる支持体としては。The support used in the electrophotographic photoreceptor of the present invention includes:

導電性が付与されていれば何れのものでも良く、従来使
われている何れのタイプの導電層であってもさしつかえ
ない。具体的には、アルミニウム、銅、ステンレス、鉄
、真ちゅう、スズおよびニッケルなどの金属や、それら
金属を用いて紙、プラスチック。
Any material may be used as long as it is imparted with electrical conductivity, and any type of electrically conductive layer conventionally used may be used. Specifically, metals such as aluminum, copper, stainless steel, iron, brass, tin, and nickel, as well as paper and plastics using these metals.

ポリエチレンテレフタレートCPET)などの高分子フ
ィルム上に蒸着またはラミネート等の処理を行い、導電
性を持たせた物であっても良い。また、その型状につい
てはシート状あるいはシリンダー状。
The material may be made conductive by performing a process such as vapor deposition or lamination on a polymer film such as polyethylene terephthalate (CPET). Also, its shape can be sheet-like or cylinder-like.

その他のものであっても差しつかえない。Other items are also acceptable.

プリンター用のデジタル光源として、LEDも実用化さ
れている。
LEDs have also been put into practical use as digital light sources for printers.

可視光領域のLEDも使われているが、一般に実用化さ
れているものは、650部m以上、標準的には660部
mの発振波長を持っている。当該電子写真感光体は、6
50部m前後に分光悪魔ビークを持つため、LED用材
料としても有効である。
LEDs in the visible light range are also used, but those that are generally put into practical use have an oscillation wavelength of 650 parts m or more, typically 660 parts m. The electrophotographic photoreceptor is 6
Since it has a spectral devil's peak around 50 parts m, it is also effective as a material for LEDs.

以下9本発明の実施例について具体的に説明する。Hereinafter, nine embodiments of the present invention will be specifically described.

例中で部とは重量部を示す。In the examples, parts refer to parts by weight.

実施例1〜21 共重合ナイロン(東し製アミランCM−8000)10
部をエタノール190部とともにボールミルで3時間混
合し、溶解させた塗液を、ポリエチレンテレフタレート
(PET)フィルム上にアルミニウムを蒸着したシート
上に、ワイヤーバーで塗布した後、100℃で1時間乾
燥させて膜厚0.5ミクロンの下引き層を持つシートを
得た。
Examples 1 to 21 Copolymerized nylon (Amiran CM-8000 manufactured by Toshi) 10
was mixed with 190 parts of ethanol in a ball mill for 3 hours, and the dissolved coating liquid was applied with a wire bar onto a sheet of polyethylene terephthalate (PET) film with aluminum vapor-deposited, and then dried at 100°C for 1 hour. A sheet having a subbing layer with a thickness of 0.5 microns was obtained.

次に、第1表に示すチタンフタロシアニン系化合物の例
示化合物を電荷発生剤として使用した。
Next, exemplified titanium phthalocyanine compounds shown in Table 1 were used as charge generating agents.

第1表 表2表 第1表に示す、チタンフタロシアニン系化合物のX線回
折図(a)〜(g)は、第1図に載げたものであり、結
晶パターンは化学式によるものではない。
The X-ray diffraction patterns (a) to (g) of titanium phthalocyanine compounds shown in Table 1 and Table 2 are shown in FIG. 1, and the crystal patterns are not based on chemical formulas.

本実施例1〜21のチタンフタロシアニン系化合物2部
をジオキサン97部に塩ビー酢ビ共重合樹脂1部(ユニ
オンカーバイド社製VMCH)を溶解した樹脂液ととも
にボールミルで2時間分散した。
Two parts of the titanium phthalocyanine compounds of Examples 1 to 21 were dispersed in a ball mill for 2 hours together with a resin solution prepared by dissolving 1 part of vinyl chloride-vinyl acetate copolymer resin (VMCH manufactured by Union Carbide) in 97 parts of dioxane.

この分散液を下引き層上に塗布し、100℃で1時間乾
燥した後、0.2μmの電荷発生層を形成する。
This dispersion is applied onto the undercoat layer and dried at 100° C. for 1 hour to form a charge generation layer of 0.2 μm.

次に電荷移動剤として、一般式(n)の化合物の例示化
合物(If−a)  1部、ポリカーボネート樹脂(奇
人化成■製パンライ)L−1250)1部を塩化メチレ
ン8部で混合溶解した。この液を電荷発生層上に塗布し
、50℃で1時間乾燥した後、15μの電荷移動層を形
成して電子写真感光体を得た。
Next, as a charge transfer agent, 1 part of exemplified compound (If-a) of the compound of general formula (n) and 1 part of polycarbonate resin (Panrai L-1250, manufactured by Kijin Kasei Corporation) were mixed and dissolved in 8 parts of methylene chloride. This liquid was applied onto the charge generation layer and dried at 50° C. for 1 hour, after which a 15 μm charge transfer layer was formed to obtain an electrophotographic photoreceptor.

(x−北) 感光体の電子写真特性は、下記の方法で測定した。(x-north) The electrophotographic properties of the photoreceptor were measured by the following method.

静電複写紙試験装置5P−428(川口電機層)により
、スタティックモード2.コロナ帯電は−5゜2KVで
2表面電位および51uxの白色光を照射して、帯電量
が1/2および115まで減少する時間から白色光半減
露光量悪魔(El/2およびE115)を調べた。また
、繰り返し特性の評価は、−5゜2KV、コロナ線速度
120 w/secの条件で帯電。
Static mode 2. For corona charging, 2 surface potential at -5°2KV and white light of 51ux were irradiated, and the white light half-reduction exposure amount (El/2 and E115) was investigated from the time when the charge amount decreased to 1/2 and 115. . In addition, the repetition characteristics were evaluated under the conditions of -5°2 KV and a corona linear velocity of 120 w/sec.

2秒間暗所に放置、51uxで3秒間露光の順で繰り返
し、初期表面電位(V6)、2秒間暗所に放置後の電位
(vz)、  51uxで3秒間露光後の残留電位(V
F6)、感度(El/2.E115)の変化を測定した
The initial surface potential (V6), the potential after being left in the dark for 2 seconds (vz), and the residual potential (V) after being exposed for 3 seconds at 51ux are the initial surface potential (V6).
F6), and changes in sensitivity (El/2.E115) were measured.

フォトメモリー性(PM)は1本怒光体を6001ux
の白色光下で3分間放置した後に、暗所に1分間放置し
て、再び同一条件で静電特性を測定する。
Photo memory (PM) is 6001ux for one angry light body.
After being left under white light for 3 minutes, it was left in a dark place for 1 minute, and the electrostatic properties were measured again under the same conditions.

そこで、6001ux照射前の感光体の帯電電位と照射
後の帯電電位の変化を、フォトメモリー(PM)とした
、従って、フォトメモリー(PM)は次式で示される。
Therefore, the change in the charged potential of the photoreceptor before 6001 ux irradiation and the charged potential after irradiation was defined as photomemory (PM). Therefore, photomemory (PM) is expressed by the following equation.

PM−強照度(6001ux )露光前の表面電位−強
照度露光後の表面電位 第2表 第2表<HAき) 第2表(続き) 第2表に示した結果より9本実施例により得られた電子
写真感光体は、感度が優れ、残留電位も少なく、100
00回の繰り返し試験後も、初期の特性とほとんど変わ
らない極めて良好な結果が得られた。また、フォトメモ
リー(PM)も小さく、照射光に対して安定な感光体で
あることがわかる。
PM - Surface potential before exposure to strong illuminance (6001ux) - Surface potential after exposure to strong illuminance The electrophotographic photoreceptor has excellent sensitivity, low residual potential, and 100
Even after repeated testing 00 times, very good results were obtained with almost no change in the initial characteristics. Furthermore, the photomemory (PM) is small, and it is understood that the photoreceptor is stable against irradiation light.

実施例22〜28 第3表に示したチタンフタロシアニン系化合物の例示化
合物を使い蒸着法で電荷発生層を形成した。チタンフタ
ロシアニン系化合物10部を10−’Torrの真空条
件下で450℃に加熱昇華させ、冷却した基板上に析出
させて9.5部の結晶を得た。実施例1〜21と同条件
で形成した下引き層を有するPETフィルム上に、10
”’Torrの真空条件下、550℃で0.15μmの
膜厚の電荷発生層を得た。その上に、実施例1〜21と
同条件で電荷移動層を作成し、電子写真特性を測定した
Examples 22 to 28 Charge generation layers were formed by vapor deposition using the titanium phthalocyanine compounds listed in Table 3. 10 parts of a titanium phthalocyanine compound was heated and sublimated at 450° C. under a vacuum condition of 10-' Torr, and deposited on a cooled substrate to obtain 9.5 parts of crystals. On a PET film having an undercoat layer formed under the same conditions as Examples 1 to 21, 10
A charge generation layer with a film thickness of 0.15 μm was obtained at 550° C. under a vacuum condition of “’ Torr.A charge transfer layer was formed thereon under the same conditions as in Examples 1 to 21, and the electrophotographic properties were measured. did.

第3表 第4表 第4表の結果より、蒸着法で得られた電荷発生層を有す
る電子写真感光体においても、一般式(If)で示され
る電荷移動剤と組み合わせることにより、極めて良好な
結果が得られた。また、フォトメモリー(PM)も小さ
く、照射光に対して安定な感光体であることがわかる。
From the results shown in Table 3 and Table 4, even in electrophotographic photoreceptors having charge generation layers obtained by vapor deposition, by combining with the charge transfer agent represented by the general formula (If), extremely good results can be obtained. The results were obtained. Furthermore, the photomemory (PM) is small, and it is understood that the photoreceptor is stable against irradiation light.

比較例1〜4 実施例1〜28で用いた2例示化合物(If−a)に代
えて、第5表に示す電荷移動剤を使用し、第5表に示す
条件の他は、実施例1〜28と同条件で感光体を作成し
Comparative Examples 1 to 4 In place of the two exemplified compounds (If-a) used in Examples 1 to 28, charge transfer agents shown in Table 5 were used, and except for the conditions shown in Table 5, Example 1 A photoreceptor was prepared under the same conditions as in ~28.

電子写真特性を比較した。結果を第6表に示す。The electrophotographic properties were compared. The results are shown in Table 6.

第5表 第6表 比較例1〜4の結果を実施例と比較すると、残留電位が
高(、感度も劣り、繰り返しでの安定性も不足している
。また、フォトメモリーも大きく光照射により表面電位
が大きく低下している。
Comparing the results of Comparative Examples 1 to 4 in Table 5 and Table 6 with the Examples, it is found that the residual potential is high (the sensitivity is poor, and the stability with repeated use is insufficient. Also, the photomemory is large and is affected by light irradiation. The surface potential has decreased significantly.

フォトメモリーとは、電子写真感光体に強い光を照射し
た場合、その後の帯電、露光プロセスで生ずる怒光体表
面の保持電位が、光照射以前に比べて大きく変動してし
まう現象である。その光の強度によっては、一時的な場
合もあり、永久に回復しない場合もある。従って、フォ
トメモリー性が小さいと感光体の取り扱い時に、照射光
や自然光にさらしても帯電性が安定しているために、実
際に複写機およびプリンター等で使用する場合、掻めて
安定した電子写真特性が得られる。それにより画像的に
も安定した良質の画像が得られる利点がある。
Photomemory is a phenomenon in which when an electrophotographic photoreceptor is irradiated with strong light, the potential held on the surface of the photoreceptor during the subsequent charging and exposure processes fluctuates significantly compared to before the light irradiation. Depending on the intensity of the light, it may be temporary or may not recover permanently. Therefore, when handling the photoreceptor, if the photomemory property is small, the charging property will be stable even when exposed to irradiation light or natural light, so when actually used in copiers and printers, it is necessary to Photographic properties are obtained. This has the advantage that a stable and high quality image can be obtained.

本発明の電子写真感光体は、高感度、繰り返し使用時に
安定であり、フォトメモリー性が良好であるばかりでな
く、安定した良質の画像を得ることが出来た。
The electrophotographic photoreceptor of the present invention not only has high sensitivity, is stable upon repeated use, and has good photomemory properties, but also can produce stable and high-quality images.

(発明の効果) 本発明により高感度および繰り返し使用時に安定であり
、フォトメモリー性の良好な、安定した良質の画像を提
供する電子写真感光体が得られた。
(Effects of the Invention) According to the present invention, an electrophotographic photoreceptor that has high sensitivity, is stable during repeated use, has good photomemory properties, and provides stable, high-quality images was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1〜28および比較例1〜4で使用し
たチタンフタロシアニン系化合物のX線回折図である。
FIG. 1 is an X-ray diffraction diagram of the titanium phthalocyanine compounds used in Examples 1 to 28 and Comparative Examples 1 to 4.

Claims (1)

【特許請求の範囲】 1、導電性支持体上に、電荷発生剤および電荷移動剤を
使用してなる電子写真感光体において、電荷発生剤が一
般式〔 I 〕で示されるチタンフタロシアニン系化合物
であり電荷移動剤が一般式〔II〕で示される化合物であ
ることを特徴とする電子写真感光体。 ▲数式、化学式、表等があります▼〔 I 〕 (式中、R_1はハロゲン原子、酸素原子、アルコキシ
基を表し、R_2、R_3、R_4およびR_5は、水
素原子、ハロゲン原子、アルキル基、アルコキシ基、ア
リール基、アリールオキシ基、ニトロ基、シアノ基、水
酸基、ベンジルオキシ基、アミノ基等の置換基を表し、
jは1または2の整数、k、l、mおよびnは0〜4の
整数を表す。) [II]▲数式、化学式、表等があります▼ (式中、R_6、R_7、R_8およびR_9は、水素
原子、アルキル基、アラルキル基、アリル基、アルコキ
シ基、またはR_6、R_7、R_8とR_9とが結合
する窒素原子と共に環式アミノ基を形成する残基を表す
。) 2、X線回折図において強いピークを示さない非結晶性
であり、一次粒子径が0.2μm以下であるチタンフタ
ロシアニン系化合物を用いてなることを特徴とする特許
請求の範囲第1項記載の電子写真感光体。) 3、X線回折図においてブラッグ角度(2θ±0.2°
)の下記(a)、(b)、(c)、(d)もしくは(e
)に示す位置に強いピークを示す、チタンフタロシアニ
ン系化合物の少なくとも1種を用いてなることを特徴と
する特許請求の範囲第1項記載の電子写真感光体。 (a)7.5°、22.4°、24.4°、25.4°
、26.2°、27.2°および28.6° (b)7.5°、22.4°、24.4°、25.4°
、27.2°および28.6° (c)7.5°、22.4°、24.4°、25.4°
、26.2°および28.6° (d)7.5°、22.4°、24.4°、25.4°
および28.6° (e)6.9°、15.5°および23.4° (f)13.1°、20.6°、26.2°、26.5
°および27.0° 4、導電性支持体上に無機物または有機物の下引き層を
有する特許請求の範囲第1〜3項記載の電子写真感光体
[Claims] 1. An electrophotographic photoreceptor comprising a charge generating agent and a charge transfer agent on a conductive support, wherein the charge generating agent is a titanium phthalocyanine compound represented by the general formula [I]. An electrophotographic photoreceptor, wherein the charge transfer agent is a compound represented by the general formula [II]. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ [I] (In the formula, R_1 represents a halogen atom, an oxygen atom, or an alkoxy group, and R_2, R_3, R_4, and R_5 represent a hydrogen atom, a halogen atom, an alkyl group, or an alkoxy group. , represents a substituent such as an aryl group, an aryloxy group, a nitro group, a cyano group, a hydroxyl group, a benzyloxy group, an amino group,
j is an integer of 1 or 2, and k, l, m and n are integers of 0 to 4. ) [II] ▲ Numerical formulas, chemical formulas, tables, etc. represents a residue that forms a cyclic amino group with the nitrogen atom to which it is bonded.) 2. Titanium phthalocyanine that is non-crystalline and does not show strong peaks in an X-ray diffraction diagram, and has a primary particle size of 0.2 μm or less. 2. The electrophotographic photoreceptor according to claim 1, characterized in that the electrophotographic photoreceptor is formed using a compound based on the electrophotographic method. ) 3. Bragg angle (2θ±0.2°
) below (a), (b), (c), (d) or (e
2. The electrophotographic photoreceptor according to claim 1, wherein the electrophotographic photoreceptor is made of at least one titanium phthalocyanine compound that exhibits a strong peak at the position shown in (a). (a) 7.5°, 22.4°, 24.4°, 25.4°
, 26.2°, 27.2° and 28.6° (b) 7.5°, 22.4°, 24.4°, 25.4°
, 27.2° and 28.6° (c) 7.5°, 22.4°, 24.4°, 25.4°
, 26.2° and 28.6° (d) 7.5°, 22.4°, 24.4°, 25.4°
and 28.6° (e) 6.9°, 15.5° and 23.4° (f) 13.1°, 20.6°, 26.2°, 26.5
4. The electrophotographic photoreceptor according to claims 1 to 3, which has an inorganic or organic subbing layer on a conductive support.
JP3122887A 1987-02-13 1987-02-13 Electrophotographic sensitive body Pending JPS63198068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3122887A JPS63198068A (en) 1987-02-13 1987-02-13 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3122887A JPS63198068A (en) 1987-02-13 1987-02-13 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS63198068A true JPS63198068A (en) 1988-08-16

Family

ID=12325557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3122887A Pending JPS63198068A (en) 1987-02-13 1987-02-13 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS63198068A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01131544A (en) * 1987-08-21 1989-05-24 Konica Corp Production of negative silver halide photographic emulsion
JPH01261652A (en) * 1988-04-12 1989-10-18 Konica Corp Electrophotographic sensitive body
US5079119A (en) * 1989-02-23 1992-01-07 Konica Corporation Photoreceptor
JP2008174753A (en) * 2008-02-14 2008-07-31 Mitsubishi Chemicals Corp Titanylphthalocyanine compound and electrophotographic photoreceptor using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01131544A (en) * 1987-08-21 1989-05-24 Konica Corp Production of negative silver halide photographic emulsion
JPH01261652A (en) * 1988-04-12 1989-10-18 Konica Corp Electrophotographic sensitive body
US5079119A (en) * 1989-02-23 1992-01-07 Konica Corporation Photoreceptor
JP2008174753A (en) * 2008-02-14 2008-07-31 Mitsubishi Chemicals Corp Titanylphthalocyanine compound and electrophotographic photoreceptor using the same

Similar Documents

Publication Publication Date Title
EP1640808B1 (en) Photoconductive imaging members
JP4172286B2 (en) Electrophotographic photosensitive member and image forming method using the same
JPH04226168A (en) Preparation of light-genarating pigment
US5786119A (en) Electrophotographic elements having charge transport layers containing high mobility polyester binders
JPS63198068A (en) Electrophotographic sensitive body
JPS63210942A (en) Electrophotographic sensitive body
JPH02259769A (en) Overcoated photosensitive body
JPS63189872A (en) Electrophotographic sensitive body
JPS63210941A (en) Electrophotographic sensitive body
USH1474H (en) Titanyl phthalocyanine imaging member and processes
JPH03121457A (en) Coating material for electrophotographic sensitive body and method for forming its film by using the same
JPH0736204A (en) Electrophotographic photoreceptor
JPH01217362A (en) Electrophotographic sensitive body
JPH0211136B2 (en)
JPS63305361A (en) Electrophotographic sensitive body
JP3347750B2 (en) Photoconductive imaging members containing titanium phthalocyanine
JPS61190339A (en) Electrophotographic sensitive body
JPS63249148A (en) Manufacture of electrophotographic sensitive body
JP2008203872A (en) Electrophotographic photoreceptor
JPS6067949A (en) Electrophotographic sensitive body
JPH06208230A (en) Laminate type electrophotographic receptor and coating material for electric charge generating layer
JPH06194850A (en) Laminated electrophotographic sensitive body and coating material for charge producing layer
JPH0481860A (en) Manufacture of electrophotographic sensitive body
JPS61179453A (en) Electrophotographic sensitive body
JPH03109559A (en) Electrophotographic sensitive body