JPS63197882A - Method for breaking over-cooled condition of hydride latent heat accumulative material - Google Patents

Method for breaking over-cooled condition of hydride latent heat accumulative material

Info

Publication number
JPS63197882A
JPS63197882A JP62031708A JP3170887A JPS63197882A JP S63197882 A JPS63197882 A JP S63197882A JP 62031708 A JP62031708 A JP 62031708A JP 3170887 A JP3170887 A JP 3170887A JP S63197882 A JPS63197882 A JP S63197882A
Authority
JP
Japan
Prior art keywords
heat storage
storage material
heat
thermal
latent heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62031708A
Other languages
Japanese (ja)
Other versions
JPH06100431B2 (en
Inventor
Kazuo Yamashita
山下 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62031708A priority Critical patent/JPH06100431B2/en
Publication of JPS63197882A publication Critical patent/JPS63197882A/en
Publication of JPH06100431B2 publication Critical patent/JPH06100431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/028Control arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

PURPOSE:To provide easy sure discharging of heat from an apparatus at any time by a method wherein a hydride type latent heat accumulative material enclosed in a container having an outer and an inner communication passage is heated and thermally accumulated, thereafter the communication passage is humidified when heat is required so as to break an over-cooled condition of the thermal accumulative material. CONSTITUTION:A thermal accumulative device 1 is comprised of a container 2, a thermal accumulative material 3 and a communication part 4 filled with capillary pipes 5. The thermal accumulative material 3 is composed of hydride-type thermal accumulative material and the capillary pies 5 are composed of fibrous material, continuous bubble material or sintered material. Then, the thermal accumulative device 1 is heated. After the thermal accumulative material 3 is sufficiently melted, it is cooled down to a room temperature, resulting in providing an over-cooled condition of the thermal accumulative material 3. In order to take out heat from the device, it is satisfactory to humidify the capillary tubes 5 arranged in the communication part 4. In case that even if the over-cooled condition is not broken under humidified condition, the capillary tubes 5 may undergo physical action. With this arrangement, it is possible to take out heat from the thermal accumulation device easily and surely at any time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は熱エネルギーを過冷却状態で蓄え、必要な時に
蓄えだ熱エネルギーを取り出すことができる熱エネルギ
ー貯蔵装置を利用する分野に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to the field of utilizing thermal energy storage devices capable of storing thermal energy in a supercooled state and extracting the stored thermal energy when required.

従来の技術 従来よシ潜熱を利用する水化物形潜熱蓄熱材(以下蓄熱
材と記す)は単位重量当シの蓄熱量が大きい。一定温度
の出力が得られるなどの利点を有するだめ、コードレス
の装身採暖装置・保温装置・加温装置に用いる試みが行
なわれてきた。しかし、従来の蓄熱装置は過冷却を防止
した蓄熱材を用いる試みがほとんどであった。すなわち
、蓄熱材は加熱(蓄熱)完了と同時に放熱を開始するタ
イプである。したがって必要な時に放熱させることがで
きず用途が限定されたものとなった。
BACKGROUND OF THE INVENTION Conventionally, hydrated latent heat storage materials (hereinafter referred to as heat storage materials) that utilize latent heat have a large amount of heat storage per unit weight. Since it has advantages such as being able to output a constant temperature, attempts have been made to use it in cordless personal warming devices, heat retention devices, and heating devices. However, most conventional heat storage devices have attempted to use heat storage materials that prevent supercooling. That is, the heat storage material is of a type that starts releasing heat at the same time as heating (heat storage) is completed. Therefore, it was not possible to dissipate heat when necessary, and its uses were limited.

ところが最近過冷却現象を利用し任意の時に蓄熱材より
熱を取り出す方式が試みられてきた。すなわち、特開昭
61−14283号公報には蓄熱材とヒドロキシプロピ
ル化グアーガムとを必須の構成成分とした安定な過冷却
可能な蓄熱組成物が記載されている。この公報の中で蓄
熱材組成物をネジフタを有する透明な肉厚ガラスビンに
入れ過冷却させ、熱を必要とするときに種結晶を入れる
か又は先のとがった金属棒で刺激を与え過冷却を崩壊し
熱を取り出す手段を示している。この手段は給湯分野な
どの大形蓄熱装置には有効と考えられる。しかし、小形
蓄熱装置例えば身体採暖装置に用いる蓄熱体としてはネ
ジフタを有するガラスピンでは前体に装着した場合異和
感がある。したがって、従来の過冷却を防止した蓄熱体
で用いられているようにラミネートフィルムに蓄熱材を
密封する必要がある。しかし、ラミネートフィルムに蓄
熱材を密封した状態では外部から刺激を与えても過冷却
状態が崩壊せず蓄熱体より熱を取り出すことができない
。したがって、容器内部の蓄熱材を直接列激し、過冷却
状態を崩壊させる必要がある。このために、容器にネジ
フタを有する口を取り付けることが考えられる。しかし
、このような蓄熱体の場合、容器口の開閉に伴い蓄熱材
が漏出し周囲を汚損する懸念がある。また、先のとがっ
た金属棒で直接蓄熱材を刺激するのは、金属棒に蓄熱材
が多量に付着したシすることがあり、金属棒の破棄ある
いは、金属棒に付着した蓄・熱材の除去等が必要であり
、取扱いがやっかいであった。
However, recently attempts have been made to utilize the supercooling phenomenon to extract heat from the heat storage material at any time. That is, JP-A No. 61-14283 describes a stable heat storage composition capable of supercooling, which includes a heat storage material and hydroxypropylated guar gum as essential components. In this publication, a heat storage material composition is placed in a transparent thick-walled glass bottle with a screw cap and supercooled, and when heat is required, seed crystals are added or stimulation is applied with a pointed metal rod to achieve supercooling. It shows a means of collapsing and extracting heat. This method is considered to be effective for large-scale heat storage devices such as those used in the hot water supply field. However, as a heat storage body used in a small heat storage device, such as a body warming device, a glass pin with a screw cap gives a strange feeling when attached to the front body. Therefore, it is necessary to seal the heat storage material in a laminate film as used in conventional heat storage bodies that prevent overcooling. However, when the heat storage material is sealed in a laminate film, the supercooled state does not collapse even if stimulation is applied from the outside, and heat cannot be extracted from the heat storage material. Therefore, it is necessary to directly stimulate the heat storage material inside the container to break the supercooled state. For this purpose, it is conceivable to attach a mouth with a screw cap to the container. However, in the case of such a heat storage body, there is a concern that the heat storage material may leak out and contaminate the surrounding area when the container opening is opened and closed. In addition, stimulating the heat storage material directly with a metal rod with a pointed tip may result in a large amount of heat storage material adhering to the metal rod. It required removal, etc., and was troublesome to handle.

また、特開昭61−22194号公報にはエネルギー貯
蔵物と刺激体とからなる熱エネルギー貯蔵装置が記載さ
れている。この公報では、過冷却状態にあるエネルギー
貯蔵物に種結晶からなる刺激体を物理的に接触させ、過
冷却を崩壊し熱エネルギーを取シ出す構成を示している
。しかし、この構成も小形蓄熱装置て用いる場合に実用
的な課題がある。すなわち、加熱(蓄熱)時に種結晶に
熱が加わシ積結晶が融解しないようにするために熱的隔
離する必要がある。しかし、装置が小形の場合はこの熱
的隔離が困難であシ、できても装置を大きくしてしまう
。しかも携帯等の移動時の外的刺激や種々の環境下での
加熱に対して確実に種結晶を熱隔離するのは困難である
Further, Japanese Patent Application Laid-Open No. 61-22194 describes a thermal energy storage device comprising an energy storage material and a stimulator. This publication describes a configuration in which a stimulating body made of a seed crystal is brought into physical contact with an energy storage object in a supercooled state, thereby destroying the supercooling and extracting thermal energy. However, this configuration also has practical problems when used as a small heat storage device. That is, thermal isolation is required to prevent the seed crystal from melting due to heat being applied to the seed crystal during heating (heat storage). However, when the device is small, this thermal isolation is difficult, and even if it is possible, the device becomes bulky. Furthermore, it is difficult to reliably thermally isolate the seed crystal from external stimulation when moving a cell phone or the like or from heating under various environments.

発明が解決しようとする問題点 本発明は前記蓄熱体の課題を解決しようとするものであ
る。すなわち、過冷却可能な蓄熱体を熱エネルギー貯蔵
装置に利用した場合、利便性よく簡単確実に過冷却を崩
壊し熱を取シ出すことができると共に、蓄熱材が漏出し
周囲を汚染することがないようにするものである。
Problems to be Solved by the Invention The present invention attempts to solve the problems with the heat storage body. In other words, when a heat storage body capable of supercooling is used in a thermal energy storage device, supercooling can be conveniently and easily destroyed and heat can be extracted, and the heat storage material can leak and contaminate the surrounding area. This is to ensure that this does not occur.

問題点を解決するための手段 本発明は前記問題点を解決するために、蓄熱装置は下記
構成とする。すなわち、蓄熱材は容器に封入される。こ
の容器にはその内外に連通ずる連通部分が設けられ、か
つこの連通部分より前記蓄熱材が漏出するのを防ぐだめ
毛細管体等の簡易栓を設けた構成とする。この構成の蓄
熱装置において、蓄熱後、過冷却状態とし熱を必要とす
る時に前記連通部を加湿するものである。
Means for Solving the Problems In the present invention, in order to solve the above problems, the heat storage device has the following configuration. That is, the heat storage material is enclosed in a container. This container is provided with a communication portion that communicates with the inside and outside of the container, and is provided with a simple stopper such as a capillary body to prevent the heat storage material from leaking from this communication portion. In the heat storage device having this configuration, after storing heat, the communication portion is humidified when the heat storage device is brought into a supercooled state and heat is required.

作   用 本発明では前記方法により確実にかつ安全に過冷却状態
を崩壊することができる。すなわち、過冷却した蓄熱体
は容器に密封されているため、理由は定かでないが過冷
却状態は容易に崩壊しない。
Function: According to the present invention, the supercooled state can be reliably and safely destroyed by the method described above. That is, since the supercooled heat storage body is sealed in a container, the supercooled state does not collapse easily, although the reason is unclear.

しかるに本発明の構成においては、前記連結部を加湿す
ることによシ過冷却状態は容易に崩壊し熱を取り出すこ
とができる。これは定かでないが次のように考えられる
。すなわち前記容器の連通部において毛細管体等が容器
の内部と外部とで連通しているため、蓄熱材が前記毛細
管体等を通して容器外部ににじみ出している状態になっ
ている。
However, in the configuration of the present invention, by humidifying the connecting portion, the supercooled state is easily broken down and heat can be extracted. This is not certain, but it can be thought of as follows. That is, in the communication portion of the container, the capillary body and the like communicate between the inside and the outside of the container, so that the heat storage material oozes out to the outside of the container through the capillary body and the like.

熱を放出した後は蓄熱材結晶が付着した状態となってい
る。この状態で蓄熱するため加熱すると、容器内の蓄熱
材は吸熱し融解する。一方、連結部の外側で毛細管体等
に付着している蓄熱材結晶は、結晶水が蒸発し無水塩と
なるためもはや融解しない。したがって、容器は無水塩
で蓋をされ密閉された状態となる。この状態では外部よ
!l刺激を与えても、もはや蓄熱材の過冷却状態は崩壊
しない。
After releasing heat, heat storage material crystals remain attached. When heated in this state to store heat, the heat storage material inside the container absorbs heat and melts. On the other hand, the heat storage material crystals attached to the capillary body or the like outside the connection part no longer melt because the crystal water evaporates and becomes anhydrous salt. The container is therefore sealed and covered with anhydrous salt. In this state, it's outside! Even if a stimulus is applied, the supercooled state of the heat storage material no longer collapses.

この状態で加湿すると、前記無水塩は水化しもとの蓄熱
材と同じ結晶の蓄熱材となる。この蓄熱材が種結晶とな
り無水塩と接する蓄熱材の過冷却状態が崩壊し結晶化が
起り潜熱を放出する。この結晶化は蓄熱材全体に伝播し
ていく。また、加湿しても過冷却状態が崩壊しない場合
がある。これは水化物が水に溶解し種結晶が発生しない
からと考えられる。しかし、この場合外部より前記連通
部を刺激すると容易に過冷却状態が崩壊する。この刺激
が種結晶により行なわれるとさらに有用である。
When humidified in this state, the anhydrous salt hydrates and becomes the same crystalline heat storage material as the original heat storage material. This heat storage material becomes a seed crystal, and the supercooled state of the heat storage material in contact with the anhydrous salt collapses, crystallization occurs, and latent heat is released. This crystallization propagates throughout the heat storage material. Further, even if humidification is performed, the supercooled state may not collapse. This is thought to be because the hydrate dissolves in water and no seed crystals are generated. However, in this case, if the communicating portion is stimulated from the outside, the supercooled state will easily collapse. It is further useful if this stimulation is performed by seed crystals.

実施例 以下、本発明の実施例について説明する。図は本発明の
方法に用いられる蓄熱装置1を示す。この蓄熱装置1は
容器2と容器2に封入されている蓄熱材3および容器2
に設けられた連通部4より構成されている。また、連通
部4よシ蓄熱材3が漏出するのを防ぐために、連通部4
は毛細管体5で満たされる。
Examples Examples of the present invention will be described below. The figure shows a heat storage device 1 used in the method of the invention. This heat storage device 1 includes a container 2, a heat storage material 3 sealed in the container 2, and a container 2.
It is composed of a communication section 4 provided in the. In addition, in order to prevent the heat storage material 3 from leaking beyond the communication part 4,
is filled with capillary body 5.

以下、各要素毎に説明する。容器2は蓄熱材3と非反応
性・非相溶性の材料でつくられる。特に採暖装置に使用
する場合は可撓性を必要とするためアルミラミネートフ
ィルムを用いるとよい。蓄熱材3は塩化カルシウム6水
塩、硫酸ナトリウム10水塩、チオ硫酸ナトリウム5水
塩、酢酸ナトリウム3水塩などの水化鉤形蓄熱材であり
、必要に応じて増粘剤、安定剤または熱伝導性物質等を
混合したものである。毛細管体5は蓄熱材3と非反応性
・非相溶性の材料よりなる繊維質体(例えば、綿・セル
ローズ等の天燃繊維まだはポリエステル、アクリル、ナ
イロン、芳香族ポリアミド等の合成繊維よりなる糸状体
、織布あるいは不織布またはステンレス、銅等よりなる
金属細線体)連続気泡体、(例えば、ポリウレタン、各
種連続気泡を有するニジストマーまだは金属発泡体)″
または連続気泡を有する焼結体(例えば、ポリエチレン
多孔質焼結体または多孔質セラミックス)よシなり、容
器2に取り付けられる。これによシ連通部4が形成され
る。取シ付は方は一端が容器2の外部に他端が容器の内
部で蓄熱材と接することができるように取付ける。毛細
管体4は蓄熱材3と接することによシ蓄熱材3を吸いあ
げ、毛細管体4全体が蓄熱材3で浸されるようになる。
Each element will be explained below. The container 2 is made of a material that is non-reactive and incompatible with the heat storage material 3. In particular, when used in a heating device, it is preferable to use an aluminum laminate film because flexibility is required. The heat storage material 3 is a hydrated hook-shaped heat storage material such as calcium chloride hexahydrate, sodium sulfate decahydrate, sodium thiosulfate pentahydrate, and sodium acetate trihydrate, and may contain thickeners, stabilizers, or It is a mixture of thermally conductive substances, etc. The capillary body 5 is a fibrous body made of a material that is non-reactive and incompatible with the heat storage material 3 (for example, natural fibers such as cotton and cellulose, synthetic fibers such as polyester, acrylic, nylon, and aromatic polyamide). Thread-shaped bodies, woven or non-woven fabrics, thin metal wires made of stainless steel, copper, etc.) Open-celled bodies (e.g., polyurethane, various types of open-celled nidistomers, metal foams)
Alternatively, it is made of a sintered body having open cells (for example, a polyethylene porous sintered body or porous ceramics), and is attached to the container 2. A communication portion 4 is thereby formed. One end is attached to the outside of the container 2 so that the other end can come into contact with the heat storage material inside the container. By coming into contact with the heat storage material 3, the capillary body 4 sucks up the heat storage material 3, and the entire capillary body 4 becomes immersed in the heat storage material 3.

蓄熱時温度が上昇し容器内圧があがると容器2内部の蓄
熱材3が毛細管体4を通して外部に漏出することがある
ので、蓄熱材の種類や蓄熱時の温度上昇による粘度低下
を考慮し、蓄熱材の漏出がほとんどないように毛細管体
の設計を行なうことが必要である。
When the temperature rises during heat storage and the internal pressure of the container increases, the heat storage material 3 inside the container 2 may leak out through the capillary body 4. It is necessary to design the capillary body so that there is little leakage of material.

前記構成の蓄熱装置1を加熱(蓄熱)する。蓄熱材3が
充分に融解した後、室温まで冷却すると蓄熱材3の過冷
却状態が得られると共に、毛細管体の外側5aは無水塩
が付着した状態となる。この状態では理由は定かでない
が、蓄熱装置1に衝撃を与えたシ、折シ曲ばたりあるい
は圧力を加えたり等の応力を加えても過冷却状態は崩壊
しない。
The heat storage device 1 having the above configuration is heated (heat stored). After the heat storage material 3 is sufficiently melted and cooled to room temperature, the heat storage material 3 is brought into a supercooled state, and anhydrous salt is attached to the outside 5a of the capillary body. In this state, although the reason is not clear, the supercooled state does not collapse even if stress is applied to the heat storage device 1, such as impact, bending, or pressure.

熱を取シ出すためには連通部4に設けられた毛細管体5
を加湿すればよい。加湿方法としては、水で濡らすかあ
るいは水蒸気にさらせばよい。これにより、過冷却状態
の崩壊は容易に起る。この理由は定かでないが、加湿に
よシ毛細管体の外側5aに付着している無水塩が水化し
種結晶になシ毛細管体の内側5bの蓄熱材の過冷却状態
を崩壊するためと考えられる。この過冷却状態の崩壊は
伝播し蓄熱装置全体にわたっていく。この過冷却状態の
崩壊によシ潜熱を取シ出すことができる。
In order to extract heat, a capillary body 5 provided in the communication portion 4 is used.
You just need to humidify it. As a humidifying method, it may be wetted with water or exposed to steam. As a result, collapse of the supercooled state easily occurs. The reason for this is not clear, but it is thought that the anhydrous salt attached to the outside 5a of the capillary body hydrates during humidification, becomes a seed crystal, and destroys the supercooled state of the heat storage material inside 5b of the capillary body. . The collapse of this supercooled state propagates and spreads throughout the heat storage device. By breaking down this supercooled state, latent heat can be extracted.

また、加湿しても過冷却状態が崩壊しない場合がある。Further, even if humidification is performed, the supercooled state may not collapse.

この場合は、加湿後前記毛細管体5に物理的刺激を与え
ればよい。特に蓄熱材の種結晶が付着しているIil激
体で刺激すると容易に過冷却状態は崩壊する。
In this case, physical stimulation may be applied to the capillary body 5 after humidification. In particular, the supercooled state easily collapses when stimulated with an Iil intense body to which seed crystals of heat storage material are attached.

以下、具体的な各実施例を示す。Specific examples will be shown below.

実施例1゜ 二枚のアルミラミネートフィルムの三方を熱融着し容器
をつくる。この時、1箇所にQ2J2rのポリエステル
糸を挾み込み容器内外を連通ずる連通部とする。この容
器に蓄熱材として酢酸ナトリウム・3水塩を封入し蓄熱
装置を得た。この蓄熱装置を90°Cで加熱蓄熱し冷却
すると過冷却物が容易に得られる。この時、連通部の外
側はポリエステル糸の毛細管現象により外部ににじみ出
てきた酢酸ナトリウム3水塩が無水化した無水酢酸ナト
リウムが付着固化している。この状態でいかなる外的可
搬を与えても過冷却が崩壊することがなかった。熱を取
り出すために、先端を水で濡らしたマツチ捧で前記無水
化物のところを刺激すると過冷却状態は容易に崩壊した
Example 1 A container was made by heat-sealing two aluminum laminate films on three sides. At this time, a Q2J2r polyester thread is inserted in one place to form a communication part that communicates the inside and outside of the container. Sodium acetate trihydrate was sealed as a heat storage material in this container to obtain a heat storage device. When this heat storage device is heated to store heat at 90° C. and then cooled, a supercooled product can be easily obtained. At this time, anhydrous sodium acetate, which is the anhydrous form of sodium acetate trihydrate, which has oozed out to the outside due to the capillary action of the polyester thread, is attached and solidified on the outside of the communication portion. In this state, no matter how much external transport was applied, the supercooling did not collapse. In order to extract heat, the supercooled state was easily broken when the anhydride was stimulated with a pine needle whose tip had been wetted with water.

実施例2 前記実施例1の蓄熱装置において、無水化物のところを
水蒸気にさらすと過冷却状態は容易に崩壊した。
Example 2 In the heat storage device of Example 1, when the anhydride was exposed to steam, the supercooled state easily collapsed.

実施例3゜ 前記実施例1の蓄熱装置において、無水化物のところを
水道水で濡したところ過冷却状態は崩壊しなかった。こ
の後、水きシをし、積結晶が付着している欅で軽く刺激
を与えると過冷却状態は容易に崩壊した。
Example 3 In the heat storage device of Example 1, when the anhydride was wetted with tap water, the supercooled state did not collapse. After this, the supercooled state was easily broken down by washing it with water and lightly stimulating it with a zelkova tree with deposited crystals attached.

発明の効果 以上のように本発明の方法によれば次の効果がある。す
なわち、本発明によれば過冷却状態にある蓄熱装置の連
結部の一部を加湿すれば容易に過冷却状態を崩壊させ熱
を取9畠すことができる。
Effects of the Invention As described above, the method of the present invention has the following effects. That is, according to the present invention, by humidifying a part of the connecting portion of the heat storage device that is in a supercooled state, the supercooled state can be easily broken down and heat can be removed.

したがって、本発明の方法を用いれば、任意の時に簡単
確実に熱を蓄熱装置よシ取シ出すことができる。
Therefore, by using the method of the present invention, heat can be easily and reliably extracted from the heat storage device at any time.

【図面の簡単な説明】 図は本発明の一実施例の蓄熱装置の断面図である。 1・・・・・・蓄熱装置、2・・・・・・容器、3・・
・・・・蓄熱材、4・・・・・・連結部、5・・・・・
・毛細管体。
BRIEF DESCRIPTION OF THE DRAWINGS The figure is a sectional view of a heat storage device according to an embodiment of the present invention. 1... Heat storage device, 2... Container, 3...
...Heat storage material, 4...Connection part, 5...
・Capillary body.

Claims (5)

【特許請求の範囲】[Claims] (1)内外に連通する連通部を有する容器に、過冷却可
能で刺激により液体から固体に相変化し潜熱を放出する
水化物形潜熱蓄熱材を封入し、前記水化物形潜熱蓄熱材
を加熱し蓄熱した後、熱を必要とする時に前記連通部を
加湿する水化物形潜熱蓄熱材の過冷却状態を崩壊する方
法。
(1) A hydrated latent heat storage material that can be supercooled, changes its phase from a liquid to a solid and releases latent heat when stimulated, is sealed in a container that has a communication part that communicates with the inside and outside, and the hydrated latent heat storage material is heated. A method for breaking down the supercooled state of a hydrated latent heat storage material, which humidifies the communication portion when heat is required after storing heat.
(2)連通部を加湿する方法として、前記連通部を水で
濡らす特許請求の範囲第1項記載の水化物形潜熱蓄熱材
の過冷却状態を崩壊する方法。
(2) A method for disrupting the supercooled state of a hydrated latent heat storage material according to claim 1, wherein the communicating portion is wetted with water as a method for humidifying the communicating portion.
(3)連通部を加湿する方法として、前記連通部を水蒸
気にさらす特許請求の範囲第1項記載の水化物形潜熱蓄
熱材の過冷却状態を崩壊する方法。
(3) A method for breaking down the supercooled state of the hydrated latent heat storage material according to claim 1, in which the communicating portion is exposed to water vapor as a method of humidifying the communicating portion.
(4)内外に連通する連通部が毛細管体よりなる特許請
求の範囲第1項記載の水化物形潜熱蓄熱材の過冷却状態
を崩壊する方法。
(4) A method for breaking the supercooled state of a hydrated latent heat storage material according to claim 1, wherein the communication portion communicating between the inside and outside is a capillary body.
(5)水化物形蓄熱材が酢酸ナトリウム3水塩である特
許請求の範囲第1項記載の水化物形潜熱蓄熱材の過冷却
状態を崩壊する方法。
(5) A method for breaking the supercooled state of a hydrated latent heat storage material according to claim 1, wherein the hydrated heat storage material is sodium acetate trihydrate.
JP62031708A 1987-02-13 1987-02-13 Method to collapse supercooled state of hydrate type latent heat storage material Expired - Fee Related JPH06100431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62031708A JPH06100431B2 (en) 1987-02-13 1987-02-13 Method to collapse supercooled state of hydrate type latent heat storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62031708A JPH06100431B2 (en) 1987-02-13 1987-02-13 Method to collapse supercooled state of hydrate type latent heat storage material

Publications (2)

Publication Number Publication Date
JPS63197882A true JPS63197882A (en) 1988-08-16
JPH06100431B2 JPH06100431B2 (en) 1994-12-12

Family

ID=12338569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62031708A Expired - Fee Related JPH06100431B2 (en) 1987-02-13 1987-02-13 Method to collapse supercooled state of hydrate type latent heat storage material

Country Status (1)

Country Link
JP (1) JPH06100431B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343066A (en) * 2005-06-10 2006-12-21 Tokyo Institute Of Technology Cold insulating apparatus
JP2016006370A (en) * 2014-05-29 2016-01-14 パナソニックIpマネジメント株式会社 Crystal nucleus forming method in latent heat storage material, and heat storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343066A (en) * 2005-06-10 2006-12-21 Tokyo Institute Of Technology Cold insulating apparatus
JP2016006370A (en) * 2014-05-29 2016-01-14 パナソニックIpマネジメント株式会社 Crystal nucleus forming method in latent heat storage material, and heat storage device

Also Published As

Publication number Publication date
JPH06100431B2 (en) 1994-12-12

Similar Documents

Publication Publication Date Title
US4953628A (en) Latent heat storage apparatus
US3874504A (en) Chemical thermal pack
US5456704A (en) Method of treatment with therapeutic moist heating pad
WO2000003667A1 (en) Hot or cold pad with inner element
US6537309B2 (en) Reusable heat pack, method of manufacture thereof, mixture for use in a reusable heatpack and process for the preparation thereof
JPS63197882A (en) Method for breaking over-cooled condition of hydride latent heat accumulative material
JPH0697152B2 (en) Heat storage
JPS6321055A (en) Heat accumulator
MXPA06001602A (en) Cold pack.
JPS63118558A (en) Heat accumulating device of super-cooling type
JPH0747034B2 (en) Heat storage
JPS63220041A (en) Portable heater
JPH0787851B2 (en) Heat storage
EP1245207B1 (en) Reusable heat pack
JPH0697153B2 (en) Heat storage
CN213607383U (en) Ice bag capable of preventing cross infection and reducing melting speed
JPS63101658A (en) Heat accumulating device
JPS61207481A (en) Cold storing agent
JPS63131955A (en) Heat storage device
JPS6335251A (en) Supercooling type heat accumulator
JPS6377444A (en) Supercooling type heat accumulator
JPH0747038B2 (en) Supercooled heat storage
JPH0321241Y2 (en)
JPH01223958A (en) Cold compress pack member
WO2002078584A1 (en) Reusable heat pack

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees