JPS6319730A - Heater for electron tube - Google Patents

Heater for electron tube

Info

Publication number
JPS6319730A
JPS6319730A JP61161807A JP16180786A JPS6319730A JP S6319730 A JPS6319730 A JP S6319730A JP 61161807 A JP61161807 A JP 61161807A JP 16180786 A JP16180786 A JP 16180786A JP S6319730 A JPS6319730 A JP S6319730A
Authority
JP
Japan
Prior art keywords
heater
coefficient
heat radiation
electron tube
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61161807A
Other languages
Japanese (ja)
Inventor
Seiji Kumada
熊田 政治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61161807A priority Critical patent/JPS6319730A/en
Publication of JPS6319730A publication Critical patent/JPS6319730A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid Thermionic Cathode (AREA)

Abstract

PURPOSE:To enable the coefficient of heat radiation of a heater for an electron tube to be maintained stably at high value over a long period to prolong its life, by using corpuscles of compound material comprising silicon and transition metal to increase the coefficient of heat radiation on the heater surface. CONSTITUTION:A necessary part of a core made of tungsten or the like is coated with a sintered alumina layer. And at least one part of the region in the direction where this layer becomes more thicker is filled with a material high in the coefficient of heat radiation, wherein compound comprising silicon and transition metal, with its melting point being in excess of 2000 deg.C, is used, so that a heater for an electron tube is manufactured. Then the coefficient of heat radiation of this heater is stably and highly maintained over the long period, with the compound comprising silicon and transition metal hardly advancing to react to alumina. Therefore, long life and high reliability are available for this heater, because the coefficient of heat radiation at the time of ignition is kept nearly constant and a change in the temperature of cathode operation is extremely lowered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、点火時の熱放射率が安定してほぼ−、定値を
保持し、長期間にわたって陰極動作温度の変動が生じ難
いようにした電子管用ヒータに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention has a structure in which the thermal emissivity at the time of ignition is stably maintained at a constant value of approximately -, and the cathode operating temperature is unlikely to fluctuate over a long period of time. Regarding heaters for electron tubes.

〔従来の技術〕[Conventional technology]

電子管の傍熱形陰極に用いるヒータには、ヒータから陰
極への熱放射量を増大させ効率良く陰極を加熱するため
に、従来からヒータの外側を絶縁するアルミナ焼結石の
表面をタングステンの微粒子で被覆して黒みがからせ、
熱放射率を高めた所謂ダークヒータが使用されていた(
例えば特公昭39−3864号公輻)。
In order to increase the amount of heat radiation from the heater to the cathode and efficiently heat the cathode, heaters used in the indirectly heated cathode of electron tubes have traditionally been coated with fine tungsten particles on the surface of the alumina sintered stone that insulates the outside of the heater. Cover and darken,
So-called dark heaters with increased thermal emissivity were used (
For example, Special Publication No. 39-3864).

しかし、アルミナの粒子とタングステンの微粒子とが接
触した状態で高温に保持されると、両者の間に反応が進
行し、時間の経過と共にタングステンの微粒子が次第に
消失して、ヒータのアルミナ被覆表面の黒みが薄くなり
、ヒータの熱放射率が低下して陰極の温度も低下し、陰
極からの電子放出量が減少し、他方ヒータ温度は上昇し
てヒータ加熱電流が減少し同時にアルミナ層のクラ・7
りや更には、それに起因するヒータ芯線の破断が発生し
易くなるなどの問題が生じていた。
However, when alumina particles and tungsten particles are kept in contact with each other at a high temperature, a reaction occurs between the two, and the tungsten particles gradually disappear over time, causing the alumina-coated surface of the heater to deteriorate. The blackness becomes thinner, the thermal emissivity of the heater decreases, the temperature of the cathode also decreases, and the amount of electrons emitted from the cathode decreases, while the heater temperature increases, the heater heating current decreases, and at the same time cracks in the alumina layer decrease. 7
In addition, there have been problems in that the heater core wire is more likely to break due to this.

とくに近年は、電子管の高性能化への要求が高まるのに
伴って、ヒータを一層高い温度で使用する傾向になって
おり、そのためタングステン微粒子の消失が一層生じ易
くなり、大きな問題になりつつある。
Particularly in recent years, as demands for higher performance electron tubes have increased, there has been a trend to use heaters at higher temperatures, which has made it easier for tungsten particles to disappear, which is becoming a major problem. .

また、ダークヒータ外表面を黒みがからせているタング
ステン微粒子は、電子管の製作工程で容易に酸化され、
こうして形成されたタングステン酸化物は蒸気圧が高い
ため、ヒータ点火時に容易に藤発、消失し、或いはまた
、それらが陰極スリーブの内壁に付着するなどして陰極
の動作温度を変動させる要因ともなっている。
In addition, the tungsten particles that give the outer surface of the dark heater a dark tinge are easily oxidized during the electron tube manufacturing process.
Since the tungsten oxide thus formed has a high vapor pressure, it easily evaporates and disappears when the heater is ignited, or it may adhere to the inner wall of the cathode sleeve, causing fluctuations in the operating temperature of the cathode. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、従来のダークヒータの問題点、すなわち時間
の経過と共に、ヒータ外表面の黒みが薄くなって行き、
その結果、陰極温度の低下、電子放出量の減少などが生
ずる欠点を解消し、長期間にわたってヒータ外表面の黒
みが低下せず高い熱放射率が維持され、陰極温度が長期
間の使用中にも降下せず、したがって陰極に良好な熱電
子放出特性を長期間保持させる電子管用ヒータを提供す
ることを目的とする。
The present invention solves the problem of conventional dark heaters, that is, the blackness on the outer surface of the heater becomes lighter over time.
As a result, the shortcomings such as a decrease in cathode temperature and a decrease in electron emission amount are eliminated, and the heater's outer surface remains dark and maintains high thermal emissivity over a long period of time. It is an object of the present invention to provide a heater for an electron tube in which the cathode maintains good thermionic emission characteristics for a long period of time without dropping.

〔問題点を解決するための手段〕 上記問題点を解決するために本発明においては、ヒータ
表面の熱放射率を高める材料として、従来の金属タング
ステンの微粒子の代わりに、ケイ素と遷移金属との化合
物の微粒子を使用することにした。
[Means for Solving the Problems] In order to solve the above problems, the present invention uses silicon and transition metal particles instead of the conventional metal tungsten fine particles as a material that increases the thermal emissivity of the heater surface. We decided to use microparticles of the compound.

〔作用〕[Effect]

本発明者の実験結果によれば、ケイ素と遷移金属との化
合物とアルミナとの反応はほとんど進行せず、ヒータの
高い熱放射率は長期間にわたって安定して維持される。
According to the inventor's experimental results, the reaction between the compound of silicon and transition metal and alumina hardly progresses, and the high thermal emissivity of the heater is stably maintained over a long period of time.

また、上記ケイ素と遷移金属との化合物は、電子管の製
作工程においても酸化されず、陰極の動作温度は安定で
あった。
Furthermore, the above-mentioned compound of silicon and transition metal was not oxidized during the manufacturing process of the electron tube, and the operating temperature of the cathode was stable.

ヒータの熱放射率向上のために用いる此のケイ素と遷移
金属との化合物の組成に用いる遷移金属としては、この
化合物の融点が、ヒータ製造工程中の最高温度、あるい
は電子管に実装後の最高使用温度より高いものであれば
使用可能であるが、なるべく高いもの即ち化合物の融点
が2000 ’C以上のものが前記反応が進行せず望ま
しく、従って遷移金属としても融点が2000℃以上の
もの、具体的には、タングステン、タンタルが適当であ
る。
The melting point of the transition metal used in the composition of this compound of silicon and transition metal used to improve the thermal emissivity of the heater is the highest temperature during the heater manufacturing process or the highest temperature used after mounting in the electron tube. It can be used as long as it is higher than the temperature, but it is preferable to use a compound with a melting point of 2000° C. or higher, so that the reaction does not proceed. Specifically, tungsten and tantalum are suitable.

〔実施例〕〔Example〕

タングステンの芯線の外周に厚さ約70μmのアルミナ
層を電着により形成させ、この外周面にケイ素とタング
ステンがモル比で2:1の化合物(WSi2)の微粉末
と、アルミナ粉末を混合してなるダーク層を浸漬塗布し
て、水素雰囲気中で1700℃に5分間保持して焼結し
た。
An alumina layer with a thickness of about 70 μm is formed on the outer periphery of a tungsten core wire by electrodeposition, and on this outer periphery, fine powder of a compound (WSi2) with a molar ratio of silicon and tungsten of 2:1 and alumina powder are mixed. A dark layer was dip coated and sintered by holding at 1700° C. for 5 minutes in a hydrogen atmosphere.

このヒータを電子管の陰極に実装して使用してみたとこ
ろ、ヒータ温度の変動は極めて小さく、従来のタングス
テン微粒子を用いたヒータに比べて115以下であった
When this heater was mounted on the cathode of an electron tube and used, the fluctuation in heater temperature was extremely small, being 115 or less compared to a conventional heater using fine tungsten particles.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、電子管用ヒータの
熱放射率が長期間にわたって安定して高く維持され、従
って陰極は長期間にわたって良好な電子放出特性を維持
し、長寿命、高信頼性の電子管が得られる。
As explained above, according to the present invention, the thermal emissivity of the electron tube heater is maintained stably and high over a long period of time, and therefore the cathode maintains good electron emission characteristics over a long period of time, resulting in long life and high reliability. electron tube is obtained.

Claims (1)

【特許請求の範囲】 1、タングステン芯線の所要部分を焼結したアルミナ層
で被覆し、この層の厚さ方向の少なくとも一部の領域に
熱放射率の高い物質を含ませた電子管用ヒータにおいて
、熱放射率の高い物質としてケイ素と遷移金属との化合
物を用いたことを特徴とする電子管用ヒータ。 2、融点が2000℃以上のケイ素と遷移金属との化合
物を用いた特許請求の範囲第1項記載の電子管用ヒータ
[Claims] 1. In an electron tube heater in which a predetermined portion of a tungsten core wire is covered with a sintered alumina layer, and at least a part of the thickness of this layer contains a substance with high thermal emissivity. , a heater for an electron tube characterized in that a compound of silicon and a transition metal is used as a substance with high thermal emissivity. 2. The heater for an electron tube according to claim 1, which uses a compound of silicon and a transition metal having a melting point of 2000° C. or higher.
JP61161807A 1986-07-11 1986-07-11 Heater for electron tube Pending JPS6319730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61161807A JPS6319730A (en) 1986-07-11 1986-07-11 Heater for electron tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61161807A JPS6319730A (en) 1986-07-11 1986-07-11 Heater for electron tube

Publications (1)

Publication Number Publication Date
JPS6319730A true JPS6319730A (en) 1988-01-27

Family

ID=15742287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61161807A Pending JPS6319730A (en) 1986-07-11 1986-07-11 Heater for electron tube

Country Status (1)

Country Link
JP (1) JPS6319730A (en)

Similar Documents

Publication Publication Date Title
US20070138961A1 (en) Conductive element having a core and coating and method of making
JP2002033079A (en) Manufacturing method for electric lamp
US2438732A (en) Electron tube cathode
US2864028A (en) Thermionic dispenser cathode
US6626725B1 (en) Electrode treatment surface process for reduction of a seal cracks in quartz
JPS6319730A (en) Heater for electron tube
US3401297A (en) Thermionic cathodes for electron discharge devices with improved refractory metal heater wires
US3662211A (en) Cathode construction
JPH04269436A (en) X-ray-tube anode
JP3260204B2 (en) Thermal field emission cathode
JP2004047365A (en) Cathode and manufacturing method of the same
JPS6261236A (en) Impregnated cathode body structure
US2813995A (en) Cathode and method of manufacture
JPH02267850A (en) Quartz lamp envelope having molybdenum foil member having oxidation-proof surface formed by ion implantation
KR100265781B1 (en) Oxide cathode
KR100407956B1 (en) Cathode for Cathode Ray Tube and Method of manufacturing the same
JPH05205696A (en) Electrode for discharge lamp and manufacture of the same
JPS63232234A (en) Heater for electron tube
JPH10289645A (en) Cathode heater and cathode-ray tube using the same
JPS62133632A (en) Impregnated type cathode
JP2723897B2 (en) Indirectly heated cathode for electron tubes
JPH01211826A (en) Indirectly heated cathode for electron tube
CN85104881A (en) Impregnated cathode
JPS6334832A (en) Manufacture of impregnated cathode
JPH0552619B2 (en)