JPS63196884A - Boiling water type reactor - Google Patents

Boiling water type reactor

Info

Publication number
JPS63196884A
JPS63196884A JP62028286A JP2828687A JPS63196884A JP S63196884 A JPS63196884 A JP S63196884A JP 62028286 A JP62028286 A JP 62028286A JP 2828687 A JP2828687 A JP 2828687A JP S63196884 A JPS63196884 A JP S63196884A
Authority
JP
Japan
Prior art keywords
bypass
fuel assembly
reactor
steam
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62028286A
Other languages
Japanese (ja)
Inventor
上妻 宣昭
三浦 聡志
光司 橋本
安島 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP62028286A priority Critical patent/JPS63196884A/en
Publication of JPS63196884A publication Critical patent/JPS63196884A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、都市周辺に設置される多目的小型・中型の沸
騰水型原子炉に係り、特に、負荷変動を容易に追従する
のに好適な自然循環型の沸騰水型原子炉に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to multi-purpose small and medium-sized boiling water nuclear reactors installed around cities, and in particular, to a boiling water reactor suitable for easily following load fluctuations. Concerning natural circulation boiling water reactors.

〔従来の技術〕[Conventional technology]

第2図に従来の一般的な沸騰水型原子炉に一例を示す、
沸騰水型原子炉は、圧力容器1の中をシュラウド2で二
分割し、シュラウド2の内側には、核燃料を装荷した燃
料集合体3、嫂びに、バイパス4からなる炉心をもつ。
Figure 2 shows an example of a conventional general boiling water reactor.
A boiling water reactor has a pressure vessel 1 divided into two by a shroud 2, and inside the shroud 2 is a reactor core consisting of a fuel assembly 3 loaded with nuclear fuel, a bypass 4, and a fuel assembly 3.

バイパス4は、出力を制御するための制御棒5の通路で
あり、同時に、燃料集合体3内へ中性子を封じ込める役
割を果す、そのため、常に冷却水が充満している。炉心
で発生した熱は、圧力容器1内の冷却水に伝わり、シュ
ラウド2内で蒸気を発生させる。この蒸気は冷却水とと
もにシュラウド2の上部に設けられた気水分離器6並び
に蒸気乾燥器7によって蒸気と冷却水とに分離され、蒸
気は主蒸気制御弁8を介してタービン9に送られる。タ
ービン9へ送られた蒸気は発電に供されるが、一方では
、復水器10により復水され、給水ポンプ11により再
び圧力容器1に戻される。
The bypass 4 is a passage for the control rods 5 for controlling the output, and at the same time serves to confine neutrons into the fuel assembly 3, so it is always filled with cooling water. Heat generated in the reactor core is transferred to cooling water in the pressure vessel 1 and generates steam in the shroud 2. This steam is separated into steam and cooling water together with cooling water by a steam separator 6 and a steam dryer 7 provided at the upper part of the shroud 2, and the steam is sent to a turbine 9 via a main steam control valve 8. The steam sent to the turbine 9 is used for power generation, but on the other hand, it is condensed by a condenser 10 and returned to the pressure vessel 1 by a water supply pump 11.

14はスタンドパイプ、21は発電機、22は負荷。14 is a standpipe, 21 is a generator, and 22 is a load.

従来の沸騰水型原子炉では、定格運転出力を対象として
設計されているため、負荷変動に追従する出力制御は困
難であった。負荷変動に追従する出力制御として、 (1)制御棒5の操作(挿入及び引き抜き)(2)再循
環ポンプ12流量、あるいは、給水ポンプ11流量の制
御 が一般的であると考えられるが、(1)は、炉心の健全
性を維持するための運転管理(ならし運転)の制約上、
負荷の急増・急減に対応することは困難である。又、(
2)は、構成及び、操作上の複雑化を招き、都市周辺に
設置する場合、設置スペース等の点で実用的ではない。
Conventional boiling water reactors are designed for rated operating output, making it difficult to control output to follow load fluctuations. As output control that follows load fluctuations, (1) operation of the control rod 5 (insertion and withdrawal), (2) control of the flow rate of the recirculation pump 12 or the flow rate of the water supply pump 11 is considered to be common. 1) is due to constraints on operational management (breaking-in) to maintain the integrity of the reactor core.
It is difficult to respond to sudden increases or decreases in load. or,(
2) causes complexity in configuration and operation, and is not practical in terms of installation space when installed around a city.

負荷追従性を勘案した自然循環型の沸騰水型原子炉には
、例えば特開昭60−169793号公報がある。
An example of a natural circulation boiling water nuclear reactor that takes load followability into consideration is Japanese Patent Application Laid-Open No. 169793/1983.

特開昭60−169793号公報のシステム構成を第3
図に示す、核燃料を装荷した圧力容器1と、圧力容[!
1内で発生した蒸気を凝縮する熱交換器13と、熱交換
器13内で凝縮した冷却水を圧力容器1に戻す給水ポン
プ11等を設けた沸騰水型原子炉である。従来技術では
、熱交換器−次系内の液相部と蒸気相部の割合を調整し
、負荷に応じた熱を二次系に供給することができ、炉心
入口サブクールの変化によって出力制御ができる。しか
し、技術、大型の熱交換器13が必要であり、又、熱交
換器の一次系の水位制御をすることから、制御性・操作
性・応答性が良くなかった。
The system configuration of Japanese Patent Application Laid-Open No. 60-169793 is
The figure shows a pressure vessel 1 loaded with nuclear fuel and a pressure vessel [!
This is a boiling water nuclear reactor equipped with a heat exchanger 13 for condensing steam generated in the reactor 1, a water supply pump 11 for returning cooling water condensed in the heat exchanger 13 to the pressure vessel 1, and the like. With conventional technology, heat can be supplied to the secondary system according to the load by adjusting the ratio of the liquid phase and vapor phase in the heat exchanger secondary system, and the output can be controlled by changing the core inlet subcool. can. However, this method requires technology and a large heat exchanger 13, and because the water level in the primary system of the heat exchanger is controlled, controllability, operability, and responsiveness are not good.

最近では小型で、しかも、プラントの熱効率が良く、負
荷変動に対して迅速に追従する原子炉の必要性が高まっ
ている。
Recently, there has been an increasing need for nuclear reactors that are small, have good plant thermal efficiency, and can quickly respond to load fluctuations.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、大型の熱交換器を設けたり、気水分
離器、及び、蒸気乾燥器を取り除いたりするので、現実
の要求に対して次の問題があった。
In the above-mentioned conventional technology, a large heat exchanger is provided, a steam separator, and a steam dryer are removed, so there are the following problems in meeting actual requirements.

(1)熱交換器が少なくとも二台必要であり、設備コス
トや、設備スペースが増大する。
(1) At least two heat exchangers are required, increasing equipment cost and equipment space.

(2)高クォリティの蒸気が得られにくいのでプラント
の熱効率が悪くなる。
(2) Since it is difficult to obtain high quality steam, the thermal efficiency of the plant deteriorates.

本発明の目的は、プラントの熱効率を損なわず、しかも
、小型で操作性が良く、負荷変動に対し迅速に追従する
沸騰水型原子炉を提供することにある。
An object of the present invention is to provide a boiling water nuclear reactor that does not impair the thermal efficiency of a plant, is small in size, has good operability, and quickly follows load fluctuations.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、燃料集合体下部に孔(以下、バイパス孔)
およびバイパス水位を制御する手段を設けることにより
達成される。
The above purpose is to create a hole at the bottom of the fuel assembly (hereinafter referred to as a bypass hole).
and by providing means for controlling the bypass water level.

バイパス孔の流路面積は、次式に従うものとする。The flow path area of the bypass hole shall comply with the following formula.

ここで、 A:バスパス孔の流路面積(ホ) ρ:冷却水密度(kg/n?) ΔP:燃料集合体とバイパス間の差圧(kg/rd)W
:バイパス孔の流量(ボ/8) g:重力加速度=9.8 (m/S”)ξ:バイパス孔
の形状係数(−) 又、バイパス水位を制御する手段は、シュラウド外側水
位計とその検出器信号により給水制御弁の開度制御を行
ない、シュラウド外側水位(以下、炉水位)を制御する
手段とからなる。
Here, A: Flow area of bus pass hole (E) ρ: Cooling water density (kg/n?) ΔP: Differential pressure between fuel assembly and bypass (kg/rd) W
: Flow rate of bypass hole (Bo/8) g: Gravitational acceleration = 9.8 (m/S”) ξ: Shape factor of bypass hole (-) In addition, the means for controlling the bypass water level is the shroud outer water level gauge and its It consists of a means for controlling the opening degree of the water supply control valve based on the detector signal and controlling the water level outside the shroud (hereinafter referred to as the reactor water level).

この構成によってバイパスに液面を形成させ、炉水位の
変化により燃料集合体からバイパスへの冷却水のオーバ
ーフロー量を変える。そして、バイパス水位が変化する
ことによって、バイパス孔を流れる自然循環流量(以下
、バイパス流量)が変化し、バイパス流量に対する出力
が得られることになる。この時、燃料集合体入口流量も
変化する。つまり、炉水位の変化によって燃料集合体入
口流量及びバイパス流量が変化し、出力制御を行なうこ
とになる。
With this configuration, a liquid level is formed in the bypass, and the amount of cooling water overflow from the fuel assembly to the bypass is changed by changing the reactor water level. As the bypass water level changes, the natural circulation flow rate (hereinafter referred to as bypass flow rate) flowing through the bypass hole changes, and an output corresponding to the bypass flow rate is obtained. At this time, the fuel assembly inlet flow rate also changes. In other words, the fuel assembly inlet flow rate and the bypass flow rate change due to changes in the reactor water level, thereby controlling the output.

本発明は、以上の制御の可動部を圧力容器内・外に設け
ることなく行なえることに特徴がある。
The present invention is characterized in that the above control can be performed without providing any movable parts inside or outside the pressure vessel.

〔作用〕[Effect]

第4図に、自然循環時の出力と、自然循環流量の関係を
示す。自然循環流量は、出力が増加するに従って増加す
るが、極大点を越えると逆に減少する傾向を持つ。これ
は、極大点より出力が増加するボイドが増え、二相流抵
抗が増加して自然循環流量が減少することによる。そし
て、このボイド増加によって出力が低下する。一方、極
大点より出力が減少すると、自然循環流量が減少し、ボ
イドが減少して出力が回復する。よって、自然循環状態
の出力は、ボイド反応度のフィードバックにより自然循
環特性の極大点近傍に安定することがわかる。又、自然
循環特性の安定点は、燃料集合体内の水頭と二相流抵抗
の和の極小値に対応するため、二相流抵抗を変えれば自
然循環特性の安定点、すなわち、運転点の制御が可能と
なる。
FIG. 4 shows the relationship between the output during natural circulation and the natural circulation flow rate. The natural circulation flow rate increases as the output increases, but once it exceeds the maximum point, it tends to decrease. This is because the number of voids where the output increases from the maximum point increases, the two-phase flow resistance increases, and the natural circulation flow rate decreases. The output decreases due to this increase in voids. On the other hand, when the output decreases from the maximum point, the natural circulation flow rate decreases, the voids decrease, and the output recovers. Therefore, it can be seen that the output in the natural circulation state is stabilized near the maximum point of the natural circulation characteristic due to the feedback of the void reactivity. In addition, the stable point of natural circulation characteristics corresponds to the minimum value of the sum of the water head in the fuel assembly and the two-phase flow resistance, so changing the two-phase flow resistance can control the stable point of natural circulation characteristics, that is, the operating point. becomes possible.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図に示す。 An embodiment of the present invention is shown in FIG. 1 below.

圧力容器1の中をシュラウド2で二分割し、シュラウド
2の内側には核燃料を装荷した燃料集合体3、並びに、
バイパス4から成る炉心をもつ。
The inside of the pressure vessel 1 is divided into two by a shroud 2, and inside the shroud 2 is a fuel assembly 3 loaded with nuclear fuel, and
It has a core consisting of 4 bypasses.

又、バイパス孔15を設けており、冷却水はバイパス孔
15を介して燃料集合体内に流入している。
Further, a bypass hole 15 is provided, and cooling water flows into the fuel assembly via the bypass hole 15.

ン 炉゛心で発生した熱は、圧力容器1内の冷却水に伝わり
、シュラウド2内で蒸気を発生させる。この蒸気は、冷
却水とともにシュラウド2の上部に設けた気水分離器6
及び蒸気乾燥器7によって蒸気と冷却水に分離され、蒸
気だけが主蒸気制御弁を介してタービン9に送られる。
The heat generated in the reactor core is transferred to the cooling water in the pressure vessel 1 and generates steam in the shroud 2. This steam is transferred together with cooling water to a steam separator 6 installed at the top of the shroud 2.
The steam is separated into steam and cooling water by the steam dryer 7, and only the steam is sent to the turbine 9 via the main steam control valve.

タービン9に送られた蒸気は発電に供されるが、一方で
は、復水器により水に復水して、給水ポンプ11により
圧力容器lに戻される。
The steam sent to the turbine 9 is used for power generation, but on the other hand, it is condensed into water by a condenser and returned to the pressure vessel 1 by a water supply pump 11.

炉水位変化による出力制御の方法を以下に示す。The method of output control based on changes in reactor water level is shown below.

はじめに、主蒸気系及び給水系による炉水位の制御を示
す、負荷の増加に伴う必要な蒸気量の増ガロは、主蒸気
制御弁8の開度を大きくすることによって対処するが、
同時に、圧力容器1内の冷却水量が減少し、炉水位が低
下する。そこで、給水制御弁16の開度を大きくし、蒸
気によって喪失した冷却水量を給水する。これにより、
炉水位が回復する。この制御をシュラウド2の外側にセ
ンサを持つ水位計17で制御するシステムとする。
First, the increase in the required amount of steam due to the increase in load, which indicates the control of the reactor water level by the main steam system and the water supply system, is dealt with by increasing the opening degree of the main steam control valve 8.
At the same time, the amount of cooling water in the pressure vessel 1 decreases, and the reactor water level decreases. Therefore, the opening degree of the water supply control valve 16 is increased to supply water to replace the amount of cooling water lost due to the steam. This results in
Reactor water level recovers. This control is performed using a water level gauge 17 having a sensor on the outside of the shroud 2.

つまり、必要な蒸気量を得るためにシュラウド2の外側
水位を変化させ、それに追従するように給水流量が制御
される。
That is, in order to obtain the required amount of steam, the water level outside the shroud 2 is changed, and the water supply flow rate is controlled to follow it.

次に、水位制御システムによって出方制御を行なう方法
を示す1本発明では、バイパス4に水位を存在させ、こ
の水位の変化による自然循環流量の変化で出力を制御す
る。第5図(a)に示すように、炉水位の上昇・低下に
よって燃料集合体3の上部からオーバーフローする冷却
水量を制御し、バイパス水位の上昇・低下させる9例え
ば、第5図(b)に示すように、バイパス水位が上昇す
ると、バイパス4と、燃料集合体3の間の差圧が大きく
なり、変化前より多くのバイパス流量がバイパス孔15
を通り、燃料集合体3内に流入する。
Next, in the present invention, which shows a method of controlling the output using a water level control system, a water level is made to exist in the bypass 4, and the output is controlled by a change in the natural circulation flow rate due to a change in this water level. As shown in Fig. 5(a), the amount of cooling water overflowing from the upper part of the fuel assembly 3 is controlled as the reactor water level rises/falls, and the bypass water level is raised/lowered.9For example, as shown in Fig. 5(b), As shown, when the bypass water level rises, the differential pressure between the bypass 4 and the fuel assembly 3 increases, and a larger amount of bypass flow than before the change flows into the bypass hole 15.
and flows into the fuel assembly 3.

そして、第5図(C)に示すように、多くのバイパス流
量が燃料集合体3内に流入すると、ボイド量が低下する
ため、正の反応度が投入され、出力は上昇する。そして
、増加した熱により、必要な蒸気を発生させ、タービン
9へ供給する。このように本発明では、必要な蒸気量を
得るために炉水位を変化させ、それよりバイパス水位が
変化することによって、燃料集合体3内へのバイパス流
量を増加し、出力を上昇させる。この時、燃料集合体の
入口オリフィス部18の流量も変化する。つまり、炉水
位の変化によって、燃料集合体の入口流量及びバイパス
流量が変化し、出力制御を行なうことになる。
Then, as shown in FIG. 5(C), when a large amount of bypass flow flows into the fuel assembly 3, the amount of voids decreases, so positive reactivity is introduced and the output increases. Then, the increased heat generates necessary steam and supplies it to the turbine 9. As described above, in the present invention, the reactor water level is changed to obtain the required amount of steam, and the bypass water level is changed accordingly, thereby increasing the bypass flow rate into the fuel assembly 3 and increasing the output. At this time, the flow rate in the inlet orifice portion 18 of the fuel assembly also changes. In other words, the inlet flow rate and bypass flow rate of the fuel assembly change due to changes in the reactor water level, thereby controlling the output.

バイパス流量を制御して出方を変える本発明の原理を第
6図に示す。バイパス孔15を流れるバイパス流量は、
バイパス差圧(ΔPBY)と、燃料集合体差圧(Δpe
a)の差から求められる。
FIG. 6 shows the principle of the present invention, which controls the bypass flow rate to change the flow direction. The bypass flow rate flowing through the bypass hole 15 is
Bypass differential pressure (ΔPBY) and fuel assembly differential pressure (Δpe
It is determined from the difference in a).

ΔPRYは、ボイドを含まない飽和冷却水の差圧である
が、Δpeaは、水!(Δpb)と二相摩擦圧損(ΔP
 x )の和となる。八Phは、出方の増加に伴うボイ
ド量の増加によって指数関数的に減少するのに対し、Δ
Phは二乗で増加する0例えば、バイパス水位をLlか
らL2に上昇させるとΔpayとΔpeaの差が大きく
なり、バイパス孔15を介して多くのバイパス流量が流
れる。これにより、出力が上昇し、ボイド量が増加する
ので。
ΔPRY is the differential pressure of saturated cooling water that does not include voids, while Δpea is water! (Δpb) and two-phase friction pressure loss (ΔP
x ). 8Ph decreases exponentially due to an increase in the amount of voids associated with an increase in the number of outflows, whereas Δ
Ph increases with the square of 0. For example, when the bypass water level is raised from Ll to L2, the difference between Δpay and Δpea increases, and a large amount of bypass flow flows through the bypass hole 15. Because this increases the output and the amount of voids.

ΔPhは減少するがΔP1は増加する。よって。ΔPh decreases, but ΔP1 increases. Therefore.

ボイド反応度で制御されている出力は、QlがらQ2に
変化して安定する。
The output controlled by the void reactivity changes from Ql to Q2 and becomes stable.

第7図に、バイパス孔15の設計範囲を示す。FIG. 7 shows the design range of the bypass hole 15.

本発明のバイパス孔15は、プラントの負荷変動範囲等
から任意に設計できるが、制御性が確保される条件は、 二二で、 A:バスバス孔の流路面積(イ) ρ:冷却水密度(kg/ボ) ΔP:燃料集合体とバイパス間の差圧(kg/nf)W
:バイパス孔の流t(ボア3) g:重力加速度=9.8(m/S工) ξ:バイパス孔の形状係数(−) バイパス水位を上昇させると出力が上昇するため、バイ
パス孔15をパラメータにしてバイパス孔15の設計範
囲を求めると、第7図になる。
The bypass hole 15 of the present invention can be arbitrarily designed depending on the load fluctuation range of the plant, etc., but the conditions for ensuring controllability are as follows: A: flow path area of the bus hole (a) ρ: cooling water density (kg/bo) ΔP: Differential pressure between fuel assembly and bypass (kg/nf) W
: Flow t of bypass hole (Bore 3) g: Gravitational acceleration = 9.8 (m/S engineering) ξ: Shape factor of bypass hole (-) As the output increases as the bypass water level rises, bypass hole 15 When the design range of the bypass hole 15 is calculated using parameters, it is shown in FIG.

Q□、は、燃料集合体からのオーバーフローがなくなり
、バイパス孔15からのバイパス流量がない状態での出
力である。
Q□ is the output when there is no overflow from the fuel assembly and there is no bypass flow from the bypass hole 15.

又+ Q wa a xは、バイパス4が冷却水で満水
になった状態での出力である。このQ wa t aか
らQ、&8の出力範囲とバイパス水位の制御範囲からバ
イパス孔15の設計を行なう。
Moreover, +Q wa a x is the output when the bypass 4 is filled with cooling water. The bypass hole 15 is designed based on the output range of Q, &8 from Qwa t a and the control range of the bypass water level.

第8図に本発明の応用例を示す。FIG. 8 shows an example of application of the present invention.

圧力容器1内の構造は本発明と同一とし、燃料集合体の
入口オリフィス18を閉止し、それに換えて、燃料支持
板19に孔を設ける構造となっている0本発明では、燃
料集合体3に供給する冷却水量は、タービン9へ送る蒸
気とバイパス4へのオーバーフローの量だけ供給すれば
よいので、燃料集合体の入口オリフィス18を閉止して
も必要な冷却水量をまかなえるように孔を設計し、冷却
水をバイパス4に送り燃料集合体3内へ流入させればよ
い、これにより、従来の複雑な燃料集合体3の下部構造
を簡素化することができる。
The structure inside the pressure vessel 1 is the same as that of the present invention, and the inlet orifice 18 of the fuel assembly is closed, and a hole is provided in the fuel support plate 19 instead. The amount of cooling water supplied to the fuel assembly only needs to be supplied as much as the amount of steam sent to the turbine 9 and the amount of overflow to the bypass 4, so the holes are designed so that the required amount of cooling water can be covered even if the inlet orifice 18 of the fuel assembly is closed. However, it is sufficient to send the cooling water to the bypass 4 and allow it to flow into the fuel assembly 3. As a result, the conventional complicated lower structure of the fuel assembly 3 can be simplified.

負荷追従の面では、圧力容器内・外に可動部を設けるこ
となく、炉水位のみで対応可能であるため、システムの
信頼性が高く、操作も容易であり、従って、運転員の人
数を減らした集中操作をするのに適切で、合理的な運営
ができる。よって、都市周辺の設置要求にも適合できる
In terms of load following, there are no moving parts inside or outside the pressure vessel, and it can be handled using only the reactor water level, making the system highly reliable and easy to operate, thus reducing the number of operators. It is suitable for centralized operations and allows for rational management. Therefore, it can also meet the requirements for installation around cities.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、大型の熱交換器などの設備を設けるこ
となく、プラントの熱効率を損なわずに、負荷変動に即
応できる自然循環型の沸騰水型原子炉が得られる。
According to the present invention, it is possible to obtain a natural circulation boiling water nuclear reactor that can immediately respond to load fluctuations without providing equipment such as a large heat exchanger and without impairing the thermal efficiency of the plant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の系統図、第2図は再循環系
をもつ従来の原子炉の系統図、第3図は熱交換器をもつ
従来の自然循環型原子炉の系統図、第4図は自然循環流
量に対する出力の関係図、第5図は本発明のバイパス水
位と出力の関係図、第6図は本発明のバイパス水位変化
に対する出方変化の関係図、第7図は本発明のバイパス
孔の設計範囲を示す図、第8図は本発明の応用例の系統
図である。 1・・・圧力容器、2・・・シュラウド、3・・・燃料
集合体、嘉3 口 茶4記 α 白久楕筆良歳1 *sri:J 7、・イハ・ス水イ立 バイパスお丸1【 某乙図 第7 困 バイノ(スJム:A
Figure 1 is a system diagram of an embodiment of the present invention, Figure 2 is a system diagram of a conventional nuclear reactor with a recirculation system, and Figure 3 is a system diagram of a conventional natural circulation reactor with a heat exchanger. , FIG. 4 is a diagram showing the relationship between output and natural circulation flow rate, FIG. 5 is a diagram showing the relationship between the bypass water level and output of the present invention, FIG. 6 is a diagram showing the relationship between the output direction change and the bypass water level change of the present invention, and FIG. 8 is a diagram showing the design range of the bypass hole of the present invention, and FIG. 8 is a system diagram of an application example of the present invention. 1...Pressure vessel, 2...Shroud, 3...Fuel assembly, Ka 3 Kuchicha 4ki α Shiraku Obi Ryoshi 1 *sri: J 7, ・Iha・Suisui standing bypass omaru 1 [Certain Otsu Figure No. 7

Claims (1)

【特許請求の範囲】[Claims] 1、原子炉圧力容器内のシユラウドに囲まれた燃料集合
体間に存在するバイパスと、前記燃料集合体との間の差
圧が駆動源となる自然循環流体で炉心を冷却する沸騰水
型原子炉において、前記燃料集合体の下部に孔を設け、
前記孔を介して前記燃料集合体内に流入する冷却水量の
制御手段を設けたことを特徴とする沸騰水型原子炉。
1. A boiling water type atom that cools the reactor core with naturally circulating fluid, which is driven by the differential pressure between the fuel assemblies and the bypass that exists between the fuel assemblies surrounded by the shroud in the reactor pressure vessel. In the furnace, a hole is provided in the lower part of the fuel assembly,
A boiling water nuclear reactor characterized in that a boiling water nuclear reactor is provided with means for controlling the amount of cooling water flowing into the fuel assembly through the hole.
JP62028286A 1987-02-12 1987-02-12 Boiling water type reactor Pending JPS63196884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62028286A JPS63196884A (en) 1987-02-12 1987-02-12 Boiling water type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62028286A JPS63196884A (en) 1987-02-12 1987-02-12 Boiling water type reactor

Publications (1)

Publication Number Publication Date
JPS63196884A true JPS63196884A (en) 1988-08-15

Family

ID=12244363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62028286A Pending JPS63196884A (en) 1987-02-12 1987-02-12 Boiling water type reactor

Country Status (1)

Country Link
JP (1) JPS63196884A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996009628A1 (en) * 1994-09-21 1996-03-28 Siemens Aktiengesellschaft Natural circulation reactor, especially boiling water reactor, and process for regulating the core coolant flow rate of a natural circulation reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996009628A1 (en) * 1994-09-21 1996-03-28 Siemens Aktiengesellschaft Natural circulation reactor, especially boiling water reactor, and process for regulating the core coolant flow rate of a natural circulation reactor

Similar Documents

Publication Publication Date Title
DE68906727T2 (en) PASSIVE FULL PRESSURE SYSTEM FOR GAP ZONE EMERGENCY COOLING AND HEAT EXHAUST FOR WATER-COOLED CORE REACTORS.
US5053190A (en) Water cooled nuclear reactor and pressurizer assembly
US6987826B2 (en) Maximum extended load line limit analysis for a boiling water nuclear reactor
KR101250479B1 (en) Apparatus for safety improvement of passive type emergency core cooling system with a safeguard vessel and Method for heat transfer-function improvement using thereof
US20220367076A1 (en) Passive containment cooling system for a nuclear reactor
CN107170487B (en) The control system and method for the polycyclic inclined loop operation of the long-term low-power of road reactor
US3261755A (en) Nuclear reactor control
JPS639889A (en) Nuclear power device
JPS63196884A (en) Boiling water type reactor
US3284307A (en) Fluid control system for boiling nuclear reactor
Vijayan et al. Natural circulation systems: advantages and challenges
US3276964A (en) Segmented nuclear reactor core having pivotable outer control assemblies
US5335252A (en) Steam generator system for gas cooled reactor and the like
Yi et al. Startup thermal analysis of a high-temperature supercritical-pressure light water reactor
JP2521256B2 (en) Natural circulation boiling water reactor control method
Park et al. An investigation of an in-vessel corium retention strategy for the Wolsong pressurized heavy water reactor plants
JPS6352097A (en) Boiling water type reactor
JP2000019285A (en) Reactor heat removal system
An et al. Feasibility analysis of flooding safety system of ATOM during early phase of accident by using MELCOR code
JPH01262497A (en) Nuclear reactor system
Fisher et al. Performance and safety studies for Multi-Application, Small, Light Water Reactor (MASLWR)
Nuerlan Dynamics and Control of a Load-Following Nuclear Power Plant for Grid with Intermittent Sources of Energy
JP2918353B2 (en) Reactor containment vessel
JPH02163698A (en) Method of controlling core flow rate of natural circulation type atomic reactor
Lo Nigro et al. PWR core response to boron dilution transient