JPS63196550A - Production of high-purity suberonitrile - Google Patents

Production of high-purity suberonitrile

Info

Publication number
JPS63196550A
JPS63196550A JP62028193A JP2819387A JPS63196550A JP S63196550 A JPS63196550 A JP S63196550A JP 62028193 A JP62028193 A JP 62028193A JP 2819387 A JP2819387 A JP 2819387A JP S63196550 A JPS63196550 A JP S63196550A
Authority
JP
Japan
Prior art keywords
suberonitrile
dichlorohexane
distillation
column
distillation column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62028193A
Other languages
Japanese (ja)
Other versions
JPH0832671B2 (en
Inventor
Hiroyuki Nanba
寛行 難波
Koichi Abe
阿部 紘一
Masao Saito
雅夫 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP62028193A priority Critical patent/JPH0832671B2/en
Publication of JPS63196550A publication Critical patent/JPS63196550A/en
Publication of JPH0832671B2 publication Critical patent/JPH0832671B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound useful as a synthetic intermediate for agricultural chemicals, pharmaceuticals, dicarboxylic acid, diamine, etc., with a simple process in high purity, by reacting 1,6-dichlorohexane with an aqueous solution of sodium cyanide in the presence of a phase-transfer catalyst. CONSTITUTION:The objective compound can be produced by reacting 1,6- dichlorohexane with an aqueous solution of sodium cyanide in the presence of a phase-transfer catalyst of formula (R1-R4 are 3-10C alkyl) (e.g. tetraalkylammonium bromide). The reaction product is purified by using two distillation columns. The product is distilled in the 1st column to remove high- boiling fractions containing the catalyst and then distilled in the 2nd column to remove a low-boiling fraction containing unreacted 1,6-dichlorohexane and obtain the objective compound. The liquid temperature in the distillation column is maintained at <=200 deg.C and the pressure is adjusted to 1-40Torr.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、1.6−ジクロルヘキサンと資化ソーダより
スベロニトリルを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing suberonitrile from 1,6-dichlorohexane and sodium assimilate.

スベロニトリルは農医薬品やジカルボン酸、ジアミンな
どの製造用中間体として、有機化学および生物化学の分
野で有用である。
Suberonitrile is useful in the fields of organic chemistry and biochemistry as an intermediate for the production of agricultural drugs, dicarboxylic acids, diamines, etc.

(従来の技術) スベロニトリルの製造方法としては、特開昭61−12
2258号に1,6−ヘキサンジオールとヨウ化水素ま
たはアルカリ金属のヨウ化物とを反応させて得られた1
、6−ジクロルヘキサンを資化ソーダ、背比カリおよび
青酸などのシアノ化剤と反応させる方法がある。この方
法においては、粗スベロニトリルを疎水性有機溶剤、例
えばエーテル、クロロホルム、酢酸エチル等の溶剤で抽
出し、水洗して、減圧蒸留することにより純度98%以
上のスベロニトリルを得ている。
(Prior art) As a method for producing suberonitrile, JP-A-61-12
No. 2258, 1 obtained by reacting 1,6-hexanediol with hydrogen iodide or an alkali metal iodide
There is a method in which 6-dichlorohexane is reacted with a cyanating agent such as sodium hydroxide, potassium chloride, and hydrocyanic acid. In this method, crude suberonitrile is extracted with a hydrophobic organic solvent such as ether, chloroform, ethyl acetate, etc., washed with water, and distilled under reduced pressure to obtain suberonitrile with a purity of 98% or more.

(発明が解決しようとする問題点) (R1””R4は炭素数が3〜10のアルキル基を示し
、これらは互いに同一でも異なっていても良い)で表さ
れる相間移動触媒の存在下、1.6−ジクロルヘキサン
と背比ソーダ水溶液を反応させスベロニトリルを製造す
る方法を発明した。
(Problems to be Solved by the Invention) In the presence of a phase transfer catalyst represented by (R1""R4 represents an alkyl group having 3 to 10 carbon atoms, and these may be the same or different from each other), We have invented a method for producing suberonitrile by reacting 1.6-dichlorohexane with an aqueous sodium bicarbonate solution.

この方法にによれば、反応生成液は相間移動触媒を使用
することにより、油相と水相に分離し、油相には触媒と
スベロニトリルおよび少量の未反応1.6−ジクロルヘ
キサンと反応中間体の1−シアノ−6−クロルヘキサン
(以下モノニトリルと称する)を含有し、水相には反応
生成物であるNaCj!および少量の未反応青化ソーダ
が含まれる。
According to this method, the reaction product liquid is separated into an oil phase and an aqueous phase by using a phase transfer catalyst, and the oil phase is reacted with the catalyst, suberonitrile, and a small amount of unreacted 1,6-dichlorohexane. The aqueous phase contains the intermediate 1-cyano-6-chlorohexane (hereinafter referred to as mononitrile), and the reaction product NaCj! and a small amount of unreacted cyanide soda.

製品のスベロニトリルは、この油相液を蒸溜することに
より得られる。粗スベロニトリルの蒸留は、ユ、。ニド
1廠。熱分解を−けるため10〜15Torrの減圧下
、200℃以下の温度で蒸留を行う。
The product suberonitrile is obtained by distilling this oil phase liquid. Distillation of crude suberonitrile is performed by: Nido 1 factory. In order to prevent thermal decomposition, distillation is carried out under reduced pressure of 10 to 15 Torr and at a temperature of 200° C. or lower.

蒸留精製は一般に、まず低沸物を除去した後、精スベロ
ニトリルを取り出し、高沸物を釜残として除去する方法
が採られる。この蒸溜法では、加熱により該相関移動触
媒であるテトラブチルアンモニウムプロミド等が一部分
解してトリブチルアミン等となり、製品スベロニトリル
中に混入して品質を損ねることが問題となる。
Distillation purification is generally carried out by first removing low-boiling substances, then extracting refined suberonitrile, and removing high-boiling substances as a residue. A problem with this distillation method is that the phase transfer catalyst, such as tetrabutylammonium bromide, is partially decomposed by heating to become tributylamine, etc., which is mixed into the suberonitrile product, impairing its quality.

(問題点を解決するための手段) 発明者等はスベロニトリルを精製する際の以上の如き問
題点を解決すべく鋭意検討した結果、従来一般の蒸溜精
製法で行われる方法、即ち第−蒸溜塔で低沸物を除去し
、第二蒸溜塔で高沸点物を除去する方法に代えて、まず
第−蒸溜塔で高沸物を除去し、次に第二蒸溜塔で低沸物
を除去するようにすれば、第一蒸留塔での加熱によりテ
トラブチルアンモニウムプロミド等が分解して生成する
トリブチルアミンが低沸物として第二蒸溜塔で除去され
、高純度のスベロニトリルが得られることを見出し本発
明に至った。
(Means for Solving the Problems) As a result of intensive study to solve the above-mentioned problems when refining suberonitrile, the inventors have developed a method conventionally used in general distillation purification methods, that is, the first distillation column. Instead of removing low-boiling substances in the first distillation column and high-boiling substances in the second distillation column, first remove the high-boiling substances in the first distillation column, and then remove low-boiling substances in the second distillation column. It was discovered that by doing this, tributylamine, which is produced by decomposition of tetrabutylammonium bromide etc. by heating in the first distillation column, can be removed as a low-boiling substance in the second distillation column, and highly pure suberonitrile can be obtained. This led to the present invention.

(R,〜R4は炭素数が3〜10のアルキル基を示し、
これらは互いに同一でも異なっていても良い)で表され
る相間移動触媒の存在下、1,6−ジクロルヘキサンと
背比ソーダ水溶液を反応して得られた粗スベロニトリル
液を蒸留してスベロニトリルを製造するに際し、蒸留塔
を2基設け、まず第−蒸溜塔において該触媒を含む高沸
物を除去し、次に第二蒸溜塔において未反応1.6−ジ
クロルヘキサンを除去することを特徴とする高純度スベ
ロニトリルの製造法である。
(R, ~R4 represents an alkyl group having 3 to 10 carbon atoms,
These may be the same or different from each other) In the presence of a phase transfer catalyst represented by During production, two distillation columns are provided, firstly high boiling substances including the catalyst are removed in the first distillation column, and then unreacted 1,6-dichlorohexane is removed in the second distillation column. This is a method for producing high-purity suberonitrile.

本発明で使用される相間移動触媒の例としては、テトラ
プロピルアンモニラプロミド、テトラブチルアンモニウ
ムプロミドなどがある。特にテトラブチルアンモニウム
プロミドが好適である。
Examples of phase transfer catalysts used in the present invention include tetrapropylammonila bromide, tetrabutylammonium bromide, and the like. Tetrabutylammonium bromide is particularly suitable.

背比ソーダ水溶液は、工業的に市販されている濃度30
〜35χの水溶液をそのまま使用することができ、また
更に必要に応じて濃度を下げて使用することもできる。
The aqueous soda solution has a concentration of 30, which is commercially available industrially.
The aqueous solution having a concentration of ~35.chi. can be used as it is, or can be used with a lower concentration if necessary.

本発明において、資化ソーダの使用量は1.6−ジクロ
ルヘキサンに対する資化ソーダのモル比を理論量の2.
0に対し2.1〜2.6程度に若干過剰とすることが好
ましい、20モル比が低過ぎる場合は収率が低(,1,
6〜ジクロルヘキサンの損失が大きくなる。またこのモ
ル比が高過ぎる場合は排水中にCNイオンが残留し、排
水処理の費用が増加する。
In the present invention, the amount of sodium assimilate used is 1.6-dichlorohexane at a molar ratio of 2.6-dichlorohexane to the theoretical amount.
It is preferable to have a slight excess of about 2.1 to 2.6 with respect to 0. If the molar ratio of 20 is too low, the yield will be low (,1,
6 - The loss of dichlorohexane becomes large. Furthermore, if this molar ratio is too high, CN ions will remain in the wastewater, increasing the cost of wastewater treatment.

テトラブチルアンモニウムプロミド等の使用量は、1.
6〜ジクロルヘキサン1モル当たり1.5〜10g、好
ましくは1.5〜6.5gとする。テトラブチルアンモ
ニウムプロミド等の使用量が少なすぎると収率が低く、
多い場合は次の精製工程の負荷が太き(なる。
The amount of tetrabutylammonium bromide etc. to be used is 1.
6 to 1.5 to 10 g, preferably 1.5 to 6.5 g per mole of dichlorohexane. If the amount of tetrabutylammonium bromide etc. used is too small, the yield will be low;
If the amount is large, the load on the next refining process will be heavy.

反応温度は80〜140℃、好ましくは90〜110℃
とする0反応温度が低いと反応が進行せず、高すぎる場
合は着色や重合の原因となる。
Reaction temperature is 80-140°C, preferably 90-110°C
If the reaction temperature is too low, the reaction will not proceed, and if it is too high, it will cause discoloration or polymerization.

反応圧力は特に制限が無いが、通常は常圧で行う0反応
時間は通常0.5〜8 hr、好ましくは2〜4 hr
である。
The reaction pressure is not particularly limited, but the reaction time is usually 0.5 to 8 hr, preferably 2 to 4 hr, which is usually carried out at normal pressure.
It is.

反応生成液は常温まで冷却することにより、上層の油相
液と下層の水相液に分離、する。油相液には製品のスベ
ロニトリルと反応中間体のモノニトリルおよび触媒が含
まれ、これを2基の蒸留塔で蒸留することにより、高純
度のスベロニトリルが得られる。第一蒸留塔では触媒を
含む高沸物を除去し、第二蒸留塔では低沸物を除去する
By cooling the reaction product liquid to room temperature, it is separated into an upper oil phase liquid and a lower aqueous phase liquid. The oil phase liquid contains suberonitrile as a product, mononitrile as a reaction intermediate, and a catalyst, and by distilling this in two distillation columns, highly pure suberonitrile can be obtained. The first distillation column removes high-boiling substances including the catalyst, and the second distillation column removes low-boiling substances.

第−蒸溜塔および第二蒸溜塔において、前述の如くスベ
ロニトリルの熱分解を避けるため液温を200″C以下
、好ましくは180°C以下とする。またこのため圧力
は1〜40Torr、好ましくは1〜15T。
In the first distillation column and the second distillation column, the liquid temperature is kept at 200"C or less, preferably 180"C or less, to avoid thermal decomposition of suberonitrile as described above. Also, for this purpose, the pressure is set at 1 to 40 Torr, preferably 180"C or less. ~15T.

rrとする。圧力が高すぎれば、塔底の温度が高くなり
スベロニトリルが分解し回収率が低下する。
Let it be rr. If the pressure is too high, the temperature at the bottom of the column will increase, decomposing the suberonitrile, and reducing the recovery rate.

圧力がこれより低くても良いが蒸溜塔が太き(なるので
経済的でない。各蒸溜塔は段塔でも充填塔でも良いが、
理論段数として第−蒸溜塔では1段で良く、第二蒸溜塔
では蒸留条件によるが5〜50段、好ましくは15〜3
0段とする。還流比は第−蒸溜塔ではO〜5、好ましく
はO〜1であり、第二蒸溜塔では5〜20、好ましくは
5〜10である。
Although the pressure may be lower than this, it is not economical because the distillation column will be thick.Each distillation column may be a plated column or a packed column, but
The number of theoretical plates may be 1 in the first distillation column, and 5 to 50, preferably 15 to 3, depending on the distillation conditions in the second distillation column.
Set to 0 stage. The reflux ratio is 0 to 5, preferably 0 to 1 in the first distillation column, and 5 to 20, preferably 5 to 10 in the second distillation column.

(作用および効果) 本発明によれば、相間移動触媒であるテトラブチルアン
モニウムプロミド等が分解することにより生成するトリ
ブチルアミン等が製品中に混入することなく高純度のス
ベロニトリルが得られる。
(Functions and Effects) According to the present invention, highly pure suberonitrile can be obtained without contaminating the product with tributylamine, etc., which are generated by decomposition of tetrabutylammonium bromide, which is a phase transfer catalyst.

本方法においては工業的に安価に得られる1、6−ジク
ロルヘキサンを原料としており、且つ反応工程および精
製工程が非常に簡略なプロセスで高純度のスベロニトリ
ルが得られるので、本発明の工業的意義が大きい。
In this method, 1,6-dichlorohexane, which can be obtained industrially at low cost, is used as a raw material, and highly pure suberonitrile can be obtained through a very simple reaction and purification process. It has great significance.

(実施例) 次に実施例を用い本発明を具体的に説明する。(Example) Next, the present invention will be specifically explained using Examples.

比較例は、従来一般の蒸留精製法で行われる方法、即ち
まず低沸物を除去し、次に高沸物を除去する方法による
場合とし、本発明の方法による実施例と対比した。
Comparative examples were conducted using a conventional distillation purification method, that is, first removing low-boiling substances and then removing high-boiling substances, and were compared with examples using the method of the present invention.

叉旌拠よ 相間移動触媒としてテトラブチルアンモニウムプロミド
を用い、1.6−ジクロルヘキサンに対する背比ソーダ
のモル比を2.1、触媒量を1.6−ジクロルヘキサン
1モル当たり3.3gとし、常圧下反応温度110°C
で4時間反応させ、冷却により分離しり粗スベロニトリ
ル液10100Oスベロニトリル濃度84χ)を、圧力
10Torr温度180″Cで単蒸留により高沸物を除
去し、留出液950g (スベロニトリル濃度87χ)
を得た。この留出液を上部に30段相当の充填物を有す
る蒸留釜を用い頂部圧力5Torr (釜内15T。
In this case, tetrabutylammonium bromide was used as a phase transfer catalyst, the molar ratio of soda to 1.6-dichlorohexane was 2.1, and the amount of catalyst was 3.5% per mole of 1.6-dichlorohexane. 3g, reaction temperature 110°C under normal pressure
The crude suberonitrile liquid (10100O suberonitrile concentration 84χ) was separated by cooling for 4 hours, and the high-boiling substances were removed by simple distillation at a pressure of 10 Torr and a temperature of 180''C to obtain 950 g of distillate (suberonitrile concentration 87χ).
I got it. This distillate was poured into a distillation pot with packing equivalent to 30 stages at the top, and the pressure at the top was 5 Torr (15T inside the pot).

rr)還流比5.0で回分蒸留を行い、低沸留出液13
0gを得た。この蒸留時の温度は、頂部53〜160°
C1釜内167〜190°Cであった。この結果、純度
99.0%以上の精スベロニトリルが820g得られ、
精スベロニトリル中にトリブチルアミンおよびブチルプ
ロミドが検出されなかった。
rr) Perform batch distillation at a reflux ratio of 5.0 to obtain a low-boiling distillate 13
Obtained 0g. The temperature during this distillation is 53° to 160° at the top.
The temperature inside the C1 pot was 167-190°C. As a result, 820g of purified suberonitrile with a purity of 99.0% or more was obtained,
No tributylamine or butylbromide was detected in the refined suberonitrile.

ル較■上 実施例1と同様にして得られた粗スベロニトリル液10
00g (スベロニトリル濃度83.Oχ)を、実施例
1と同じ30段相当の蒸留釜を用い回分蒸留し、低。
10 Crude suberonitrile liquid obtained in the same manner as in Example 1
00g (suberonitrile concentration 83.Ox) was batch distilled using the same 30-plate distillation pot as in Example 1, and the concentration was 83.Ox.

沸留出液110gを得た。この時の還流比は5.0とし
、圧力は頂部2Torr、釜内10Torrであり、温
度は頂部42〜140°C1釜内156〜173°Cで
あった。この蒸留により得られた釜残液880g (ス
ベロニトリル濃度91.5χ)を、圧力10Torr、
温度180℃で単蒸留することにより、精スベロニトリ
ル810gが得られたが、その純度は98.4χであり
、トリブチルアミン0.97χ、ブチルプロミド0.2
4χが検出された。
110 g of boiling distillate was obtained. The reflux ratio at this time was 5.0, the pressure was 2 Torr at the top and 10 Torr inside the pot, and the temperature was 42-140°C at the top and 156-173°C inside the pot. 880 g of the pot residue obtained by this distillation (suberonitrile concentration 91.5χ) was heated at a pressure of 10 Torr.
By simple distillation at a temperature of 180°C, 810 g of refined suberonitrile was obtained, the purity of which was 98.4χ, tributylamine 0.97χ, butylbromide 0.2
4χ was detected.

Claims (1)

【特許請求の範囲】 一般式が〔▲数式、化学式、表等があります▼〕(R_
1〜R_4は炭素数が3〜10のアルキル基を示し、こ
れらは互に同じでも異なっていても良い)で表される相
間移動触媒の存在下、1,6−ジクロルヘキサンと青化
ソーダ水溶液を反応させて得られた粗スベロニトリル液
を蒸留してスベロニトリルを製造するに際し、蒸留塔を
2基設け、まず第一蒸溜塔において該触媒を含む高沸物
を除去し、次に第二蒸溜塔において未反応1,6−ジク
ロルヘキサンを含む低沸物を除去することを特徴とする
高純度スベロニトリルの製造法
[Claims] The general formula is [▲There are mathematical formulas, chemical formulas, tables, etc.▼] (R_
1 to R_4 represent an alkyl group having 3 to 10 carbon atoms, and these may be the same or different.) 1,6-dichlorohexane and soda cyanide. When producing suberonitrile by distilling the crude suberonitrile liquid obtained by reacting an aqueous solution, two distillation columns are installed, and the first distillation column first removes high boiling substances including the catalyst, and then the second distillation column removes high boiling substances including the catalyst. A method for producing high-purity suberonitrile, characterized by removing low-boiling substances including unreacted 1,6-dichlorohexane in a column
JP62028193A 1987-02-12 1987-02-12 Method for producing high-purity suberonitrile Expired - Lifetime JPH0832671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62028193A JPH0832671B2 (en) 1987-02-12 1987-02-12 Method for producing high-purity suberonitrile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62028193A JPH0832671B2 (en) 1987-02-12 1987-02-12 Method for producing high-purity suberonitrile

Publications (2)

Publication Number Publication Date
JPS63196550A true JPS63196550A (en) 1988-08-15
JPH0832671B2 JPH0832671B2 (en) 1996-03-29

Family

ID=12241843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62028193A Expired - Lifetime JPH0832671B2 (en) 1987-02-12 1987-02-12 Method for producing high-purity suberonitrile

Country Status (1)

Country Link
JP (1) JPH0832671B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0860427A1 (en) * 1997-02-25 1998-08-26 Basf Aktiengesellschaft Process for the removal of halides from halide containing nitrile mixtures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0860427A1 (en) * 1997-02-25 1998-08-26 Basf Aktiengesellschaft Process for the removal of halides from halide containing nitrile mixtures

Also Published As

Publication number Publication date
JPH0832671B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
US5527966A (en) Preparation of triphenylphosphine
JPS63196550A (en) Production of high-purity suberonitrile
US3842115A (en) Process for purifying diaminomaleonitrile
EP0484742B1 (en) 2-Chloropropionaldehyde trimer and production process thereof
JPH07116096B2 (en) Method for producing high-purity 0-toluic acid
JPH037272A (en) Production of optically active tetrahydro-2-furoic acid
JPS58157751A (en) Recovery of monomethylhydrazine
EP0569892B1 (en) Oxidation process
KR100654923B1 (en) Process for continuously preparing high purity chiral amide compound
JP3556275B2 (en) Purification method of t-butyl cyanoacetate
JPH0832669B2 (en) Suberonitrile manufacturing method
RU2187490C2 (en) Method of synthesis of chlorocyclohexane
JPH10139745A (en) Purification of dimethylformamide
CN110183355A (en) A kind of refining methd of high-purity o chlorine benzaldehyde cyanohydrin
JPS63196549A (en) Process for production of suberonitrile
JP4717203B2 (en) Method for purifying 2-fluoro-3-oxoalkylcarboxylic acid ester
CN117431276A (en) Dinitrile refining method
JPH0665182A (en) Separation and purification of 3-cyano-3,5,5-trimethyl-1-cyclohexanone
JPS63238088A (en) Production of chlorosilanes
JPS63162646A (en) Production of monochloroacetone
JPS62175438A (en) Production of malonic acid derivative
JPH0832668B2 (en) Suberonitrile manufacturing method
JPS63280038A (en) Production of 1,1-dichloroacetone
JPS6221348B2 (en)
JPH03184953A (en) Production of mercaptamine salt

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term