JPS63195976A - Electrolyte circulation type metal-halogen battery - Google Patents

Electrolyte circulation type metal-halogen battery

Info

Publication number
JPS63195976A
JPS63195976A JP62029175A JP2917587A JPS63195976A JP S63195976 A JPS63195976 A JP S63195976A JP 62029175 A JP62029175 A JP 62029175A JP 2917587 A JP2917587 A JP 2917587A JP S63195976 A JPS63195976 A JP S63195976A
Authority
JP
Japan
Prior art keywords
electrolyte
battery
bromine
reaction
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62029175A
Other languages
Japanese (ja)
Inventor
Kyoichi Tange
恭一 丹下
Torahiko Sasaki
虎彦 佐々木
Kazuo Kawahara
河原 和生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP62029175A priority Critical patent/JPS63195976A/en
Publication of JPS63195976A publication Critical patent/JPS63195976A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To lower the concentration of bromine other than a bromine complex in an electrolyte to decrease the self discharge of a battery and to increase the efficiency of the battery by adding perchlorate to an electrolyte. CONSTITUTION:In an electrolyte circulation type metal-halogen battery in which a reaction tank formed between an electrode plate and a separator is partitioned with a self discharge prevention separator membrane and an electrolyte is circulated between an electrolyte storage tank and a reaction tank to conduct charge-discharge reaction, perchlorate is added to the electrolyte. Although chemical raction heat of self discharge greately contributes to an increase in temperature of electrolyte, the self discharge is decreased and an increase in temperature of electrolyte is retarded. Thereby, the deterioration of battery components caused by absorption of bromine is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は電解液循環式金属−ハロゲン電池、特に電解
液貯蔵槽と反応槽との間で電解液を循環させ所定の充放
電反応を行う形式の電池における電解液の改良に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a metal-halogen battery with a circulating electrolyte solution, in particular, a battery that circulates an electrolyte solution between an electrolyte storage tank and a reaction tank to carry out a predetermined charging/discharging reaction. This invention relates to improvements in electrolytes in batteries of this type.

[従来の技術] 電解液貯蔵槽と反応槽との間で電解液を循環させ所定の
充放電反応を行う形式の金属−ハロゲン電池は、コスト
が安く反応物が入手しやすい上セル電圧が高く、また電
極反応の可逆性が非常に高いので特に関心が持たれてい
る。
[Prior Art] Metal-halogen batteries, in which electrolyte is circulated between an electrolyte storage tank and a reaction tank to carry out predetermined charging and discharging reactions, are inexpensive, reactants are easily available, and have a high cell voltage. , and are of particular interest because the electrode reaction is highly reversible.

例えば、従来における亜鉛−臭素電池は新型電池の1つ
として知られ、正極及び負極が設けられた反応槽内にお
いて次式に示す基本的な電気化学反応が行われている。
For example, a conventional zinc-bromine battery is known as one of the new types of batteries, and the basic electrochemical reaction shown in the following equation is performed in a reaction tank provided with a positive electrode and a negative electrode.

(正極)2Br〜−4−B r2+ 2e″″(負極)
 Zn 2++2e   Zn       ・(1)
充電 (全体)Zn2”+2Br−;Zn+Br2放電 この反応式からも明らかなように、充電時には負極上に
亜鉛Znが析出し、正極では臭素Br2が生成されこの
Br2は電解液中に溶解する。また、放電時には、負極
板上に析出された亜鉛Znが酸化されてZn2+となっ
て電解液中に溶解し、電解液中の臭素Br2は還元され
て臭素イオン2Br−となって電解液中に同様に溶解す
る。
(Positive electrode) 2Br~-4-Br2+ 2e'''' (Negative electrode)
Zn 2++2e Zn ・(1)
Charging (overall) Zn2''+2Br-; Zn+Br2 Discharging As is clear from this reaction equation, during charging, zinc Zn is deposited on the negative electrode, and bromine Br2 is produced at the positive electrode, and this Br2 is dissolved in the electrolyte. During discharge, zinc Zn deposited on the negative electrode plate is oxidized to become Zn2+ and dissolved in the electrolyte, and bromine Br2 in the electrolyte is reduced to become bromine ions 2Br- and similarly dissolved in the electrolyte. dissolve in

ところで、このような亜鉛−臭素電池では、充電時に生
成される臭素Br2の電解液中における濃度が充電時間
の経過とともに増大し、該臭素Br2が次第に負極側に
拡散していく。そして、該臭素Br2は、負極側にて亜
鉛Znと反応して亜鉛イオンZn2”h臭素イオンBr
−に成り、自己放電を起してしまうため、この亜鉛−臭
素電池は、亜鉛イオンZn2+及び臭素イオンBr−を
透過し臭素 Br2の透過を阻止する自己放電防止用の
セパレータ膜を用い、反応槽を正極側反応槽と負極側反
応槽とに分離し、正極側から負極側への臭素Br2の拡
散を防止している。
By the way, in such a zinc-bromine battery, the concentration of bromine Br2 produced during charging in the electrolytic solution increases with the passage of charging time, and the bromine Br2 gradually diffuses toward the negative electrode side. Then, the bromine Br2 reacts with zinc Zn on the negative electrode side to form zinc ions Zn2''h bromine ions Br.
-, causing self-discharge. Therefore, this zinc-bromine battery uses a separator membrane for self-discharge prevention that permeates zinc ions Zn2+ and bromine ions Br- and blocks the permeation of bromine Br2, is separated into a positive electrode side reaction tank and a negative electrode side reaction tank to prevent bromine Br2 from diffusing from the positive electrode side to the negative electrode side.

更に、亜鉛−臭素電池には、前記臭素Br2の拡散を防
止するために、電解液中に錯化剤を添加し、正極側電解
液中に溶解した臭素Br2を電解液に溶けにくい錯体化
合物とし、電解液中に油状に分離沈澱させている。
Furthermore, in the zinc-bromine battery, in order to prevent the diffusion of the bromine Br2, a complexing agent is added to the electrolyte, and the bromine Br2 dissolved in the positive electrode side electrolyte is converted into a complex compound that is difficult to dissolve in the electrolyte. It is separated and precipitated as an oil in the electrolyte.

第3図には、このような原理を用いて形成された従来の
亜鉛−臭素電池が示されており(特開昭52−1228
35.特開昭57−199167、米国特許4,105
,829)、同図において、反応槽10内では正極12
と負極14とがセパレータ膜20により正極室10aと
負極室10bとして仕切られ、この反応槽10と正極側
電解液貯蔵槽22及び負極側電解液貯蔵槽24との間で
配管26.28及び38.40を介し電解液循環経路が
形成されて、前記第(1)式の電気化学反応が行われる
。そして、配管26.28,38.40を流れる電解液
はポンプ30.42により反応槽10へ圧送される。
FIG. 3 shows a conventional zinc-bromine battery formed using this principle (Japanese Patent Application Laid-Open No. 52-1228).
35. JP 57-199167, U.S. Patent No. 4,105
, 829), in the same figure, inside the reaction tank 10, the positive electrode 12
and the negative electrode 14 are separated by a separator film 20 as a positive electrode chamber 10a and a negative electrode chamber 10b, and piping 26, 28 and 38 are connected between the reaction tank 10, the positive electrode side electrolyte storage tank 22, and the negative electrode side electrolyte storage tank 24. .40, an electrolyte circulation path is formed, and the electrochemical reaction of formula (1) is performed. The electrolytic solution flowing through the pipes 26.28 and 38.40 is then pumped to the reaction tank 10 by the pump 30.42.

このような亜鉛−臭素電池では、電解液16として臭化
亜鉛(ZnBr2)水溶液が用いられ、これに加えて必
要に応じてKCf、NH4CJ!等の電導度向上剤が添
加されたり、臭素と反応して電解液に不溶で電解液より
比重の大きな錯体化合物を形成する錯化剤、例えば四級
アンモニウム塩(メチルエチルモルホリニウムブロマイ
ド、メチルエチルピロリジニウムブロマイド)等の臭素
錯化剤、デンドライト抑制剤等が添加されている。
In such a zinc-bromine battery, a zinc bromide (ZnBr2) aqueous solution is used as the electrolyte 16, and in addition to this, KCf, NH4CJ! conductivity improvers such as quaternary ammonium salts (methyl ethylmorpholinium bromide, methyl Bromine complexing agents such as ethylpyrrolidinium bromide, dendrite inhibitors, etc. are added.

そして、充電時には、反応槽10内において前記第(1
)式に示す充電反応が行われ、正極12側では臭素Br
2が生成されて電解液16内に溶解し、また負極14側
では亜鉛Znが析出し負極14上に亜鉛の析出層18が
形成されていく。
At the time of charging, the first (first)
) The charging reaction shown in the equation is carried out, and on the positive electrode 12 side, bromine Br
2 is generated and dissolved in the electrolytic solution 16, and zinc Zn is precipitated on the negative electrode 14 side, forming a zinc deposit layer 18 on the negative electrode 14.

また、放電時には、前記充電時とは逆の反応が行われ、
正極12側では臭素Br2が還元されて臭素イオン2B
  r−となって電解液16中に溶解し、負極14側で
は亜鉛の析出層18が酸化されて亜鉛イオンZn2+と
なって電解液16中に溶解する。
Furthermore, during discharging, a reaction opposite to that during charging occurs,
On the positive electrode 12 side, bromine Br2 is reduced to bromine ions 2B
r- and dissolves in the electrolytic solution 16, and on the negative electrode 14 side, the zinc deposit layer 18 is oxidized to become zinc ions Zn2+ and dissolves in the electrolytic solution 16.

このような電気化学反応が行われる反応槽10内は、充
電時に発生する臭素Br2により自己放電が発生するこ
とがないよう、その内部がセパレター膜20により正極
側反応槽10aと負極側反応槽10bとに分離されてい
る。
The inside of the reaction tank 10 where such an electrochemical reaction is carried out is separated by a separator film 20 into a positive electrode side reaction tank 10a and a negative electrode side reaction tank 10b so that self-discharge does not occur due to bromine Br2 generated during charging. It is separated into

このセパレータ膜20は、自己放電を防止するために電
解液16は透過するがこれに溶解している臭素Br2の
透過は阻止するものである。このようなセパレータ膜2
0としては、一般にイオン交換膜あるいは多孔質膜が用
いられるが、電池の内部抵抗を少なくするという観点か
らは多孔質膜を使用することが好ましい。
This separator film 20 allows the electrolytic solution 16 to pass therethrough in order to prevent self-discharge, but blocks the penetration of bromine Br2 dissolved therein. Such a separator film 2
Generally, an ion exchange membrane or a porous membrane is used as the membrane, but from the viewpoint of reducing the internal resistance of the battery, it is preferable to use a porous membrane.

ここにおいて、電解液16内に臭素錯化剤が添加されて
いる場合には、充電時に発生した臭素Br2は錯体化さ
れ、電解液16に不溶な錯体化合物となって析出し、第
3図に示す電池において、該錯体化合物は正極側電解液
貯蔵槽22の底部を錯体貯蔵部32としてここに順次沈
澱して貯蔵されていく。また、この錯体貯蔵部32と配
管28との佃は、バルブ34を有する錯体供給ダクト3
6により連絡されている。このバルブ34は、通常開放
されており、錯体貯蔵部32に沈澱した錯体化合物を配
管28を介して反応11!10aに向けて放電用に送り
出す。
Here, if a bromine complexing agent is added to the electrolytic solution 16, the bromine Br2 generated during charging is complexed and precipitated as a complex compound insoluble in the electrolytic solution 16, as shown in FIG. In the illustrated battery, the complex compound is stored at the bottom of the positive electrode side electrolyte storage tank 22 as a complex storage section 32, where it is sequentially precipitated. Further, the connection between the complex storage section 32 and the piping 28 is connected to the complex supply duct 3 having the valve 34.
It is communicated by 6. This valve 34 is normally open and sends the complex compound precipitated in the complex reservoir 32 via the pipe 28 towards the reaction 11!10a for discharge.

また、前記負極側電解液貯蔵槽24は、同様にして負極
側反応槽10bとの間で、配管38,40を介して電解
液循環経路を形成しており、循環経路に設けたポンプ4
2を用い負極反応槽10b内にて反応した負極側電解液
を貯蔵槽24へ向は送り出し貯蔵槽24から新たな電解
液を反応槽1obに向は供給している。
Further, the negative electrode side electrolyte storage tank 24 similarly forms an electrolyte circulation path with the negative electrode side reaction tank 10b via piping 38, 40, and a pump 4 provided in the circulation path.
2, the negative electrode electrolyte reacted in the negative electrode reaction tank 10b is sent to the storage tank 24, and a new electrolyte is supplied from the storage tank 24 to the reaction tank 1ob.

このように、この亜鉛−臭素電池は、電解液貯蔵槽22
.24内に電解液16を充分に貯蔵し、該貯蔵電解液1
6を用いて充電時には前記第(1)式に示す充電反応を
行い、錯体貯蔵部32に臭素の錯体化合物を貯蔵し、負
極14上に亜鉛の析出層18を形成して電力を貯蔵する
ことができる。
In this way, this zinc-bromine battery has an electrolyte storage tank 22.
.. A sufficient amount of electrolyte 16 is stored in 24, and the stored electrolyte 1
When charging using 6, the charging reaction shown in the above-mentioned formula (1) is carried out, a bromine complex compound is stored in the complex storage part 32, and a zinc deposit layer 18 is formed on the negative electrode 14 to store electric power. Can be done.

また、放電時には、錯体貯蔵部32に貯蔵されている臭
素の錯体化合物を正極側反応槽10aに向は送り出し、
該錯体化合物と負極14上に形成されている亜鉛の析出
層18とを用い、前記第(1)式に示す放電反応を行い
、その充電電力を放出することができる。
Furthermore, during discharging, the bromine complex compound stored in the complex storage section 32 is sent out to the positive electrode side reaction tank 10a,
Using the complex compound and the zinc deposited layer 18 formed on the negative electrode 14, the discharge reaction shown in the above formula (1) can be performed and the charging power can be released.

[発明が解決しようとする問題点] しかしながら、従来の亜鉛−臭素電池では、充放電中の
発熱が大きい上に、はとんどの部品が放熱の小さいプラ
スチックにより構成されているため、熱が蓄積され電池
温度が大きく上昇するという問題があった。この発熱の
原因としては、■電極反応に伴なう発熱、■自己放電に
よる化学反応熱、■内部抵抗によるジュール熱、■ポン
プモータによる発熱等の要因が考えられる。
[Problems to be solved by the invention] However, conventional zinc-bromine batteries generate a lot of heat during charging and discharging, and most of the parts are made of plastic with low heat dissipation, so heat accumulates. There was a problem in that the battery temperature rose significantly. Possible causes of this heat generation include: (1) heat generated by electrode reaction, (2) chemical reaction heat due to self-discharge, (2) Joule heat due to internal resistance, and (2) heat generated by the pump motor.

そして、この場合の発熱による影響は、雰囲気温度、充
放電電流、充放電(放置)時間等により、各要因の占め
る割合が異なるが、通常の充放電電流(10〜30mA
/cシ)にて充放電を行った場合には、自己放電による
化学反応熱が最も寄与しており、全体の40%前後を占
めることが知られている。
The influence of heat generation in this case varies depending on the ambient temperature, charging/discharging current, charging/discharging (standing) time, etc.;
It is known that when charging and discharging are performed at /c), the chemical reaction heat due to self-discharge contributes the most, accounting for about 40% of the total.

以上の温度上昇の結果、反応槽内にて自己放電量が更に
増大するため、ますます電池温度が上昇し電池効率の低
下、あるいは電池構成部品の劣化促進による寿命低下と
いった問題が生じていた。
As a result of the above temperature rise, the amount of self-discharge in the reaction tank further increases, resulting in further increases in battery temperature, leading to problems such as a decrease in battery efficiency or a shortened lifespan due to accelerated deterioration of battery components.

特に、現状のように多孔膜をセパレータとして用いてい
る電池においては、自己放電を低減するため、臭素拡散
の小さいセパレータを用いたり、錯化剤の改良として錯
化能力の高い錯化剤を用いるなどにより改良がなされて
きたが、依然として自己放電量を低減することができな
かった。
In particular, in batteries that currently use a porous membrane as a separator, in order to reduce self-discharge, a separator with low bromine diffusion is used, or a complexing agent with high complexing ability is used to improve the complexing agent. Although improvements have been made, it has still not been possible to reduce the amount of self-discharge.

発明の目的 この発明は係る問題点を解決するためになされたもので
、電解液中に過塩素酸塩を添加することにより、臭素錯
体以外の電解液中の臭素濃度を下げ電池の自己放電量を
低減させて電池効率を向上させ得る電解液循環式金属−
ハロゲン電池の提供を目的とする。
Purpose of the Invention This invention was made to solve the above problems, and by adding perchlorate to the electrolyte, the concentration of bromine in the electrolyte other than bromine complexes can be reduced and the amount of self-discharge of the battery can be reduced. Electrolyte circulating metal that can reduce energy consumption and improve battery efficiency
The purpose is to provide halogen batteries.

[問題点を解決するための手段及び作用]前記目的を達
成するために、本発明は、電極板とセパレータとの間に
形成される反応槽を自己放電防止用のセパレータ膜によ
り互いに仕切り、電解液貯蔵槽と反応槽との間で電解液
を循環させて所定の充放電反応を行う電解液循環式金属
−ハロゲン電池において、前記電解液中に過塩素酸塩を
添加したことを特徴とする。
[Means and operations for solving the problems] In order to achieve the above object, the present invention partitions reaction vessels formed between an electrode plate and a separator from each other with a separator film for self-discharge prevention, and An electrolyte circulation type metal-halogen battery in which an electrolyte is circulated between a liquid storage tank and a reaction tank to perform a predetermined charging/discharging reaction, characterized in that a perchlorate is added to the electrolyte. .

以上により、充放電にともなう電解液の温度上昇に最も
寄与しているとされる自己放電による化学反応熱は、過
塩素酸塩の添加により自己放電量が減少される結果、電
池のクーロン効率を向上させることができる。また同時
に、電解液温度の上昇が抑制させることにより、電池を
構成する部品の臭素吸収による劣化が防止されるという
利点を有する。
As described above, the chemical reaction heat due to self-discharge, which is said to contribute most to the temperature rise of the electrolyte during charging and discharging, is reduced by the addition of perchlorate, which reduces the Coulombic efficiency of the battery. can be improved. At the same time, by suppressing the rise in electrolyte temperature, there is an advantage that deterioration of components constituting the battery due to bromine absorption is prevented.

[実施例] 以下、図面に基づき本発明の好適な実施例を説明する。[Example] Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

本発明の実施例に用いられる電池は、反応槽と電解液貯
蔵槽との間でポンプにより配管を介して電解液が循環さ
れ、この電解液を介して反応槽において所定の充放電反
応が行われる点は、前述した従来技術と同様であるので
図面及びその説明を省略する。
In the battery used in the embodiments of the present invention, an electrolyte is circulated between a reaction tank and an electrolyte storage tank via piping by a pump, and a predetermined charging/discharging reaction is performed in the reaction tank via this electrolyte. Since the points covered are the same as those of the prior art described above, the drawings and their explanations will be omitted.

本発明の特徴的なことは、前記電解液中に過塩素酸塩を
添加したことである。
A feature of the present invention is that perchlorate is added to the electrolyte.

すなわち、本発明の第1実施例において、電解液として
臭化亜鉛3mol/ j2 、錯化剤QBrとして1m
ol/ 12添加し、過塩素酸ナトリウムを2mol/
j!添加したものを用いたときの臭素濃度の変化を示す
例か第1図に示されており、また、第2図にはこの電解
液を用いた充放電に伴なう電解液抵抗の変化が示されて
いる。
That is, in the first embodiment of the present invention, 3 mol/j2 of zinc bromide was used as the electrolyte, and 1 m of the complexing agent QBr.
ol/12 and sodium perchlorate 2 mol/
j! Figure 1 shows an example of the change in bromine concentration when using an additive, and Figure 2 shows the change in electrolyte resistance due to charging and discharging using this electrolyte. It is shown.

これらの図で明らかなように、本実施例による電解液に
よれば、水性電解液中の臭素濃度は従来の過塩素酸塩を
含まない電解液を使用した場合に比較して、充放電中に
おける臭素濃度及びその変化の度合や電解液抵抗が大巾
に低くなっていることが解る。
As is clear from these figures, according to the electrolyte according to this example, the bromine concentration in the aqueous electrolyte is lower during charging and discharging than when using a conventional electrolyte that does not contain perchlorate. It can be seen that the bromine concentration and its degree of change, as well as the electrolyte resistance, are significantly lower.

表−1には本実施例の電解液を用いて電池のクーロン効
率等を充放電評価した場合の結果が示されている。
Table 1 shows the results of charging/discharging evaluation of the coulombic efficiency of the battery using the electrolytic solution of this example.

表1 零l 使用電池 500wh級電池 札 初期温度 20℃ この表で明らかなように、本発明の、実施例によれば従
来の電解液を使用した場合に比し、電池の温度上昇を3
0%はど抑制することが可能となる。
Table 1 Zero l Battery used: 500wh class battery tag Initial temperature: 20°C As is clear from this table, according to the example of the present invention, the temperature rise of the battery was reduced by 3% compared to when a conventional electrolyte was used.
It becomes possible to suppress the noise by 0%.

これは、充放電中ににおける発熱に最も寄与していると
されるのが自己放電による化学反応熱であって、自己放
電は、過塩素酸塩の添加により、電解液中の臭素濃度が
低減されることに基づく。
This is because the chemical reaction heat due to self-discharge is said to contribute most to heat generation during charging and discharging, and self-discharge is caused by the addition of perchlorate, which reduces the bromine concentration in the electrolyte. Based on what is done.

次に、第2実施例として、電解液中に臭化亜鉛3mol
/j!、錯化剤QBrとしてlll1ol/i添加し、
過塩素酸ナトリウムを1aol/j!添加した。この電
解液を用いて電池を充放電評価した場合の経過が前述し
た表−1に示されている。同表で明らかなように、この
電解液においても電池効率が大きく向」ニし、電池の温
度上昇を大巾に抑制することが可能であることが解る。
Next, as a second example, 3 mol of zinc bromide was added to the electrolyte.
/j! , 111 ol/i added as a complexing agent QBr,
1aol/j of sodium perchlorate! Added. The progress of charging and discharging a battery using this electrolyte is shown in Table 1 mentioned above. As is clear from the same table, this electrolyte also greatly improves the battery efficiency and makes it possible to significantly suppress the temperature rise of the battery.

ところで、前記過塩素酸ナトリウムは、一般に常lHに
おいては3mol/j!以上溶解するが、低温において
は結晶が生じてしまうことになる。結晶を生じた状態で
電池を運転した場合は、充電中負極側に電析する金属が
デンドライトを生じ、自己放電が増加することにより電
池効率が低下するという不具合が生じる。また、デンド
ライトが生じるとポンプが詰まってモータに負荷がかか
り故障する危険性も考えられる。このため、過塩素酸ナ
トリウムの添加量は3mol/J!以下とすることが好
ましい。
By the way, the sodium perchlorate is generally 3 mol/j at normal lH! However, at low temperatures, crystals will form. If a battery is operated in a state where crystals are formed, the metal deposited on the negative electrode side during charging will form dendrites, resulting in an increase in self-discharge and a decrease in battery efficiency. Furthermore, if dendrites occur, there is a risk that the pump will become clogged and the motor will be overloaded, causing it to malfunction. Therefore, the amount of sodium perchlorate added is 3 mol/J! The following is preferable.

なお、添加する過塩素酸塩は陽イオン種が2+ Na+に限らず、Li”、Be  、Mg”。In addition, the perchlorate to be added has a cation species of 2+ Not limited to Na+, but also Li", Be, Mg".

2+      2+       2+      
   +Ca  、Sr  、Ba  、NHでもよく
、これらによっても以上の実施例と同様な効果が得られ
る。
2+ 2+ 2+
+Ca 2 , Sr 2 , Ba 2 , and NH may also be used, and the same effects as in the above embodiments can also be obtained with these.

以上説明したように、本発明の実施例によれば、過塩素
酸塩を添加したことにより電池の温度上昇を抑制し、電
極やセパレータなどの電池構成部品の臭素吸収による劣
化を抑制し、電池をより長期間安定に運転することがで
きる。
As explained above, according to the embodiments of the present invention, the addition of perchlorate suppresses the rise in battery temperature, suppresses deterioration of battery components such as electrodes and separators due to bromine absorption, and can be operated stably for a longer period of time.

また、温度の上昇を抑制するのみならず温度の変動幅を
小さくすることができるため、構成部品の熱変形量が少
なくなり、ボルトの緩みやシール部材の変形などによる
液洩れ等も減り、電池の信頼性を向上することができる
In addition, it not only suppresses temperature rises but also reduces the range of temperature fluctuations, which reduces the amount of thermal deformation of component parts, reduces leakage caused by loosening of bolts and deformation of sealing members, etc. reliability can be improved.

更に、電解液抵抗を減少したことにより、電池の内部抵
抗が減り高出力の電池を得ることができる。
Furthermore, by reducing the electrolyte resistance, the internal resistance of the battery is reduced and a high output battery can be obtained.

[発明の効果] この発明は以上説明した通り、電解液中に過塩素酸塩を
添加したことにより、電解液中の臭素濃度を低減して自
己放電量を抑制し、電池効率を向上することができる。
[Effects of the Invention] As explained above, the present invention adds perchlorate to the electrolyte to reduce the bromine concentration in the electrolyte, suppress the amount of self-discharge, and improve battery efficiency. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による電解液中の臭素濃度の変
化を示す図、 第2図は電解液抵抗の変化を示す図、 第3図は従来の電解液循環式金属−ハロゲン電池の原理
説明図である。
Figure 1 is a diagram showing the change in bromine concentration in the electrolyte according to the embodiment of the present invention, Figure 2 is a diagram showing the change in electrolyte resistance, and Figure 3 is a diagram showing the change in the electrolyte resistance of the conventional electrolyte circulating metal-halogen battery. It is a principle explanatory diagram.

Claims (2)

【特許請求の範囲】[Claims] (1)電極板とセパレータとの間に形成される反応槽を
自己放電防止用のセパレータ膜により互いに仕切り、電
解液貯蔵槽と反応槽との間で電解液を循環させて所定の
充放電反応を行う電解液循環式金属−ハロゲン電池にお
いて、前記電解液中に過塩素酸塩を添加したことを特徴
とする電解液循環式金属−ハロゲン電池。
(1) The reaction tanks formed between the electrode plate and the separator are separated from each other by a separator film for self-discharge prevention, and the electrolyte is circulated between the electrolyte storage tank and the reaction tank to perform a predetermined charge/discharge reaction. 1. A circulating electrolyte metal-halogen battery characterized in that a perchlorate is added to the electrolyte.
(2)特許請求の範囲(1)記載の電池において、前記
過塩素酸塩はNa^+、Ca^2^+、Mg^2^+、
Li^+、Be^2^+、Sr^2^+、Ba^2^+
、NH_4^+のいずれかの陽イオンを含むことを特徴
とする電解液循環式金属−ハロゲン電池。
(2) In the battery according to claim (1), the perchlorate is Na^+, Ca^2^+, Mg^2^+,
Li^+, Be^2^+, Sr^2^+, Ba^2^+
, NH_4^+, a circulating electrolyte metal-halogen battery.
JP62029175A 1987-02-09 1987-02-09 Electrolyte circulation type metal-halogen battery Pending JPS63195976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62029175A JPS63195976A (en) 1987-02-09 1987-02-09 Electrolyte circulation type metal-halogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62029175A JPS63195976A (en) 1987-02-09 1987-02-09 Electrolyte circulation type metal-halogen battery

Publications (1)

Publication Number Publication Date
JPS63195976A true JPS63195976A (en) 1988-08-15

Family

ID=12268895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62029175A Pending JPS63195976A (en) 1987-02-09 1987-02-09 Electrolyte circulation type metal-halogen battery

Country Status (1)

Country Link
JP (1) JPS63195976A (en)

Similar Documents

Publication Publication Date Title
US4162351A (en) Metal-halogen cell operation with storage of halogen via organic complexation external to the electrochemical cell
US4614693A (en) Metal-halogen secondary battery
US6887600B2 (en) Regenerative fuel cell with pH control
JPS60202676A (en) Improved electrolyte for zinc-bromine battery
CA1129945A (en) Complexing agents for zinc bromine storage systems
JPH0574909B2 (en)
EP0411614B1 (en) Method of operating a zinc bromide battery
JPS63195976A (en) Electrolyte circulation type metal-halogen battery
JPH02109275A (en) Metal-bromine battery
US4677039A (en) Zinc-bromine battery
JPH0722026B2 (en) Electrolyte circulation type metal-halogen battery
JPS61156643A (en) Zinc-bromine battery
US20230361328A1 (en) Flow battery systems and methods of using the same
JPS6380486A (en) Circulating electrolyte type metal-halogen battery
JPH02192672A (en) Circulating electrolyte type zinc-bromine cell
JPH0582034B2 (en)
JPH04277470A (en) Metal halide battery of electrolyte circulation type
JPH02135671A (en) Metal-halogen battery
JPH01102863A (en) Zn-br battery
JPH0461469B2 (en)
JPH03147279A (en) Zinc-bromine battery
JPH02189868A (en) Cleanout method for metal-bromine battery
JPH0357172A (en) Zinc-halogen battery
JPH03147278A (en) Zinc-bromine battery
JP2967634B2 (en) Zinc-bromine battery