JPS6319596A - Pressure-suppression chamber pool-water system of nuclear power plant - Google Patents

Pressure-suppression chamber pool-water system of nuclear power plant

Info

Publication number
JPS6319596A
JPS6319596A JP61163364A JP16336486A JPS6319596A JP S6319596 A JPS6319596 A JP S6319596A JP 61163364 A JP61163364 A JP 61163364A JP 16336486 A JP16336486 A JP 16336486A JP S6319596 A JPS6319596 A JP S6319596A
Authority
JP
Japan
Prior art keywords
suppression chamber
pool
reactor
water
pressure suppression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61163364A
Other languages
Japanese (ja)
Inventor
賢治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61163364A priority Critical patent/JPS6319596A/en
Publication of JPS6319596A publication Critical patent/JPS6319596A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子力発電所設備、−%に、原子炉残留熱除
去系、原子炉格納容器圧力抑制室プール水系統および燃
料プール水冷却浄化系に関する改良に係るものである0 〔゛従来の技術〕 □ 従来、特開昭58−28698号に記載のように、
原子力発電所の燃料プール水および圧力抑制プール水の
冷却浄化装置が知られている0この装置は、燃料プール
の水面近傍に開口連通した二つのスキマーサージタンク
から燃料プール水を独立二系統を々すポンプ、配管、弁
、濾過脱塩器、熱交換器に流すようにしてあり、燃料プ
ール水の冷却・浄化が可能であるだけでなく圧力抑制プ
ール水の浄化も可能であるように構成され七いる。
Detailed Description of the Invention [Field of Industrial Application] The present invention is applicable to nuclear power plant equipment, nuclear reactor residual heat removal system, reactor containment vessel pressure suppression chamber pool water system, and fuel pool water cooling purification. 0 [Prior art] □ Conventionally, as described in Japanese Patent Application Laid-open No. 58-28698,
A cooling and purifying device for fuel pool water and pressure suppression pool water at a nuclear power plant is known. This device cools and purifies fuel pool water through two independent systems from two skimmer surge tanks that are open and communicated near the water surface of the fuel pool. It is designed to flow to pumps, piping, valves, filtration demineralizers, and heat exchangers, and is configured to not only cool and purify fuel pool water but also purify pressure suppression pool water. There are seven.

〔発明が解決し:うとする問題点〕[Problems that the invention attempts to solve]

従来技術では、原子炉格納容器圧力抑制室プール水の浄
化のためにポンプ、熱交換器、配管、すボート、弁等を
増設しなければならず、建物体積も増加することなど、
経済性の点で開運がある。
With conventional technology, pumps, heat exchangers, piping, boats, valves, etc. must be added to purify the reactor containment vessel pressure suppression chamber pool water, and the building volume also increases.
There is good luck in terms of economy.

また、これら放射能内包配管、機器などの増設はそれら
が新たな放射線源となるポテンシャルを増大させ、また
、建物内の機器配置を困難にしたり、保守点検スペース
や通路性を阻害する要因となるなど、被曝低減、保守点
検性の改善の点で問題がある。
In addition, the addition of these radioactive pipes and equipment increases their potential to become new radiation sources, and also makes it difficult to arrange equipment within the building and obstructs maintenance and inspection space and passage. There are problems in terms of reducing exposure and improving maintenance and inspection.

また、従来装置では、原子炉格納容器圧力抑制室の大量
のプール水を移動・置換して該プールの水抜きを可能に
する設備がないため、水抜きの状態で該圧力抑制室の内
壁の検査点検、塗装の保修などの作業を行うことは実際
上非常に困難であるという問題があった。
In addition, in conventional equipment, there is no equipment that can move and replace a large amount of pool water in the reactor containment vessel pressure suppression chamber to drain the pool. There has been a problem in that it is extremely difficult to perform inspections, paint maintenance, and other work.

また、放射能を内包した燃料プール水冷却系統配管内に
圧力抑制室プール水を流すので、圧力抑制室プール水の
一部が放射化し、圧力抑制室プール内全体に汚染が拡大
する可能法があった。また、原子炉停止時運転中に炉水
が残留熱除去系配管内を循環するが、従来装置ではその
水質レベルの同上の点で特に工夫されておらず、炉水の
循環する熱交換器、ポンプ、配管等が、放射化する可能
性があった。
In addition, since the pressure suppression chamber pool water is passed through the fuel pool water cooling system piping, which contains radioactivity, there is a possibility that some of the pressure suppression chamber pool water may become radioactive and spread contamination throughout the pressure suppression chamber pool. there were. In addition, during reactor shutdown operation, reactor water circulates in the residual heat removal system piping, but conventional equipment has not been particularly devised to improve the water quality. There was a possibility that pumps, piping, etc. could become radioactive.

また、従来は燃料プール内の保有水量が地震やプールラ
イナーからの漏洩で喪失した時にこれを補給する特別の
補給水系統設備を設けていたが、そのために建設費が割
高になり、経済性の点で問題があった。
Additionally, in the past, a special makeup water system was installed to replenish the amount of water held in the fuel pool when it was lost due to an earthquake or leakage from the pool liner, but this resulted in relatively high construction costs and was not economically viable. There was a problem with that.

本発明の目的は、燃料プール水冷却浄化系と原子炉残留
熱除去系の系統構成を合理的にすることにより原子炉圧
力抑制室プール水の浄化と水抜きを可能とし、原子炉停
止時運転時の炉水の水質維持を可能とし、又、燃料プー
ル補給水系の配管、弁、サポートポンプを削減すること
を可能とし、以て、経済性の改善、被曝低減、保守点検
性の改善、配置スペースの節約、原子炉格納容器の信頼
性向上を図った原子力発電所の圧力抑制室プール水系統
を提供するに6る。
The purpose of the present invention is to make it possible to purify and drain the reactor pressure suppression chamber pool water by rationalizing the system configuration of the fuel pool water cooling purification system and the reactor residual heat removal system, and to enable operation during reactor shutdown. This makes it possible to maintain the water quality of reactor water at the same time, and it also makes it possible to reduce piping, valves, and support pumps in the fuel pool make-up water system, thereby improving economic efficiency, reducing radiation exposure, and improving maintenance and inspection efficiency. To provide a pressure suppression chamber pool water system for a nuclear power plant that saves space and improves the reliability of the reactor containment vessel.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、原子炉残留熱除去および燃料プール水冷却浄
化系を備えており、原子炉残留熱除去系ポンプの入口側
に原子格納容器圧力抑制室プールが隔離弁を介して接続
されており、原子炉残留熱除去系熱交換器の下流側から
原子炉格納容器圧力抑制室プールに到る原子炉残留熱除
去系テストラインを設けた原子力発電所において、原子
炉残留熱除去系ポンプの出口側を燃料プール水冷却浄化
系ポンプ出口逆上弁の下流側に接続する連絡管路を設け
、該連絡管路に仕切弁を設けたことを特徴とするもので
ある。
The present invention includes a reactor residual heat removal and fuel pool water cooling purification system, in which a nuclear containment vessel pressure suppression chamber pool is connected to the inlet side of a reactor residual heat removal system pump via an isolation valve, At a nuclear power plant that has a reactor residual heat removal system test line running from the downstream side of the reactor residual heat removal system heat exchanger to the reactor containment vessel pressure suppression chamber pool, the reactor residual heat removal system pump outlet side The present invention is characterized in that a communication pipe is provided to connect the fuel pool water cooling purification system pump to the downstream side of the pump outlet reversal valve, and a gate valve is provided in the communication pipe.

また、燃料プールの大きさと圧力抑制室プール水の量の
関係から必要に応じ、更に、燃料プール水冷却浄化系熱
交換器の出口側から機器仮置プールへ到る゛配管を設け
、該配管には仕切弁を設ける。
In addition, if necessary due to the relationship between the size of the fuel pool and the amount of water in the pressure suppression chamber pool, we will also install piping from the outlet side of the fuel pool water cooling purification system heat exchanger to the equipment temporary storage pool. A gate valve will be provided.

〔作用〕[Effect]

原子炉残留熱除去系および燃料プール水冷却浄化系をそ
の本来の目的のために′運転させる必要のないときに、
上記連絡管路の仕切弁を開くことにより、圧力抑制室プ
ール水を上記連絡管路を介して燃料プール水冷却浄化系
に流し上記テストラインを介して戻して圧力抑制室プー
ル水を浄化することができ、または、上記連絡管路を介
して圧力抑制室プール水を燃料プール中に(および、機
器仮置プールへの上記配管を設置した場合は機器仮置プ
ール中5IlIKも)移し換えて圧力抑制室プールを水
抜き状態にした沙、またはこの移し換えた水をその後、
上記テストラインを介して戻して圧力抑制室に再び水を
張ることができる。
When the reactor residual heat removal system and the fuel pool water cooling purification system do not need to be operated for their original purpose,
By opening the gate valve of the communication pipe, the pressure suppression chamber pool water is allowed to flow through the communication pipe to the fuel pool water cooling purification system and returned via the test line to purify the pressure suppression chamber pool water. Alternatively, the pressure suppression chamber pool water can be transferred to the fuel pool (and also in the equipment temporary pool if the above piping to the equipment temporary pool is installed) via the connecting pipe to reduce the pressure. After draining the suppression chamber pool, or using this transferred water,
The pressure suppression chamber can be filled with water again via the test line.

また、原子炉停止段階の残留熱除去系による炉水□冷却
時に炉水の一部を、上記連絡管路の仕切弁を開にする。
Also, when the reactor water is cooled by the residual heat removal system during the reactor shutdown stage, a portion of the reactor water is opened by opening the gate valve of the connecting pipe.

ことKよ↓燃料プール水冷却浄化系に通して浄化するこ
とができる。
KotoK↓It can be purified by passing it through the fuel pool water cooling purification system.

また、燃料プールに水を緊急に補給する必要のあるとき
、は、上記連絡管路を介して燃料プールに圧力・抑制室
プール水を供給できる。
Furthermore, when it is necessary to urgently replenish water to the fuel pool, pressure/suppression chamber pool water can be supplied to the fuel pool via the connecting pipe.

〔実施例〕〔Example〕

でオ)、それ以外の部分は従来のものである。 (e), the other parts are conventional.

ポンプ3、弁40、熱交換器4、弁41、配管50.5
1,52、弁35、配管53は公知の原子炉残留熱除去
系を構成している。この系に原子炉格納容器隔離弁33
,34,36、配管37を介して原子炉32の炉水を環
流させることにより原子炉残留熱除去が行なわれる。原
子炉格納容器圧力抑制室1のプールは隔離弁2を介して
配管53に接続されている。弁28を介して圧力抑制室
1に達する配管27は、残留熱除去系のテストラインで
ある。
Pump 3, valve 40, heat exchanger 4, valve 41, piping 50.5
1, 52, valve 35, and piping 53 constitute a known nuclear reactor residual heat removal system. In this system, the reactor containment vessel isolation valve 33
, 34, 36, and piping 37 to remove reactor residual heat by circulating the reactor water of the reactor 32. The pool of the reactor containment pressure suppression chamber 1 is connected to a pipe 53 via an isolation valve 2. The pipe 27 that reaches the pressure suppression chamber 1 via the valve 28 is a test line for the residual heat removal system.

他方、燃料プール、それに近接するスキマーサージタン
ク7、原子炉ウェル30.機器仮置プール8、配管13
0.ポンプ9、濾過脱塩器10゜熱交換器11、配管1
3、弁22、燃料プール側元弁17.18付き送入管は
公知の燃料プール水冷却浄化系を構成している。弁22
の下流側は弁38、配管23を介して配管50に接続さ
れ、また配管130は弁25.26を介してポンプ30
入口側に接続されている。
On the other hand, there is a fuel pool, a skimmer surge tank 7 adjacent thereto, a reactor well 30. Equipment temporary storage pool 8, piping 13
0. Pump 9, filtration demineralizer 10° heat exchanger 11, piping 1
3, the valve 22, and the inlet pipe with fuel pool side main valves 17 and 18 constitute a known fuel pool water cooling and purification system. valve 22
The downstream side of is connected to the pipe 50 via the valve 38 and the pipe 23, and the pipe 130 is connected to the pump 30 via the valve 25, 26.
Connected to the entrance side.

この公知の構成において、本実施例では、残留熱除去系
ポンプ3の出口配管と燃料プール水冷却浄化系ポンプ9
の出口側逆上弁14の下流側配管15との間を、遠隔操
作電動仕切弁16を含む連絡管路19で接続する。また
、燃料プール6のみで圧力抑制室1のプール水を受は入
れるKは容量不足でちるため、燃料プール水冷却浄化系
熱交換器11の出口ライン13から機器仮置プール8内
に至る配管20を設け、これに仕切弁21を設置する。
In this known configuration, in this embodiment, the outlet piping of the residual heat removal system pump 3 and the fuel pool water cooling purification system pump 9 are
The outlet side reversal valve 14 and the downstream side pipe 15 are connected by a communication pipe line 19 including a remote-controlled electric gate valve 16. In addition, since K, which receives the pool water of the pressure suppression chamber 1 only in the fuel pool 6, will fail due to insufficient capacity, the pipe leading from the outlet line 13 of the fuel pool water cooling purification system heat exchanger 11 to the inside of the equipment temporary storage pool 8 20 is provided, and a gate valve 21 is installed therein.

さて、原子f冷却材喪失事故その他の重大事故が発生し
ておらず、原子炉格納容器圧力抑制室1のプール水を使
用することのない状態のとき、且つ、残留熱除去系を働
かせる必要がなくしかも燃料プール水冷却浄化を行なっ
ていない状態のときに1隔離弁2を開き、ポンプ3を起
動する。このとき、弁40,41は閉、仕切弁16は開
にし、燃料プール側元弁17.18は閉、元弁22、弁
38、弁28は開にする。これによシ、燃料プール6や
原子炉ウェル30.機器仮置プール8へは水を循環させ
ることなくこれらを隔離した状態において、圧力抑制室
1のプール水はポンプ3の昇圧よよって連絡管19、濾
過脱塩装置10.熱交換器11を介して浄化、冷却され
た後配管13、弁22.38、配管23.So、弁28
、前記テストライン27を経て再び圧力抑制室1へと戻
される。この系統構成にて圧力抑制室プール水の循環を
繰シ返すことで、圧力抑制室プール水内の溶解した不純
物、ゴミ、放射性物質、圧力抑制室プールの検査又は修
理作業の実施とよる塵埃、残留洗浄薬品等を除去し、浄
化することが可能である0圧力抑制室プール水を上記の
如く浄化する時には原子炉は停止中であシ、残留熱除去
系をいつでも使用できるように待機させておく必要はな
い。
Now, when there is no atomic f coolant loss accident or other serious accident, when the pool water in the containment vessel pressure suppression chamber 1 is not being used, and when it is necessary to operate the residual heat removal system. When there is no water in the fuel pool and cooling and purification of the fuel pool water is not performed, the isolation valve 1 is opened and the pump 3 is started. At this time, the valves 40 and 41 are closed, the gate valve 16 is opened, the fuel pool side main valves 17 and 18 are closed, and the main valves 22, 38, and 28 are opened. In addition, fuel pool 6 and reactor well 30. In a state in which water is not circulated to the equipment temporary pool 8 and these are isolated, the pool water in the pressure suppression chamber 1 is pumped up by the pump 3 to be transferred to the communication pipe 19, the filtration and desalination equipment 10. After being purified and cooled through the heat exchanger 11, the pipes 13, valves 22, 38, pipes 23. So, valve 28
, and is returned to the pressure suppression chamber 1 again via the test line 27. By repeatedly circulating the pressure suppression chamber pool water in this system configuration, dissolved impurities, dust, radioactive substances, dust from the pressure suppression chamber pool inspection or repair work, etc. in the pressure suppression chamber pool water are removed. The reactor is shut down when the zero-pressure suppression chamber pool water is purified as described above, and the residual heat removal system is kept on standby so that it can be used at any time. There is no need to leave it there.

したがって、残留熱除去系を利用しての上記系統設備の
使用による圧力抑制室プール水の浄化作業は、安全上支
障のないものといえる。又、ポンプ3は圧力抑制室プー
ル水を循環するのに十分な性能を有するから、システム
的にも問題ないものといえる。
Therefore, it can be said that the purification work of the pressure suppression chamber pool water by using the above-mentioned system equipment using the residual heat removal system does not pose any safety problems. Furthermore, since the pump 3 has sufficient performance to circulate the pressure suppression chamber pool water, it can be said that there is no problem in terms of the system.

次に、圧力抑制室1の水抜き方法について説明する。こ
れは、本実施例においては、圧力抑制室内プール水1の
約40チを燃料プール6へ、又、約60チを機器仮置プ
ール8へ移すことによって行う。すなわち、まず、元弁
2を開にし、弁40゜41を閉KL、仕切弁16を開に
し、元弁22、燃料プール側元弁17.18を開、弁2
1.38を閉とし、ポンプ3を起動させる。ポンプ3で
昇圧された圧力抑制室1のプール水は、流M19、濾過
脱塩装置10、熱交換器11、配管13を介して、まず
燃料プール6へと移送される。移送量はスキマーサージ
タンク7に設置したレベルゲージによシ監視される。所
定水量が燃料プール6に満たされたならば、弁22を閉
にし、yP21を開にする。それによって圧力抑制室プ
ール水1の残量を機器仮置プール8へと移送する。
Next, a method for draining water from the pressure suppression chamber 1 will be explained. In this embodiment, this is done by transferring about 40 inches of pressure suppression indoor pool water 1 to the fuel pool 6 and about 60 inches to the equipment temporary storage pool 8. That is, first, open the main valve 2, close the valves 40 and 41, open the gate valve 16, open the main valve 22 and the fuel pool side main valves 17 and 18, and close the valves 40 and 41.
1.38 is closed and pump 3 is started. The pool water in the pressure suppression chamber 1 that has been pressurized by the pump 3 is first transferred to the fuel pool 6 via the stream M19, the filtration and demineralization device 10, the heat exchanger 11, and the piping 13. The transfer amount is monitored by a level gauge installed in the skimmer surge tank 7. When the fuel pool 6 is filled with a predetermined amount of water, the valve 22 is closed and the yP21 is opened. As a result, the remaining amount of the pressure suppression chamber pool water 1 is transferred to the equipment temporary storage pool 8.

以上の操作手順によシ、作業員の圧力抑制室1の水抜き
作業に伴う被曝、圧力抑制室プール水保管のためのタン
クや移送設備の増設の必要なしに圧力抑制室1内を短期
間のうちに水抜き状態とすることが可能であり、この状
態にて圧力抑制室1内の点検や補修塗装等の作業をする
ことができ奎。
By following the above operating procedure, the inside of the pressure suppression chamber 1 can be maintained for a short period of time without exposing workers to radiation due to draining water from the pressure suppression chamber 1, and without requiring additional tanks or transfer equipment to store water in the pressure suppression chamber pool. It is possible to drain the water within a short period of time, and in this state, the interior of the pressure suppression chamber 1 can be inspected, repaired and painted, etc.

圧力抑制室1内の点検作業、補修塗装作業、又は圧力抑
制室改造作業等の所要作業を終了した後、弁24,25
、弁26を開にし、弁40.41を開にし、残留熱除去
系テストライン27に設けられている弁28を開にし、
ポンプ3を起動することで、燃料プール6及び機器仮置
プール8内の水を、配管130.弁25,26、ポンプ
3、熱交換器40およびテストライ・ン27を介して、
圧力抑制室エヘ戻すことが可能である。
After completing the necessary work such as inspection work, repair painting work, or pressure suppression room remodeling work inside the pressure suppression chamber 1, the valves 24 and 25
, valve 26 is opened, valve 40.41 is opened, valve 28 provided in the residual heat removal system test line 27 is opened,
By starting the pump 3, the water in the fuel pool 6 and equipment temporary pool 8 is transferred to the pipe 130. Via valves 25, 26, pump 3, heat exchanger 40 and test line 27,
It is possible to return to the pressure suppression chamber.

燃料プール水冷却浄化系配管は通常放射能を内包する流
体を移送するので、その内面は放射能で汚染されている
ため、これに圧力抑制室プール水を前記の如く循環させ
る前に、その配管内面を除染する必要があるが、この除
染は次のように実施する。すなわち、残留熱除去系ポン
プ3の入口配管53には、復水補給水系統設備から、残
留熱除去系配管内部のフラッシング用水供給のための弁
29が接続されているので、この弁29を開にしてフラ
ッシング水を前記配管19並びに燃料プール水冷却浄化
系統配管にも流すことによって燃料プール水冷却浄化系
配管内部を除洗7ラツシングし、その後に前記のようK
して圧力抑制室プール水を燃料プール水冷却浄化系に循
環することKすれば、圧力抑制室プール水の放射化並び
に汚染拡大を防止し得る。
Since the fuel pool water cooling purification system piping normally transfers fluid containing radioactivity, its inner surface is contaminated with radioactivity, so before circulating the pressure suppression chamber pool water through it as described above, the piping It is necessary to decontaminate the inner surface, and this decontamination will be carried out as follows. That is, since the inlet pipe 53 of the residual heat removal system pump 3 is connected to the valve 29 for supplying water for flushing inside the residual heat removal system pipe from the condensate make-up water system equipment, it is necessary to open this valve 29. The inside of the fuel pool water cooling and purification system piping is cleaned and lashed by flowing flushing water into the piping 19 and the fuel pool water cooling and purification system piping, and then lashing is carried out as described above.
By circulating the pressure suppression chamber pool water to the fuel pool water cooling and purification system, activation of the pressure suppression chamber pool water and the spread of contamination can be prevented.

以上のように1原子炉格納容器圧力抑制室プール水を浄
化することによって該プール水及び該プール水の循環す
る低圧炉心スプレィ系や高圧炉心スプレィ系等の工学的
安全設備の機器、弁、配管等が放射化するのを防ぎ、放
射能汚染拡大の防止、発電所内作業員の放射能被曝低減
、並びに圧力抑制室プール水の汚濁によるバクテリアの
発生や圧力抑制室の腐食の進展の防止、圧力抑制室の機
能の健全性の確保が容易になシ、また原子f格納容器圧
力抑制室プール水を一時水抜き状態にして該圧力抑制室
内壁の補修塗装、異物の除去、並びに内部点検の実施が
可能となる効果がある。
As described above, by purifying the pool water in the pressure suppression chamber of the reactor containment vessel, the equipment, valves, and piping of the pool water and the engineering safety equipment such as the low-pressure core spray system and the high-pressure core spray system that circulate the pool water etc., from becoming radioactive, preventing the spread of radioactive contamination, reducing the radiation exposure of workers in the power plant, and preventing the growth of bacteria due to contamination of the pressure suppression chamber pool water and the progress of corrosion in the pressure suppression chamber. It is easy to ensure the functional integrity of the suppression chamber, and the water in the atomic f containment pressure suppression chamber pool is temporarily drained to repair and paint the walls of the pressure suppression chamber, remove foreign objects, and conduct internal inspections. This has the effect of making it possible.

なお、一般に1原子炉の停止段階においては安全停止に
到るまでに約20時間の停止時冷却運転を実施する。こ
の場合、公知のよう釦、残留熱除去系は一次冷却水をポ
ンプ3にて昇圧し、原子炉格納容器外側隔離弁33及び
外側隔離弁34を介して弁35、ポンプ3、熱交換器4
、遠隔操作隔離弁36を通シ、配管37を介して原子炉
32へ戻す。これを繰り返すことによシ、原子炉内の冷
却水温度を約50℃以下程度にまで冷却する。本発明実
施例によれば、その際、弁16を開にしておくことで、
ポンプ3の出口において原子炉冷却水の一部を濾過脱塩
装置10、熱交換器11を介し、配管13、弁22、配
管23,51及び原子炉格納容器外側隔離弁36を経て
原子P32へと戻すことKよシ、炉水中のクラッドやイ
オン性の放射性物質を除去′することが可能となシ、こ
れにより原子炉停止後の残留熱除去系の配管、熱交換器
およびポンプの放射能汚染を低減することが可能となる
ので、原子炉停止後、引き続き実施する保守点検、パト
ロール、保修作業での被曝低減を可能とする効果がある
In general, during the shutdown stage of one nuclear reactor, cooling operation during shutdown is performed for about 20 hours before safe shutdown is reached. In this case, as is well known, the residual heat removal system boosts the pressure of the primary cooling water with the pump 3, and passes it through the reactor containment vessel outer isolation valve 33 and outer isolation valve 34 to the valve 35, the pump 3, and the heat exchanger 4.
, through a remotely controlled isolation valve 36 and returned to the reactor 32 via piping 37. By repeating this, the temperature of the cooling water inside the reactor is cooled to about 50° C. or lower. According to the embodiment of the present invention, by keeping the valve 16 open at that time,
At the outlet of the pump 3, a part of the reactor cooling water is passed through the filtration and demineralization device 10, the heat exchanger 11, the piping 13, the valve 22, the piping 23, 51, and the isolation valve 36 outside the reactor containment vessel to the atom P32. It is possible to remove crud and ionic radioactive materials in the reactor water, thereby reducing the radioactivity in the piping, heat exchangers, and pumps of the residual heat removal system after reactor shutdown. Since it is possible to reduce contamination, it has the effect of making it possible to reduce radiation exposure during maintenance inspections, patrols, and repair work that are continued after the reactor has been shut down.

又、本発明実施例によれば、地震時において、燃料プー
ル保有水の溢水、又は、プールライナーの破損によるプ
ール水の漏洩等によシ、燃料プールの冷却水保有量の一
部が喪失した時には、ポンプ3を起動して、原子炉賂納
容器圧力抑制室1内の保有水をポンプ3から配管19、
濾過脱塩器10゜熱交換器11を介して燃料プール6へ
と供給し、燃料プール6内の必要保有水量を確保するこ
とが可能となる効果がある。本発明によれば、原子炉格
納容器圧力抑制室プール水は十分浄化された水質なので
、燃料プールへの緊急時のこのような補給も可能と々る
のである。
Furthermore, according to the embodiment of the present invention, during an earthquake, a portion of the cooling water in the fuel pool is lost due to overflow of water in the fuel pool or leakage of pool water due to damage to the pool liner. Occasionally, the pump 3 is activated to drain the water in the reactor container pressure suppression chamber 1 from the pump 3 to the piping 19,
The water is supplied to the fuel pool 6 through the filtration demineralizer 10° heat exchanger 11, thereby making it possible to secure the required amount of water in the fuel pool 6. According to the present invention, since the reactor containment vessel pressure suppression chamber pool water is of sufficiently purified water quality, such replenishment to the fuel pool in an emergency is possible.

本運転モードは、81以上の地震時、又は、燃料プール
水漏洩が発生するような不測事態において、使用を要求
されるものである。したがって、通常状態では使用する
頻度が限定されるものである。従来はこのような目的の
ための専用のポンプ、配管、弁等で構成された系統設備
を有していたため、設備の合理化が必ずしも十分でなか
ったが、本発明実施例ではポンプ、配管、サポート、弁
の低減によるコスト低減の効果がある。
This operation mode is required to be used in the event of an earthquake of 81 or higher or in an unexpected situation such as a fuel pool water leak. Therefore, under normal conditions, the frequency of use is limited. Conventionally, system equipment consisting of dedicated pumps, piping, valves, etc. was required for such purposes, and rationalization of the equipment was not necessarily sufficient. This has the effect of reducing costs by reducing the number of valves.

なお、燃料プール水冷却浄化系が作動する通常運転時に
は燃料プール水冷却浄化系ポンプ9の起動信号を受けて
遠隔操作電動仕切弁16が閉となるようなインターロッ
クを組むのがよい。又、残留熱除去系を前述のように利
用して、前述の如く原子炉格納容器圧力抑制室プール水
を浄化したシ、該圧力抑制室プール水を移動して、該圧
力抑制室プールの水抜きをしたり、緊急時に燃料プール
への水の補給をしたシ、又は、原子炉停止冷却運転時に
炉水の一部を浄化したりするときKは、残留熱除去系ポ
ンプの起動信号を受けて、燃料プール水冷却浄化系ポン
プを停止するインターロックを組むのがよい。このよう
にすれば、燃料プール水冷却浄化系と残留熱除去系の両
系統の機能、健全性、独立性が確保可能となるので、誤
動作することがない。
In addition, during normal operation when the fuel pool water cooling purification system is in operation, it is preferable to set up an interlock such that the remotely operated electric gate valve 16 is closed upon receiving a start signal of the fuel pool water cooling purification system pump 9. In addition, the residual heat removal system is used as described above to purify the reactor containment vessel pressure suppression chamber pool water as described above, and the pressure suppression chamber pool water is moved and the pressure suppression chamber pool water is purified. When draining water, replenishing water to the fuel pool in an emergency, or purifying a part of the reactor water during reactor shutdown cooling operation, K receives the activation signal of the residual heat removal system pump. It is a good idea to set up an interlock to stop the fuel pool water cooling purification system pump. In this way, the functions, soundness, and independence of both the fuel pool water cooling purification system and the residual heat removal system can be ensured, so that malfunctions will not occur.

〔発明の効果〕〔Effect of the invention〕

圧力抑制室プール水浄化専用の設備を追加することなく
、該プール水の浄化が可能となシ、作業員の放射線被曝
低減、圧力抑制室の信頼性確保、そのプール水質の維持
を経済的、合理的に実現し得る。
It is possible to purify the pool water without adding equipment dedicated to pressure suppression chamber pool water purification, reduces radiation exposure of workers, ensures reliability of the pressure suppression chamber, and maintains the pool water quality economically. It can be realized reasonably.

圧力抑制室内プール水を、専用の貯蔵設備や移送設備を
設けることなく、安全に経済的に移送し圧力抑制室を水
抜き状態とし得るので、その内部点検や保修塗装、圧力
抑制室の改造工事が可能になる。
Water from the pool in the pressure suppression chamber can be safely and economically transferred and the pressure suppression chamber drained without the need for dedicated storage or transfer equipment, allowing for internal inspection, maintenance painting, and remodeling of the pressure suppression chamber. becomes possible.

原子炉建屋内のスペース性の改善、配置条件の改善の効
果がある。
This has the effect of improving space in the reactor building and improving layout conditions.

残留熱除去系の配管、ポンプ、熱交換器へのクラッドの
付着量を低減し、それらポンプ及び接続配管の分解、保
守点検作業や検査作業時の被曝低減に効果がある。
It is effective in reducing the amount of crud adhering to residual heat removal system piping, pumps, and heat exchangers, and reducing radiation exposure during disassembly, maintenance inspection, and inspection work of these pumps and connecting piping.

予め原子炉停止時モード運転時に炉水の水質維持を実施
することができるので、原子炉停止モード運転後におい
て、原子炉格納容器内のパトロール、保守点検、保修作
業時に被曝線量を低目に抑えることが可能となる。
Since the water quality of the reactor water can be maintained in advance during reactor shutdown mode operation, exposure doses can be kept low during patrols, maintenance inspections, and maintenance work inside the reactor containment vessel after reactor shutdown mode operation. becomes possible.

燃料プール補給水系統設備を削除することが可能となυ
、ポンプ、配管、サポート、弁等、著しく低減すること
ができるので、原子炉建屋内に新たなスペースを確保で
き、合理的な系統構成を有する経済的なプラントの実現
し、通路性や配置条件を改善し得る。
It is possible to remove the fuel pool make-up water system equipment υ
, pumps, piping, supports, valves, etc. can be significantly reduced, making it possible to secure new space within the reactor building, realizing an economical plant with a rational system configuration, and improving passageability and layout conditions. can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す系統図である。 1・・・圧力抑制室    2・・・圧力抑制室隔離弁
3・・・ポンプ      4・・・熱交換器6・・・
燃料プール     7・・・スキマーサージタンク8
・・・機器仮置プール  9・・・ポンプ10・・・濾
過脱塩器   11−・・熱交換器12・・・弁   
    14・・・逆止弁16・・・電動弁  17.
18・・・燃料プール側元弁19・・・連絡管    
 20・・・配管21・・・弁       22・・
・元弁23・・・配管      24,25.26・
・・弁27・・・テストライン  28.29・・・弁
30・・・原子炉ウェル  31・・・原子炉格納容器
32・・・原子炉圧力容器 33.34.35.36・
・・弁37・・・配管      38・・・弁50.
51,52,53,130・・・配管。
FIG. 1 is a system diagram showing an embodiment of the present invention. 1... Pressure suppression chamber 2... Pressure suppression chamber isolation valve 3... Pump 4... Heat exchanger 6...
Fuel pool 7... Skimmer surge tank 8
...Equipment temporary storage pool 9...Pump 10...Filtration demineralizer 11-...Heat exchanger 12...Valve
14...Check valve 16...Electric valve 17.
18...Fuel pool side main valve 19...Connection pipe
20...Piping 21...Valve 22...
・Main valve 23...Piping 24, 25.26・
...Valve 27...Test line 28.29...Valve 30...Reactor well 31...Reactor containment vessel 32...Reactor pressure vessel 33.34.35.36.
...Valve 37...Piping 38...Valve 50.
51, 52, 53, 130... Piping.

Claims (1)

【特許請求の範囲】 1 原子炉残留熱除去および燃料プール水冷却浄化系を
備えており、原子炉残留熱除去系ポンプの入口側に原子
炉格納容器圧力抑制室プールが隔離弁を介して接続され
ており、原子炉残留熱除去系熱交換器の下流側から原子
炉格納容器圧力抑制室プールに到る原子炉残留熱除去系
テストラインを設けた原子力発電所において、原子炉残
留熱除去ポンプの出口側を燃料プール水冷却浄化系ポン
プ出口側逆止弁の下流側に接続する連絡管路を設け、該
連絡管路に仕切弁を設けたことを特徴とする原子力発電
所の圧力抑制室プール水系統。 2 燃料プール水冷却浄化系熱交換器の出口側から機器
仮置プールへ到る配管を設け、該配管には仕切弁を設け
た特許請求の範囲第1項記載の原子力発電所の圧力抑制
室プール水系統。
[Claims] 1. A reactor residual heat removal and fuel pool water cooling purification system is provided, and a reactor containment vessel pressure suppression chamber pool is connected to the inlet side of a reactor residual heat removal system pump via an isolation valve. At a nuclear power plant that has a reactor residual heat removal system test line running from the downstream side of the reactor residual heat removal system heat exchanger to the reactor containment vessel pressure suppression chamber pool, the reactor residual heat removal pump A pressure suppression chamber for a nuclear power plant, characterized in that a communication pipe is provided that connects the outlet side of the pump to the downstream side of a fuel pool water cooling purification system pump outlet side check valve, and a gate valve is provided in the communication pipe. Pool water system. 2. The pressure suppression chamber of a nuclear power plant as set forth in claim 1, wherein piping is provided from the outlet side of the fuel pool water cooling purification system heat exchanger to the equipment temporary storage pool, and the piping is provided with a gate valve. Pool water system.
JP61163364A 1986-07-11 1986-07-11 Pressure-suppression chamber pool-water system of nuclear power plant Pending JPS6319596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61163364A JPS6319596A (en) 1986-07-11 1986-07-11 Pressure-suppression chamber pool-water system of nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61163364A JPS6319596A (en) 1986-07-11 1986-07-11 Pressure-suppression chamber pool-water system of nuclear power plant

Publications (1)

Publication Number Publication Date
JPS6319596A true JPS6319596A (en) 1988-01-27

Family

ID=15772475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61163364A Pending JPS6319596A (en) 1986-07-11 1986-07-11 Pressure-suppression chamber pool-water system of nuclear power plant

Country Status (1)

Country Link
JP (1) JPS6319596A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232880A (en) * 2007-03-22 2008-10-02 Toshiba Corp Fuel pool cooling facility, and fuel pool cooling method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232880A (en) * 2007-03-22 2008-10-02 Toshiba Corp Fuel pool cooling facility, and fuel pool cooling method

Similar Documents

Publication Publication Date Title
KR101889580B1 (en) Self-contained emergency spent nuclear fuel pool cooling system
US4187146A (en) Reduction of radioactive emissions from nuclear-reactor plant
JPH0659087A (en) Nuclear reactor
JPS6138308A (en) Recirculator for secondary cooling material fo steam generator
US5377244A (en) Apparatus and method for chemically decontaminating a PWR reactor coolant system
JPS6319596A (en) Pressure-suppression chamber pool-water system of nuclear power plant
US5517539A (en) Method of decontaminating a PWR primary loop
FI73535C (en) Cooling device for the primary circuit of a pressurized water reactor.
JPS61187690A (en) Fuel pool cooling purification system facility
JP2977892B2 (en) System cleaning equipment for boiling water nuclear power plants
JPH053559B2 (en)
JPH0755977A (en) Water injection system for reactor container
JPS61181994A (en) Fuel pool feedwater system
JP2001091684A (en) Fuel pool cooling equipment
JPH0440397A (en) Nuclear reactor pressure vessel cooling device
JP2000046989A (en) System isolation method for chemical decontamination
JP2933334B2 (en) Emergency core cooling system of boiling water nuclear power plant and its operation method.
Luckas et al. Assessment of candidate accident management strategies
Lacy et al. Decontamination experience in Ontario hydro
JPS62197795A (en) Removing device for residual heat in nuclear reactor
Bulkhead et al. DRESDEN-UFSAR
JP2011214906A (en) Boiling water reactor and method for draining nuclear reactor
JP2007071800A (en) Boiling water type nuclear power generation plant and its piping cleaning method
JPH0345800B2 (en)
JPS60117192A (en) Emergency core cooling system washer