JPS6319587B2 - - Google Patents

Info

Publication number
JPS6319587B2
JPS6319587B2 JP3659187A JP3659187A JPS6319587B2 JP S6319587 B2 JPS6319587 B2 JP S6319587B2 JP 3659187 A JP3659187 A JP 3659187A JP 3659187 A JP3659187 A JP 3659187A JP S6319587 B2 JPS6319587 B2 JP S6319587B2
Authority
JP
Japan
Prior art keywords
alloy
oxide film
sealing
corrosion resistance
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3659187A
Other languages
Japanese (ja)
Other versions
JPS62188752A (en
Inventor
Masakazu Umeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP3659187A priority Critical patent/JPS62188752A/en
Publication of JPS62188752A publication Critical patent/JPS62188752A/en
Publication of JPS6319587B2 publication Critical patent/JPS6319587B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Joining Of Glass To Other Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

利用産業分野 この発明は、軟質ガラスとの封着に供する封着
用合金に係り、特に、耐蝕性及び酸化被膜の導電
性を改善した軟質ガラス封着合金に関する。 従来技術 軟質ガラス封着用合金は、例えば、カラーブラ
ウン管のシヤドーマスクを支持するスタツトピン
等に用いられ、従来より軟質ガラス封着合金につ
いては種々の提案がなされている。 一般に封着用合金は、 封着用合金の熱膨張係数が軟質ガラスの熱膨
張係数に近似すること、 合金表面の酸化被膜が合金素地に強固に密着
すること、 合金表面の酸化被膜の導電性が良好なこと、 合金表面を酸化被膜処理した後の状態で各種
酸に対する耐蝕性にすぐれていること、 等の性質を具備することが必要である。現在、熱
膨張係数が軟質ガラスのそれに近似していること
から、18Cr―Fe合金が多用されている。 また、ガラス封着は、18Cr―Fe合金を所望形
状に成形加工した後、湿潤水素中で、 1000℃〜1250℃に加熱して酸化被膜を形成し、
さらに大気中で1000℃〜1250℃に加熱することに
よつて実施されているが、通常、ガラス封着後の
部品は、ガラスの表面処理を施す際に、硝酸、弗
酸、混合酸等の各種酸に浸漬されることがあり、
上記した如く、耐蝕性にすぐれていることが必要
である。 さらに、封着合金は、シヤドウマスク支持用部
品として使用する場合、表面に形成された酸化被
膜を介して電子回路を構成するため、かかる酸化
被膜の導電性がすぐれていることが必要である。 発明の目的 この発明は、上述した軟質ガラス封着用合金と
して必要な性質を満足し、特に、耐蝕性及び酸化
被膜の導電性を改善した封着合金を目的としてい
る。 発明の構成 この発明は、 Cr15wt%〜30wt%、Ti0.1wt%〜1.0wt%、 Al0.05wt%〜1.0wt%、Si0.75wt%以下、 Mn1.0wt%以下、C0.03wt%以下、 N20.03wt%以下に、 Zr0.005wt%〜0.5wt%及び Be0.005wt%〜0.5wt%を含有し、 残部はFe及び不可避的不純物からなることを特
徴とする軟質ガラス封着用合金である。 この発明による封着用合金は、18Cr―Fe合金
中のC、N等の不純物は前記酸化被膜形成の熱処
理及びガラス封着時に、結晶粒界付近にCr炭化
物またはCr窒化物を形成し、粒界付近に低Cr層
が形成されて耐蝕性が低下することに鑑み、C、
N量を低減し、CrよりC、Nとの親和力の大き
い元素を含有せしめてC、Nを固定すること、及
び結晶粒を微細化して粒界面積を増大して粒界付
近での低Cr層を低減することにより、耐蝕性を
大きく改善したもので、さらには緻密かつ高密着
の酸化被膜を形成することにより、一段と改善で
きる。 また、この発明による封着用合金は、Cr―Fe
合金の前記した酸化処理による表面酸化被膜は、
主として、P型半導体のCr2O3で構成され、この
酸化被膜中に、Cr3より原子価の大きい、例えば、
Ti4+、Si4+のイオンが存在すると、電気抵抗が増
加することに鑑み、酸化被膜中の前記金属イオン
を極力少なくしたことにより、導電性を改善した
ものである。 すなわち、この発明による封着用合金は、15〜
30Cr―Fe合金系に、特定量のZrとBeを含有する
ことにより、上述した軟質ガラス封着用合金とし
て必要な性質を満足し、特に、耐蝕性及び酸化被
膜の導電性にすぐれた封着合金を得たものであ
る。 組成限定理由 以下に、この発明による封着合金の成分組成の
限定理由を詳述する。 Crは、この封着合金の基本成分であるが、
15wt%未満では熱膨張係数が大きくなり、軟質
ガラスの熱膨張係数との差が大きくなり好ましく
なく、また、30wt%を越えると、加工性が劣化
し、所定形状に成形困難となるため、 15wt%〜30wt%とする。 Tiは、合金中のγ相析出の防止及び酸化被膜
の密着性、耐蝕性改善に有効であるが、0.1wt%
未満ではその効果がなく、また、1.0wt%を越え
ると、酸化被膜の電気抵抗が高くなりすぎて導電
性が劣化するため、0.1wt%〜1.0wt%とする。 Alは、合金の脱酸及び酸化被膜の密着性の改
善に有効であるが、0.05wt%未満ではその効果が
なく、また、1.0wt%を越えると上記効果が飽和
すると共に硬化し、加工が困難となるため、 0.05wt%〜1.0wt%とする。 Siは、脱酸のため含有するが、0.75wt%を越え
ると脱酸効果が飽和するため好ましくない。 Mnは、脱酸効果及び酸化被膜の最外側層に、
Mn・Cr2O4スピネル酸化物を形成し、ガラスと
の濡れ性を改善する効果があるが、1.0wt%を越
えると、合金の熱膨張係数が大きくなりすぎるた
め好ましくない。 Cは、封着時の発泡防止及びγ相析出の防止か
つ耐蝕性改善のためには、極力少ないほうが好ま
しいが、0.03wt%以下の含有であれば、実用上問
題がない。 N2は、γ相析出の防止かつ耐蝕性改善のため
には、極力少ないほうが好ましいが、0.03wt%以
下の含有であれば、実用上問題がない。 Zrは、合金中のC、N等の不純物と結合し、
炭化物または窒化物を形成してC、Nを固定し、
さらに、結晶粒を微細化すると共に、酸化被膜の
密着性を改善し、これらの相乗効果により、耐蝕
性を著しく改善する効果があるが、0.005wt%未
満ではその効果が少なく、また、0.5wt%を越え
ると合金の熱間加工性が低下するため、0.005wt
%〜0.5wt%とする。 Beは、合金中の結晶粒を微細化すると共に、
酸化被膜の緻密性,密着性を改善し、耐蝕性を著
しく改善する効果があるが、0.005wt%未満では
その効果が少なく、また、0.5wt%を越えると硬
化しすぎて合金の冷間加工性が低下するため、
0.005wt%〜0.5wt%とする。 この発明の封着合金は、ZrとBeを複合含有す
ることを特微とするが、ZrとBeの複合含有量は、
0.01wt%未満では合金中の結晶粒の微細化効果が
ないと共に、酸化被膜の緻密性,密着性の改善効
果がなく、また耐蝕性を改善する効果もなく、ま
た、1.0wt%を越えると、合金は硬化して熱間加
工性が低下するとともに、冷間加工も困難となる
ため、0.01wt%〜1.0wt%とする。 Feは、この合金の主成分であり、上述した各
成分を含有した残余とする。 また、不純物としてのNiは0.02wt%以下の含
有であれば、封着合金としての所要の性質を劣化
させることがない。 実施例 以下に、この発明による実施例を示しその効果
を明らかにする。 第1表に示す組成成分に従つて、この発明によ
る封着合金(試料No.1〜2)と、比較合金(試料
No.3〜5)を作製し、各合金の電気抵抗値測定、
並びに耐蝕性試験,酸化被膜の密着性試験を行な
い、その結果を第2表に示す。 電気抵抗値の測定は、第1表の各合金より0.8
mm厚み×40mm幅×50mm長さに切り出した試験片
を、1200℃で60秒、露点40℃の湿潤水素ガス中で
予備酸化処理したのち、1200℃で60秒,大気中の
酸化処理を施し、その酸化被膜表面に炭素系の導
電性塗料を一定面積塗布し、乾燥させたのち、酸
化被膜の電気抵抗を測定した。 耐蝕性試験は、上記の酸化処理後の試験片に、
硝酸:弗酸=1:1の混合酸(20℃)に、2時間
浸漬し、この場合の溶解減量を測定して耐蝕性を
評価した。 酸化被膜の密着性試験は、上記の予備酸化処理
後の試験片に、軟質ガラスを載置し、1200℃に保
持した加熱装置中で30秒間加熱し、その後常温ま
で冷却し、木ハンマーでガラスを破壊した際のガ
ラスとの接着面において、酸化被膜がガラスと共
に剥離して金属素地が露出した割合により評価し
た。また、各試料はそれぞれ10個ずつ試験に供し
た。 すなわち、評価は、 G1;金属素地が全く認められない、 G2;金属素地の露出が5%未満、 G3;金属素地の露出が5%〜10%、である。 第2表の試験結果から明らかな如く、この発明
による封着合金は、所要の性質を満足すると共
に、耐蝕性及び酸化被膜の導電性にすぐれている
ことが分る。
TECHNICAL FIELD The present invention relates to a sealing alloy used for sealing with soft glass, and particularly to a soft glass sealing alloy with improved corrosion resistance and conductivity of an oxide film. Prior Art Soft glass sealing alloys are used, for example, in stud pins that support the shadow masks of color cathode ray tubes, and various proposals have been made regarding soft glass sealing alloys. In general, sealing alloys have the following characteristics: the thermal expansion coefficient of the sealing alloy is close to that of soft glass, the oxide film on the alloy surface firmly adheres to the alloy base, and the oxide film on the alloy surface has good electrical conductivity. It is necessary for the alloy to have the following properties: after the alloy surface has been treated with an oxide film, it has excellent corrosion resistance against various acids. Currently, 18Cr-Fe alloy is widely used because its coefficient of thermal expansion is close to that of soft glass. In addition, glass sealing involves forming an 18Cr-Fe alloy into the desired shape and then heating it to 1000°C to 1250°C in wet hydrogen to form an oxide film.
This is further carried out by heating the glass to 1000°C to 1250°C in the air, but normally, when surface treatment is applied to glass parts after glass sealing, nitric acid, hydrofluoric acid, mixed acids, etc. It may be immersed in various acids,
As mentioned above, it is necessary to have excellent corrosion resistance. Furthermore, when the sealing alloy is used as a part for supporting a shadow mask, an electronic circuit is constructed through the oxide film formed on the surface, so the oxide film must have excellent electrical conductivity. OBJECTS OF THE INVENTION The object of the present invention is to provide a sealing alloy that satisfies the above-mentioned properties necessary for an alloy for sealing soft glass, and in particular has improved corrosion resistance and electrical conductivity of an oxide film. Composition of the Invention This invention includes Cr15wt% to 30wt%, Ti0.1wt% to 1.0wt%, Al0.05wt% to 1.0wt%, Si0.75wt% or less, Mn1.0wt% or less, C0.03wt% or less, N 2 This is a soft glass sealing alloy characterized by containing 0.005wt% to 0.5wt% of Zr and 0.005wt% to 0.5wt% of Be in 0.03wt% or less, with the remainder consisting of Fe and inevitable impurities. In the sealing alloy according to the present invention, impurities such as C and N in the 18Cr-Fe alloy form Cr carbide or Cr nitride near the grain boundaries during the heat treatment for forming the oxide film and glass sealing. In view of the fact that a low Cr layer is formed nearby and the corrosion resistance decreases, C,
By reducing the amount of N and fixing C and N by incorporating elements that have a greater affinity with C and N than with Cr, and by making the crystal grains finer and increasing the grain boundary area, it is possible to reduce the amount of Cr near the grain boundaries. Corrosion resistance is greatly improved by reducing the number of layers, and can be further improved by forming a dense and highly adhesive oxide film. Further, the sealing alloy according to the present invention is Cr-Fe
The surface oxide film formed by the above-mentioned oxidation treatment of the alloy is
It is mainly composed of Cr 2 O 3 , which is a P-type semiconductor, and this oxide film contains elements with a higher valence than Cr 3 , such as
Considering that the presence of Ti 4+ and Si 4+ ions increases electrical resistance, the electrical conductivity is improved by minimizing the amount of the metal ions in the oxide film. That is, the sealing alloy according to the present invention has a
By containing specific amounts of Zr and Be in the 30Cr-Fe alloy system, this sealing alloy satisfies the properties necessary for the above-mentioned soft glass sealing alloy, and has particularly excellent corrosion resistance and oxide film conductivity. This is what I got. Reasons for limiting composition The reasons for limiting the composition of the sealing alloy according to the present invention will be explained in detail below. Cr is the basic component of this sealing alloy,
If it is less than 15wt%, the thermal expansion coefficient will become large and the difference with the thermal expansion coefficient of soft glass will become large, which is undesirable.If it exceeds 30wt%, the processability will deteriorate and it will be difficult to form into the specified shape, so 15wt %~30wt%. Ti is effective in preventing γ phase precipitation in the alloy and improving oxide film adhesion and corrosion resistance, but 0.1wt%
If it is less than 1.0 wt%, there is no effect, and if it exceeds 1.0 wt%, the electrical resistance of the oxide film becomes too high and the conductivity deteriorates, so the range is set to 0.1 wt% to 1.0 wt%. Al is effective in deoxidizing the alloy and improving the adhesion of the oxide film, but if it is less than 0.05wt%, it has no effect, and if it exceeds 1.0wt%, the above effects are saturated and it hardens, making processing difficult. Since this is difficult, it is set at 0.05wt% to 1.0wt%. Si is included for deoxidation, but if it exceeds 0.75 wt%, the deoxidation effect will be saturated, which is not preferable. Mn has a deoxidizing effect and the outermost layer of the oxide film,
It forms Mn.Cr 2 O 4 spinel oxide and has the effect of improving wettability with glass, but if it exceeds 1.0 wt%, the coefficient of thermal expansion of the alloy becomes too large, which is not preferable. In order to prevent foaming during sealing, prevent gamma phase precipitation, and improve corrosion resistance, it is preferable that C be as small as possible, but if the content is 0.03 wt% or less, there will be no practical problem. In order to prevent γ phase precipitation and improve corrosion resistance, it is preferable that N 2 be as small as possible, but if the content is 0.03 wt% or less, there is no problem in practice. Zr combines with impurities such as C and N in the alloy,
Fixing C and N by forming carbides or nitrides,
In addition, it refines the crystal grains and improves the adhesion of the oxide film, and the synergistic effect of these has the effect of significantly improving corrosion resistance. If it exceeds 0.005wt, the hot workability of the alloy will decrease.
%~0.5wt%. Be refines the grains in the alloy and
It has the effect of improving the density and adhesion of the oxide film and significantly improving corrosion resistance, but if it is less than 0.005wt%, the effect is small, and if it exceeds 0.5wt%, it will harden too much and the alloy will not be cold worked. Because the sex is reduced,
The content should be 0.005wt% to 0.5wt%. The sealing alloy of the present invention is characterized by containing a composite of Zr and Be, and the composite content of Zr and Be is
If it is less than 0.01wt%, there is no effect of refining the crystal grains in the alloy, there is no effect of improving the density and adhesion of the oxide film, and there is no effect of improving corrosion resistance. , since the alloy hardens and reduces hot workability and also becomes difficult to cold work, it is set at 0.01wt% to 1.0wt%. Fe is the main component of this alloy, and is the remainder containing the above-mentioned components. Further, if Ni is contained as an impurity in an amount of 0.02 wt% or less, the required properties as a sealing alloy will not deteriorate. Examples Examples according to the present invention will be shown below to clarify its effects. According to the composition shown in Table 1, sealing alloys according to the present invention (Samples Nos. 1 and 2) and comparative alloys (Samples Nos.
Nos. 3 to 5) were prepared, and the electrical resistance value of each alloy was measured.
In addition, a corrosion resistance test and an oxide film adhesion test were conducted, and the results are shown in Table 2. Measurement of electrical resistance value is 0.8 from each alloy in Table 1.
A test piece cut into mm thickness x 40 mm width x 50 mm length was pre-oxidized at 1200℃ for 60 seconds in humid hydrogen gas with a dew point of 40℃, and then oxidized at 1200℃ for 60 seconds in the air. A certain area of carbon-based conductive paint was applied to the surface of the oxide film, and after drying, the electrical resistance of the oxide film was measured. In the corrosion resistance test, the test piece after the above oxidation treatment was
Corrosion resistance was evaluated by immersing the sample in a mixed acid (nitric acid: hydrofluoric acid = 1:1) (20°C) for 2 hours, and measuring the loss in dissolution. In the adhesion test of the oxide film, soft glass was placed on the test piece after the preliminary oxidation treatment described above, heated for 30 seconds in a heating device maintained at 1200°C, then cooled to room temperature, and the glass was removed with a wooden hammer. Evaluation was made based on the rate at which the oxide film peeled off together with the glass and the metal base was exposed on the adhesive surface with the glass when the glass was broken. In addition, 10 pieces of each sample were subjected to the test. That is, the evaluation is as follows: G1: No metal base is observed, G2: Less than 5% of the metal base is exposed, and G3: 5% to 10% of the metal base is exposed. As is clear from the test results in Table 2, the sealing alloy according to the present invention satisfies the required properties and has excellent corrosion resistance and electrical conductivity of the oxide film.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 Cr15wt%〜30wt%、Ti0.1wt%〜1.0wt%、 Al0.05wt%〜1.0wt%、Si0.75wt%以下、 Mn1.0wt%以下、C0.03wt%以下、 N20.03wt%以下に、 Zr0.005wt%〜0.5wt%及び Be0.005wt%〜0.5wt%を含有し、 残部はFe及び不可避的不純物からなることを特
徴とする軟質ガラス封着用合金。
[Claims] 1 Cr15wt% to 30wt%, Ti0.1wt% to 1.0wt%, Al0.05wt% to 1.0wt%, Si0.75wt% or less, Mn1.0wt% or less, C0.03wt% or less, N 2. A soft glass sealing alloy containing 0.005wt% to 0.5wt% of Zr and 0.005wt% to 0.5wt% of Be in 0.03wt% or less, with the remainder consisting of Fe and inevitable impurities.
JP3659187A 1987-02-19 1987-02-19 Soft glass sealing alloy Granted JPS62188752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3659187A JPS62188752A (en) 1987-02-19 1987-02-19 Soft glass sealing alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3659187A JPS62188752A (en) 1987-02-19 1987-02-19 Soft glass sealing alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12829883A Division JPS6021360A (en) 1983-07-13 1983-07-13 Alloy for sealing soft glass

Publications (2)

Publication Number Publication Date
JPS62188752A JPS62188752A (en) 1987-08-18
JPS6319587B2 true JPS6319587B2 (en) 1988-04-23

Family

ID=12474022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3659187A Granted JPS62188752A (en) 1987-02-19 1987-02-19 Soft glass sealing alloy

Country Status (1)

Country Link
JP (1) JPS62188752A (en)

Also Published As

Publication number Publication date
JPS62188752A (en) 1987-08-18

Similar Documents

Publication Publication Date Title
JPS59159958A (en) Deposit hardenable copper alloy and treatment
JPS58124254A (en) Copper alloy for lead material of semiconductor device
JPS6260838A (en) Copper alloy for lead frame
JPS6319588B2 (en)
JPS59145745A (en) Copper alloy for lead material of semiconductor apparatus
JPS6319587B2 (en)
JPS6239232B2 (en)
JPS6319586B2 (en)
JPS6256937B2 (en)
JPH05283149A (en) Heater material with excellent surface insulation property and its manufacture
JP3032869B2 (en) High strength and high conductivity copper-based alloy
JPS62130247A (en) Copper alloy for electronic appliance
JPS6244526A (en) Manufacture of alloy for sealing glass
JPH07316699A (en) Corrosion-resistant nitride-dispersed nickel base alloy having high hardness and strength
US4585707A (en) High expansion alloy for bimetal strip
JPH0665737B2 (en) Metal plate for glass sealing
JPS59140338A (en) Copper alloy for lead frame
JP3573303B2 (en) Method for producing Fe-Ni-based alloy sheet having excellent surface cleanliness
JPS6256223B2 (en)
JPS59222541A (en) Fin material for radiator for car
JPS6040503B2 (en) Fe-Ni-Co alloy for sealing with excellent stress corrosion cracking resistance
JP4238689B2 (en) Metal resistor and manufacturing method thereof
JPS5821015B2 (en) Conductive copper alloy
JPS5821013B2 (en) Kouriyokudodenyoudougokin
JPS5896837A (en) Fin material for radiator