JPS63195302A - Steam turbine blade - Google Patents

Steam turbine blade

Info

Publication number
JPS63195302A
JPS63195302A JP2456887A JP2456887A JPS63195302A JP S63195302 A JPS63195302 A JP S63195302A JP 2456887 A JP2456887 A JP 2456887A JP 2456887 A JP2456887 A JP 2456887A JP S63195302 A JPS63195302 A JP S63195302A
Authority
JP
Japan
Prior art keywords
blade
trailing edge
steam turbine
stator blade
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2456887A
Other languages
Japanese (ja)
Inventor
Kuniyoshi Tsubouchi
邦良 坪内
Shohei Yoshida
正平 吉田
Norio Yasugadaira
安ケ平 紀雄
Tomoyuki Taki
滝 友幸
Kazuo Ikeuchi
和雄 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2456887A priority Critical patent/JPS63195302A/en
Publication of JPS63195302A publication Critical patent/JPS63195302A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/32Collecting of condensation water; Drainage ; Removing solid particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/122Fluid guiding means, e.g. vanes related to the trailing edge of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/304Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/183Two-dimensional patterned zigzag

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To prevent the erosive damage of a moving blade due to erosion by forming the rear edge end of a stationary blade into a serrated shape. CONSTITUTION:A stationary blade 1 is supported by a disphram 2 and supporting rings 3a, 3b at its inner and outer peripheries, respectively. The rear edge end of the stationary blade 1 is formed into a nearly serrated shape 16. Water droplets collected on the belly side of the stationary blade 1 accumulate to form a water film flow 6, and then flow down toward the above- mentioned rear edge end, but are atomized by the rear edge end of the serrated shape 16. The erosive damage of a moving blade 4 due to erosion can be thereby prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、蒸気タービン翼に係り、特に、翼面に付着し
た水膜流の噴霧水滴を微細化するに好適な蒸気タービン
翼に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a steam turbine blade, and particularly to a steam turbine blade suitable for atomizing spray water droplets of a water film flow attached to a blade surface. be.

〔従来の技術〕[Conventional technology]

従来から、二ローション呪象による浸食作用を防止する
ため、動翼先端部をステライトなどの硬質物質で被覆し
ている。
Conventionally, in order to prevent the erosion effect caused by the two-lotion curse, the tips of rotor blades have been coated with a hard material such as stellite.

さらにその効果を高めるため、従来の装置では、例えば
実開昭60−7381号公報、実開昭61−1.088
06号公報記載のように、静翼面に吸収溝や吸収孔を設
けて水膜を系外または背側面に排出する方法が採用され
ていた。しかしこれらの従来技術は、有効なエネルギを
有する作動蒸気の一部も同時に排出するという欠点があ
った。
In order to further enhance the effect, conventional devices are disclosed in, for example, Japanese Utility Model Application No. 60-7381, Japanese Utility Model Application No. 61-1.088,
As described in Japanese Patent No. 06, a method has been adopted in which absorption grooves or absorption holes are provided on the stator vane surface and the water film is discharged to the outside of the system or to the back surface. However, these conventional techniques have the disadvantage that a part of the working steam having useful energy is also discharged at the same time.

実公昭54−36163号公報記載のように、静翼面に
外部覆いを設けて加熱し、翼面の水膜を蒸発させる方法
が提案されていた。
As described in Japanese Utility Model Publication No. 54-36163, a method has been proposed in which a stator blade surface is provided with an external cover and heated to evaporate the water film on the blade surface.

実公昭56−15363号公報記載のように、静翼支持
リングから翼後縁部腹側面に高圧蒸気を導いて噴出させ
ることにより、また特公昭54−5444号公報記載の
ように、静翼支持リングの外側に設置した超音波発生器
から段落内へ超音波を伝播させることにより、いずれも
翼面の水膜を微細化させる方法が採用されている。しか
し、これらの翼面の水膜を蒸発させる方法も微細化させ
る方法も動翼へ流入する粗大水滴を減少させる効果は期
待できるが、加熱源、高圧蒸気源、超音波発生用電力な
どに多大なエネルギを必要とするという点については配
慮されていなかった。
As described in Japanese Utility Model Publication No. 56-15363, high-pressure steam is guided from the stator blade support ring to the ventral surface of the trailing edge of the blade and ejected, and as described in Japanese Patent Publication No. 54-5444, the stator blade support In both cases, a method is adopted in which the water film on the blade surface is made finer by propagating ultrasonic waves from an ultrasonic generator installed on the outside of the ring into the stages. However, although these methods of evaporating the water film on the blade surface and making it finer can be expected to reduce the amount of coarse water droplets that flow into the rotor blade, they require a large amount of heat source, high-pressure steam source, and electric power for generating ultrasonic waves. No consideration was given to the fact that a large amount of energy is required.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、蒸気タービン翼後縁端から噴出する粗
大水滴の発生を低減させ、二ローションによる浸食作用
を防止する効果は期待できるが、そのため多大−なエネ
ルギを消費し、プラント効率を大巾に低下させるという
点については配慮されておらず、実機蒸気タービンへの
適用性に大きな問題があった。
Although the above-mentioned conventional technology can be expected to reduce the generation of coarse water droplets ejected from the trailing edge of the steam turbine blade and prevent the erosion effect caused by the second lotion, it consumes a large amount of energy and greatly reduces plant efficiency. However, there was no consideration given to reducing the temperature to 100%, and there was a major problem in applicability to actual steam turbines.

本発明の目的は、プラント効率を低下させることなく、
タービン翼後縁端から噴出する粗大水滴の発生を低減さ
せ、微細化することによって二ローションによる動翼の
浸食作用を防止し、信頼性の高い蒸気タービンを提供す
ることにある。
The purpose of the present invention is to: without reducing plant efficiency;
The object of the present invention is to reduce the generation of coarse water droplets ejected from the trailing edge of a turbine blade and make them fine, thereby preventing erosion of the rotor blades due to two lotions and providing a highly reliable steam turbine.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、蒸気タービン翼の後縁端を略鋸歯状に形成
し、その歯先を細くしかも鋭角に構成することにより達
成される。
The above object is achieved by forming the trailing edge of the steam turbine blade into a substantially serrated shape, and by configuring the tooth tip to be narrow and at an acute angle.

特に、中空構造の静翼の場合には、腹側壁の一部に水膜
を吸込むためのスリット孔を設けるとともに、上記略鋸
歯状の後縁端の歯の根元部に蒸気噴出孔を設け、静翼の
中空部を利用して連通させることによって、上記目的を
一層効果的に達成することが可能となる。
In particular, in the case of a stator blade having a hollow structure, a slit hole for sucking a water film is provided in a part of the ventral wall, and a steam jet hole is provided at the root of the teeth at the substantially serrated trailing edge. By making use of the hollow part of the stator vane for communication, the above object can be achieved more effectively.

また、後縁端部において、腹側面の後縁端のみを鋸歯状
に形成し、背側面の後縁端を平坦に形成し、背側面と腹
側面とは同長もしくは背側面がやや長くなるように構成
する。こうすることによってより一層の効果を有する。
In addition, at the posterior edge, only the posterior edge of the ventral side is formed in a serrated shape, and the trailing edge of the dorsal side is formed flat, so that the dorsal side and ventral side are the same length, or the dorsal side is slightly longer. Configure. By doing so, even more effects can be obtained.

〔作用〕[Effect]

静翼面に捕集された水滴は、水膜流となって流れ、後縁
端に致達して再び噴霧されるが、従来の蒸気タービン静
翼のように後縁端が平坦であるのと相違して、略鋸歯状
後縁端の場合は水膜の表面張力の作用で水膜は歯先に集
中するようになる。
The water droplets collected on the stator blade surface flow as a water film, reach the trailing edge, and are sprayed again, but unlike conventional steam turbine stator blades, which have a flat trailing edge, In contrast, in the case of a substantially serrated trailing edge, the water film concentrates on the tooth tip due to the surface tension of the water film.

このため、後縁端から噴出する水膜と歯先から安定して
繊維状に噴出されることになり、蒸気流のせん断力と歯
先端部に形成される渦流の作用により、水滴を容易に微
細化することができる。
As a result, water is ejected from the trailing edge and stably ejected in the form of fibers from the tooth tip, and water droplets are easily removed by the action of the shear force of the steam flow and the vortex formed at the tooth tip. Can be miniaturized.

特に、中空構造の静翼において、腹側壁の一部にスリッ
ト孔を設けて、翼内部空間に水膜を吸込むとともに、随
伴して吸込まれる蒸気を略鋸歯状後縁端の歯の根元部に
設けた蒸気噴出孔から高速で噴出されることにより、歯
先に形成される繊維状の水膜をさらに微細化することが
できる。
In particular, in a stator blade having a hollow structure, a slit hole is provided in a part of the ventral wall to suck a water film into the internal space of the blade, and also to direct the vapor that is sucked in along with it to the roots of the teeth at the substantially serrated trailing edge. The fibrous water film formed on the tooth tips can be further refined by being ejected at high speed from the steam ejection holes provided in the teeth.

〔実施例〕〔Example〕

以下、本発明の第1の実施例を第1図ないし第4図を用
いて説明する。
A first embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第1図は、典型的な蒸気タービンの一段落構造に本発明
を適用した例であり、静翼1とこれを円周状に複数枚支
持するダイヤフラム2及び支持リング3a、3bと、v
J翼4とこれを円周状に複数枚保持するディスクロータ
5とから成る蒸気タービンの段落構造である。
FIG. 1 shows an example in which the present invention is applied to a typical one-stage structure of a steam turbine.
This is a staged structure of a steam turbine consisting of J blades 4 and a disc rotor 5 that holds a plurality of J blades in a circumferential manner.

本実施例は、このような蒸気タービン段落構造において
、作動流体中の水滴を静翼腹側面で捕集し、後縁端から
粗大水滴を噴出し易い静翼1の後縁端を略鋸歯状16に
形成したものである。
In this embodiment, in such a steam turbine stage structure, water droplets in the working fluid are collected on the ventral side of the stator blade, and the trailing edge of the stator blade 1, which tends to eject coarse water droplets from the trailing edge, is shaped into a substantially serrated shape. 16.

第2図は、第1図のIa3m歯状後縁端16の部分拡大
図であり、略鋸歯状後縁端16の歯先は厚みが薄くしか
も鋭角に構成されている。
FIG. 2 is a partially enlarged view of the Ia3m tooth-shaped trailing edge 16 shown in FIG. 1, and the tooth tip of the substantially serrated trailing edge 16 is thin and has an acute angle.

静翼1の腹側面に捕集された水滴は、集積して水膜流6
を形成し、後縁端方向に流下する。後縁端近傍では、従
来の平坦な後縁端と異った流れ方を示す。
The water droplets collected on the ventral surface of the stationary blade 1 accumulate and form a water film flow 6.
It forms and flows down towards the trailing edge. Near the trailing edge, the flow direction is different from that of the conventional flat trailing edge.

第3図、第4図にそれぞれ従来の平坦な後縁端20と本
発明を適用した静翼の鋸歯状後縁端16との近傍の水膜
流6の挙動を比較している。前者(第3図)の水膜流6
は後縁端20の形状の影響をあまり受けず、そのまま下
流方向に引きちぎられて大きな水塊7となり蒸気流中に
再び噴出され、粗大水滴7′の流れ9を形成するのに対
して、後者(第4図)の水膜流6は略鋸歯状後縁端16
に達すると、根元部17から歯先方向に沿った水膜流を
形成し、歯先端部に集積する。
3 and 4 compare the behavior of the water film flow 6 near the conventional flat trailing edge 20 and the serrated trailing edge 16 of the stator vane to which the present invention is applied, respectively. Water film flow 6 of the former (Fig. 3)
The latter is not affected much by the shape of the trailing edge 20 and is torn off downstream as it is, becoming a large water mass 7 and ejected again into the steam flow, forming a flow 9 of coarse water droplets 7', whereas the latter The water film flow 6 (FIG. 4) has a substantially serrated trailing edge 16.
When it reaches this point, a water film flow is formed from the root portion 17 along the direction of the tooth tip and accumulates at the tooth tip.

これは、後縁端における水膜流6に働く表面張力の影響
であり、後縁端が略鋸歯状16に形成されているために
、直接気流のせん断力により引きちぎられるよりもその
形状に沿って流下する方が流路抵抗が小さくなることに
よる。
This is due to the effect of surface tension acting on the water film flow 6 at the trailing edge, and since the trailing edge is formed in a substantially serrated shape 16, the water film is torn along its shape rather than being torn off by the shear force of the air flow directly. This is because the flow path resistance is smaller when the water flows down.

したがって、略鋸歯状後縁端16の歯先端部に水膜流6
が集中し、繊維状の小さい氷塊となり気流中に再び噴出
され、小水滴18の流れ9を形成する。
Therefore, the water film flow 6 is formed at the tip of the tooth of the substantially serrated trailing edge 16.
is concentrated, becomes small fibrous ice blocks, and is ejected into the air stream again, forming a stream 9 of small water droplets 18.

この場合、一般に後縁端を略鋸歯状16に形成すると、
歯先端部において腹側面と背側面との圧力分布が相違す
るため、第2図に示すように略鋸歯状後縁端16の下流
方向に渦流19が形成される。したがって、略鋸歯状後
縁端16の歯先端部から噴出される小水滴18は、この
渦流19によめ微細化され易くなり、従来の平坦な後縁
端20から噴出される水滴に比較して、平均水滴径及び
最大水滴径とともに小さくすることが出来る。
In this case, if the trailing edge is generally formed into a substantially serrated shape 16,
Since the pressure distribution between the ventral surface and the dorsal surface of the tooth tip is different, a vortex 19 is formed in the downstream direction of the substantially serrated trailing edge 16, as shown in FIG. Therefore, the small water droplets 18 ejected from the tooth tips of the substantially serrated trailing edge 16 are more easily atomized by the vortex 19, compared to water droplets ejected from the conventional flat trailing edge 20. , the average water droplet diameter and the maximum water droplet diameter can be reduced.

この略鋸歯状後縁端16の形状は、波形形状に限定され
るものではなく、第5図、第6図に示すように三角形2
4a、V字形24bなどのように形状が細く、しかも鋭
角であれば良い。これについては以後の実施例について
も適用される。
The shape of this substantially serrated trailing edge 16 is not limited to a wavy shape, but is triangular 2 as shown in FIGS.
4a, V-shape 24b, etc., and have an acute angle. This also applies to subsequent embodiments.

第7図は1本発明の他の実施例を示したものである。FIG. 7 shows another embodiment of the present invention.

本実施例は、小空構造の静31の後縁端を略鋸歯状に形
成したものであり静翼の重量低減と、製造コストの低減
に効果がある。第7図に示すように腹側壁21の後縁端
のみを略鋸歯状24に形成し、背側壁22の後縁端を平
坦25に形成し、腹側壁21と背側壁22とは後縁端接
合部において。
In this embodiment, the trailing edge of the stator 31 having a small cavity structure is formed into a substantially serrated shape, which is effective in reducing the weight of the stator blade and the manufacturing cost. As shown in FIG. 7, only the rear edge of the ventral wall 21 is formed into a substantially serrated shape 24, the rear edge of the dorsal wall 22 is formed into a flat shape 25, and the ventral wall 21 and the dorsal wall 22 are formed at their rear edges. At the joint.

同長もしくは僅かに背側壁22が長くなるように構成す
る。
The back wall 22 is configured to have the same length or to be slightly longer.

作動流体中の水滴は、第8図に示したように静翼の曲率
の影響で腹側面に集中して捕集されるため、腹側壁21
のみを略鋸歯状後縁端24に形成した。この場合、後縁
端から噴出される水滴の微細化は、第1の実施例とほぼ
同程度の効果を得られる。さらに背側壁22の後縁端2
5が平坦であるため、第1の実施例に比較して翼列性能
への影響を最小限に抑えることが可能となる。
As shown in FIG. 8, water droplets in the working fluid are concentrated and collected on the ventral side due to the curvature of the stator vane, so the water droplets are collected on the ventral side wall 21.
A substantially serrated trailing edge 24 is formed. In this case, the effect of making the water droplets ejected from the trailing edge smaller is almost the same as that of the first embodiment. Furthermore, the trailing edge 2 of the dorsal wall 22
5 is flat, it is possible to minimize the influence on blade cascade performance compared to the first embodiment.

すなわち、第1の実施例では、後縁端16が完全に略鋸
歯状に形成されているため、翼列性能に深く関与するス
ロートの位置が一定せず、蒸気流の流れ方向に変化を及
ぼし、蒸気流の流れ角が翼長方向に振動するなど、性能
に悪い影響を及ぼす恐れがあるが、この実施例では背側
壁22を平坦な後縁端25に形成し、スロートの位置を
固定化することが出来、翼列性能への影響を少なくする
ことが可能である。
That is, in the first embodiment, since the trailing edge end 16 is completely formed into a substantially serrated shape, the position of the throat, which is deeply involved in blade row performance, is not constant and causes a change in the flow direction of the steam flow. However, in this embodiment, the back wall 22 is formed into a flat trailing edge 25, and the throat position is fixed. This makes it possible to reduce the impact on blade cascade performance.

第9図は、本発明の他の実施例を示したものである。FIG. 9 shows another embodiment of the invention.

本実施例は、中空部23を有する静翼1において、中空
構造の特色を生かし、静翼の腹側壁21に翼内部空間と
連通ずるスリット26を設けるとともに、静翼1の後縁
端を略鋸歯状24に形成し、中空部23を復水器などの
低圧部に連通ずる。この実施例は翼後縁端での水膜の微
粒化効果に加え、翼腹面に付着した水滴がスリット26
から、外部へ排出されるので1次段へ流れる水滴量が少
なくなる。第10図は変形例を示し、中空部23を復水
器に連通しないで略鋸歯状後縁端24の根元部の噴出孔
27に連通したものである。
In this embodiment, in the stator blade 1 having a hollow portion 23, by taking advantage of the hollow structure, a slit 26 is provided in the ventral side wall 21 of the stator blade to communicate with the internal space of the blade, and the trailing edge of the stator blade 1 is approximately It is formed into a sawtooth shape 24 and communicates the hollow part 23 with a low pressure part such as a condenser. In addition to the effect of atomizing the water film at the trailing edge of the blade, this embodiment also has the effect of reducing the amount of water droplets attached to the blade ventral surface through the slit 26.
Since the water is discharged to the outside, the amount of water droplets flowing to the primary stage is reduced. FIG. 10 shows a modified example in which the hollow portion 23 is not communicated with the condenser but communicated with the ejection hole 27 at the base of the substantially serrated trailing edge 24.

第10図のそれぞれA−A断面、B−B断面。AA cross section and B-B cross section in FIG. 10, respectively.

C−C断面を示す第11図ないし第13図のように、歯
根本部で噴出孔27が大きく、歯先端部に近づくにつれ
て噴出孔27は小さく、歯先端部では、腹側壁21と背
側壁22とは完全に密着して構成する。
As shown in FIGS. 11 to 13 showing the CC cross section, the ejection hole 27 is large at the root of the tooth, and becomes smaller as it approaches the tooth tip. At the tooth tip, the ventral wall 21 and the dorsal wall 22 It is composed completely in close contact with.

なお1本実施例ではスリット孔26は腹壁面21の一部
に一個を設けた例を示しているが、この位置及び数は限
定されたものではない。
In this embodiment, one slit hole 26 is provided in a part of the abdominal wall surface 21, but the position and number thereof are not limited.

本実施例の場合、静翼の腹側壁21に形成されろ水膜流
6の一部はスリット孔26から翼内部空間に吸込まれ分
離され、さらにスリット孔26の下流側で捕集される水
滴などのようにスリット孔26で分離されない水膜流6
′は、静翼後縁端に流下し、前記実施例と同様に略鋸歯
状後縁端24の歯先端部より微細水滴となって再び噴霧
される。
In the case of this embodiment, a part of the water film flow 6 formed on the ventral side wall 21 of the stationary blade is sucked into the blade internal space through the slit hole 26 and separated, and further water droplets are collected on the downstream side of the slit hole 26. A water film flow 6 that is not separated by a slit hole 26, such as
' flows down to the trailing edge of the stationary blade, and is again sprayed as fine water droplets from the tooth tips of the substantially serrated trailing edge 24, as in the previous embodiment.

この場合、前記実施例と相違して歯先から噴出される水
滴流れ9は、水滴径が微細化されるだけでなく、その量
も大巾に低減することが可能となる。
In this case, unlike the embodiment described above, the water droplet flow 9 ejected from the tip of the tooth not only has a finer diameter, but also the amount thereof can be significantly reduced.

一方、スリット孔26から中空構造の静翼23の翼内部
空間に吸込される水膜流6は、慣性力の影響で、背側壁
22の内部壁に衝突し、壁面に沿って重力方向に落下す
る。
On the other hand, the water film flow 6 sucked into the inner space of the stator blade 23 having a hollow structure through the slit hole 26 collides with the inner wall of the back wall 22 due to the influence of inertia and falls along the wall surface in the direction of gravity. do.

随伴される蒸気流29は噴出孔27から噴流3oとなっ
て噴出される。このため略鋸歯状後縁端24の翼長方向
に部分的に高速噴流30が形成されるため、歯先端部か
ら噴霧される水滴をさらに微細化することが出来る。
The accompanying steam flow 29 is ejected from the ejection hole 27 as a jet flow 3o. For this reason, a high-speed jet 30 is partially formed in the blade length direction of the substantially serrated trailing edge 24, so that the water droplets sprayed from the tooth tips can be further miniaturized.

一般に、二次噴霧の現象は次の条件を超えると生じる。Generally, the phenomenon of secondary spray occurs when the following conditions are exceeded.

σ ここで、ρSは蒸気密度、Vsは蒸気速度、■−は噴霧
される水滴速度、dは水滴径、σは表面張力、Weはせ
ん断力と表面張力との比を表わしている。すなわち、翼
後縁端で蒸気速度Vsを大きくすれば、翼後縁端から噴
霧する水滴径dを小さくすることが出来る。
σ Here, ρS is the vapor density, Vs is the vapor velocity, ■- is the sprayed water droplet velocity, d is the water droplet diameter, σ is the surface tension, and We is the ratio of shear force to surface tension. That is, by increasing the steam velocity Vs at the trailing edge of the blade, the diameter d of water droplets sprayed from the trailing edge of the blade can be reduced.

したがって、本実施例のように略鋸歯状後縁端24の歯
先端部から噴出する水滴の周囲速度を。
Therefore, as in this embodiment, the circumferential velocity of the water droplet ejected from the tip of the tooth of the substantially serrated trailing edge 24.

噴出孔27からの高速噴流30で上昇させることにより
、水滴の微細化が一層効果的になる。
By elevating the water droplets with the high-speed jet stream 30 from the ejection hole 27, the water droplets can be made smaller more effectively.

しかも、この高速噴流30は外部からのエネルギー源を
利用することなく噴出させることが出来るため、蒸気タ
ービンのプラント効率、を低下させることもない。
Moreover, since this high-speed jet 30 can be ejected without using an external energy source, the plant efficiency of the steam turbine will not be reduced.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、平坦な後縁端を有する従来の静翼に比
較して、後縁端から噴霧する水滴径を効果的に微細化す
ることが可能になるとともに、静翼面を流れる水膜流を
略鋸歯状後縁端の歯先端部から安定して噴出させること
が出来、噴出点も分散させるという効果がある。このた
め、動翼に到達する粗大水滴を低減することが可能にな
る。
According to the present invention, compared to conventional stator blades having a flat trailing edge, it is possible to effectively miniaturize the diameter of water droplets sprayed from the trailing edge, and the water flowing on the stator blade surface can be made smaller. The membrane flow can be stably ejected from the tooth tips of the substantially serrated trailing edges, and the ejection points are also dispersed. Therefore, it is possible to reduce coarse water droplets that reach the rotor blades.

一般に、動翼に衝突する水滴と二ローションによる浸食
量との関係は、次式で表わされる。
Generally, the relationship between water droplets that collide with the rotor blade and the amount of erosion caused by the two lotions is expressed by the following equation.

ここで、Eは二ローションによる浸食量、Aは被エロー
ジョン面積、dは水滴径、V/+は水滴の衝突速度、V
cはエロージョンの発生する臨界速度、Wは二ローショ
ンの発生に寄与する水滴量、Tは運転時間を示す。べき
載のQ、m、nはQ、m>1  0<n<1 である。
Here, E is the amount of erosion due to the two lotions, A is the eroded area, d is the water droplet diameter, V/+ is the collision speed of the water droplet, and V
c is the critical speed at which erosion occurs, W is the amount of water droplets contributing to the generation of two lotions, and T is the operating time. The powers Q, m, and n are Q, m>1 0<n<1.

すなわち、水滴径とその衝突速度及びその量を削減する
と二ローションによる浸食量を低減することが可能にな
る。
That is, by reducing the water droplet diameter, its collision speed, and its amount, it becomes possible to reduce the amount of erosion caused by the two lotions.

本発明では、後縁端から噴霧する水滴径を小さくするこ
とが出来るため、水滴の速度も上げることが可能である
。このため、動翼への水滴の衝突速も低下させることが
出来る。
In the present invention, since the diameter of water droplets sprayed from the trailing edge can be reduced, the speed of the water droplets can also be increased. Therefore, the speed at which water droplets impinge on the rotor blade can also be reduced.

しかも、略鋸歯状後縁端によって水滴噴霧を分散するこ
とが出来るので、−カ所から噴霧される水滴量も少なく
なり二ロージョンによる浸食量を大巾に低減することが
可能である。
Moreover, since the water droplet spray can be dispersed by the approximately serrated trailing edge, the amount of water droplets sprayed from the negative portions is also reduced, making it possible to greatly reduce the amount of erosion caused by the two ridges.

特に、スリット孔を設けて水膜流の一部を吸込し分離す
ることにより、後縁端から噴霧される水滴量を削減する
と、二〇−ジョンによる浸食量は極めて低減し、湿り蒸
気中の蒸気タービンの信頼性を向上することが出来ると
いう多大な効果を有する。
In particular, if the amount of water droplets sprayed from the trailing edge is reduced by providing a slit hole to suck in and separate a portion of the water film flow, the amount of erosion caused by 20-john will be extremely reduced, and the amount of water droplets in the wet steam will be reduced significantly. This has the great effect of improving the reliability of the steam turbine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は蒸気タービンの一段落構造に本発明を実施した
構成図、第2図は本発明の第一実施例を示す部分矢視図
、第3図は従来の平坦な後縁端の拡大図、第4図は略鋸
歯状後縁端の拡大図、第5図及び第6図は本発明の他の
変形例を示す後縁端部の斜視図、第7図は本発明の他の
実施例を示す斜視図、第81i!は水平断面図、第9図
は、他の実施例を示す斜視図、第10図は他の変形例を
示す斜視図、第11図ないし第13図はそれぞれ第10
図(7)A−A断面図、B−B断面図、C−C断面図で
ある。 1.1’・・・静翼、16 、24 、24 a 、 
24 b −略鋸歯状後縁端、21・・・腹側壁、22
・・・背側壁、23・・・中空翼、26・・・スリット
比、27・・・噴出孔。
Fig. 1 is a block diagram in which the present invention is implemented in a one-stage structure of a steam turbine, Fig. 2 is a partial view showing the first embodiment of the present invention, and Fig. 3 is an enlarged view of a conventional flat trailing edge. , FIG. 4 is an enlarged view of a substantially serrated trailing edge, FIGS. 5 and 6 are perspective views of a trailing edge showing another modification of the present invention, and FIG. 7 is a diagram showing another embodiment of the present invention. Perspective view showing an example, No. 81i! is a horizontal sectional view, FIG. 9 is a perspective view showing another embodiment, FIG. 10 is a perspective view showing another modification, and FIGS.
Figure (7) is an AA sectional view, a BB sectional view, and a CC sectional view. 1.1'... stationary blade, 16, 24, 24 a,
24 b - substantially serrated posterior edge, 21... ventral wall, 22
... Dorsal wall, 23... Hollow wing, 26... Slit ratio, 27... Ejection hole.

Claims (1)

【特許請求の範囲】 1、静翼とこれを円周状に複数枚支持するダイヤフラム
及び支持リングから成る蒸気タービン装置に使用される
静翼において、該静翼の後縁端を略鋸歯状に形成したこ
とを特徴とする蒸気タービン翼。 2、特許請求の範囲第1項記載の静翼において、該静翼
を中空構造としたことを特徴とする蒸気タービン翼。 3、特許請求の範囲第2項記載の静翼において、腹側壁
の一部に翼内部空間と連通するスリット孔を設けたこと
を特徴とする蒸気タービン翼。 4、特許請求の範囲第3項記載の静翼において、該静翼
の略鋸歯状後縁端の歯の根元部に翼内部空間と連通する
噴出孔を設けたことを特徴とする蒸気タービン翼。 5、静翼とこれを円周状に複数枚支持するダイヤフラム
及び支持リングから成る蒸気タービン装置に使用される
静翼において、該静翼の腹側面の後縁端のみを略鋸歯状
に形成し、背側面の後縁端を平坦に形成し、腹側面と背
側面とは同長もしくは僅かに背側面が長くなるように形
成することを特徴とする蒸気タービン翼。 6、特許請求の範囲第5項記載の静翼において、該静翼
を中空構造としたことを特徴とする蒸気タービン翼。 7、特許請求の範囲第6項記載の静翼において、腹側壁
の一部に翼内部空間と連通するスリット孔を設けたこと
を特徴とする蒸気タービン翼。 8、特許請求の範囲第7項記載の静翼において、該静翼
の略鋸歯状後縁端の歯の根元部に翼内部空間と連通する
噴出孔を設けたことを特徴とする蒸気タービン翼。
[Claims] 1. In a stator blade used in a steam turbine device consisting of a stator blade, a plurality of diaphragms and a support ring that support the stator blade in a circumferential manner, the trailing edge of the stator blade is approximately serrated. A steam turbine blade characterized in that it is formed. 2. A steam turbine blade according to claim 1, characterized in that the stator blade has a hollow structure. 3. A steam turbine blade according to claim 2, characterized in that a slit hole communicating with the internal space of the blade is provided in a part of the ventral wall. 4. A steam turbine blade according to claim 3, characterized in that a jet hole communicating with the internal space of the blade is provided at the root of the tooth at the substantially serrated trailing edge of the stator blade. . 5. In a stator blade used in a steam turbine device consisting of a stator blade and a plurality of diaphragms and support rings that support the stator blade in a circumferential manner, only the trailing edge of the ventral surface of the stator blade is formed into a substantially serrated shape. A steam turbine blade characterized in that the trailing edge of the back side is formed flat, and the ventral side and the back side are formed to have the same length or the back side is slightly longer. 6. A steam turbine blade according to claim 5, characterized in that the stator blade has a hollow structure. 7. A steam turbine blade according to claim 6, characterized in that a slit hole communicating with the internal space of the blade is provided in a part of the ventral wall. 8. A steam turbine blade according to claim 7, characterized in that a jet hole communicating with the internal space of the blade is provided at the root of the teeth of the substantially serrated trailing edge of the stator blade. .
JP2456887A 1987-02-06 1987-02-06 Steam turbine blade Pending JPS63195302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2456887A JPS63195302A (en) 1987-02-06 1987-02-06 Steam turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2456887A JPS63195302A (en) 1987-02-06 1987-02-06 Steam turbine blade

Publications (1)

Publication Number Publication Date
JPS63195302A true JPS63195302A (en) 1988-08-12

Family

ID=12141760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2456887A Pending JPS63195302A (en) 1987-02-06 1987-02-06 Steam turbine blade

Country Status (1)

Country Link
JP (1) JPS63195302A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095309A (en) * 2012-11-08 2014-05-22 Mitsubishi Heavy Ind Ltd Steam turbine
US10436037B2 (en) 2016-07-22 2019-10-08 General Electric Company Blade with parallel corrugated surfaces on inner and outer surfaces
US10443399B2 (en) 2016-07-22 2019-10-15 General Electric Company Turbine vane with coupon having corrugated surface(s)
US10450868B2 (en) 2016-07-22 2019-10-22 General Electric Company Turbine rotor blade with coupon having corrugated surface(s)
US10465525B2 (en) 2016-07-22 2019-11-05 General Electric Company Blade with internal rib having corrugated surface(s)
US10465520B2 (en) 2016-07-22 2019-11-05 General Electric Company Blade with corrugated outer surface(s)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095309A (en) * 2012-11-08 2014-05-22 Mitsubishi Heavy Ind Ltd Steam turbine
US10436037B2 (en) 2016-07-22 2019-10-08 General Electric Company Blade with parallel corrugated surfaces on inner and outer surfaces
US10443399B2 (en) 2016-07-22 2019-10-15 General Electric Company Turbine vane with coupon having corrugated surface(s)
US10450868B2 (en) 2016-07-22 2019-10-22 General Electric Company Turbine rotor blade with coupon having corrugated surface(s)
US10465525B2 (en) 2016-07-22 2019-11-05 General Electric Company Blade with internal rib having corrugated surface(s)
US10465520B2 (en) 2016-07-22 2019-11-05 General Electric Company Blade with corrugated outer surface(s)

Similar Documents

Publication Publication Date Title
JP2810023B2 (en) High temperature member cooling device
JP3982261B2 (en) Turbine blade
JP2001012204A (en) Gas turbine blade
JP2009013984A (en) Airfoil for use in rotary machine and method for fabricating the same
US8591191B1 (en) Film cooling hole for turbine airfoil
JP7292421B2 (en) Turbine stator vane, turbine stator vane assembly, and steam turbine
KR20150063950A (en) Turbine airfoil cooling passage with diamond turbulator
US8087893B1 (en) Turbine blade with showerhead film cooling holes
KR102587390B1 (en) Turbine stator and steam turbine
US6474942B2 (en) Airfoil configured for moisture removal from steam turbine flow path
JPS6138103A (en) Step for steam turbine
JP2009138540A (en) Steam turbine and moisture removing structure for steam turbine stage
JPS63195302A (en) Steam turbine blade
JP7179652B2 (en) Turbine stator blades and steam turbines
EP2672064B1 (en) Turbine engine and aerodynamic element of turbine engine
JP2013119819A (en) Steam turbine having moisture removal structure of blade
JP2017020443A (en) Steam turbine nozzle and steam turbine with the nozzle
JP4184565B2 (en) Steam turbine nozzle and steam turbine using the steam turbine nozzle
EP2818637B1 (en) Gas turbine component for releasing a coolant flow into an environment subject to periodic fluctuations in pressure
JP6145372B2 (en) Steam turbine blade and steam turbine using the same
JPH01110812A (en) Stationary blade structure of steam turbine
JP3862893B2 (en) Drain separation structure of steam turbine
JP5916586B2 (en) Steam turbine
JPS63113101A (en) Blade lattice device
JPH0893404A (en) Turbine nozzle and turbine rotor blade