JPS63194236A - Light deflecting device - Google Patents

Light deflecting device

Info

Publication number
JPS63194236A
JPS63194236A JP2639387A JP2639387A JPS63194236A JP S63194236 A JPS63194236 A JP S63194236A JP 2639387 A JP2639387 A JP 2639387A JP 2639387 A JP2639387 A JP 2639387A JP S63194236 A JPS63194236 A JP S63194236A
Authority
JP
Japan
Prior art keywords
light
optical
angle
transducer
deflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2639387A
Other languages
Japanese (ja)
Inventor
Yukihisa Setoriyama
世取山 幸寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2639387A priority Critical patent/JPS63194236A/en
Publication of JPS63194236A publication Critical patent/JPS63194236A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To quicken the rise time of turning-on/off of an optical signal by successively deflecting the straight going light incident on light deflecting elements by respective light deflectors to attain a large angle of diffraction in the whole of diffracting operations. CONSTITUTION:The transducer attaching face of a light deflecting element 11A of a first light deflector is defined as the reference face, and the transducer attaching face of a light deflecting element 11B of a second light deflector is set at a prescribed angle of inclination, for example, 2theta (theta is the angle of incidence of the straight going light) to the reference face. The incident straight going light is deflected at the angle theta by a first light deflecting element 11A, and the deflected light is made incident on a second light deflecting elements 11B and is deflected at the angle theta furthermore, and therefore, a large angle of diffraction is obtained as the whole even if the wavelength of a driving ultrasonic wave is extended to reduce the angle theta. Three or more light deflectors may be used to deflect the light similarly. Thus, the size of a device is not changed but only the shape and the arrangement are changed to quicken the rise time of turning-on/off of the optical signal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は音響光学効果を利用した光偏向装置の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to improvement of a light deflection device using an acousto-optic effect.

(従来の技術) この種の光偏向装置は、高周波を発振する駆動回路から
光偏向素子に取付けられたトランスジューサの電極に高
周波電圧を与えることにより、所定の入射角度の直進光
をブラッグ回折によって前記光偏向素子内部における音
波による回折効果により前記直進光の入射角度に対し2
倍の角度で偏向させた回折光を取出すものである。
(Prior Art) This type of optical deflection device applies a high frequency voltage from a drive circuit that oscillates a high frequency to an electrode of a transducer attached to an optical deflection element, thereby converting straight light at a predetermined incident angle into Due to the diffraction effect caused by the sound waves inside the optical deflection element, the angle of incidence of the straight light is
It extracts diffracted light that is deflected at twice the angle.

この種の光偏向装置の回折効率η、立上がり時間Trは
、 T r =  (0,55A + 0.8)Wo / 
V     −(2)で表わすことができる。但し、A
〉1であり、かつ、 A−(2/π)・ (λL/WOA)   ・・・(3
)の関係にある。上式においてλは光の波長、  Ps
は駆動回路の出力電力、Lは光方向の長さに伸びるトラ
ンスジューサ2の電極長(fji5図(b)。
The diffraction efficiency η and rise time Tr of this type of optical deflection device are as follows: Tr = (0,55A + 0.8)Wo /
It can be expressed as V-(2). However, A
〉1, and A-(2/π)・(λL/WOA)...(3
). In the above formula, λ is the wavelength of light, Ps
is the output power of the drive circuit, and L is the electrode length of the transducer 2 extending in the optical direction (Fig. 5(b)).

(c)ではL−1,+12 )、Hはトランスジューサ
2の電極幅、Woは光ビームの半径1M2゜■およびA
はそれぞれ光偏向素子1の性能指数。
In (c), L-1, +12), H is the electrode width of transducer 2, Wo is the radius of the light beam 1M2゜, and A
are the performance index of optical deflection element 1, respectively.

光偏向素子内部での超音波の音速および波長であってこ
れらは材質によって定まり、−例として下表に示す通り
である。
The sound speed and wavelength of the ultrasonic wave inside the optical deflection element are determined by the material, and are shown in the table below as an example.

従って、光偏向素子1で使用する材質を決めた場合、(
1)式において性能指数M2が定まっているので、10
0%の回折効率ηを得るために必要な駆動超音波電力P
sの大きさは電極長しと電極幅Hで決定される。即ち、
駆動超音波電力Psは電極長しが大きく、電極幅Hが小
さくなる程小さくてすむことになる。
Therefore, when deciding the material to be used for the optical deflection element 1, (
Since the figure of merit M2 is determined in formula 1), 10
Driving ultrasonic power P required to obtain a diffraction efficiency η of 0%
The size of s is determined by the electrode length and electrode width H. That is,
The driving ultrasonic power Ps can be reduced as the electrode length increases and the electrode width H decreases.

従来、かかる光偏向装置は、第5図に示すように光偏向
素子1の同一平面上に1枚のトランスジューサ2および
1個の電極3を取付けたもの(同図a)、同じく光偏向
索子1の同一平面上に1枚のトランスジューサ2を配置
し、かつ、このトランスジューサ2に分割して2個の電
極3を取付けたもの(同図b)、あるいは光偏向索子1
の同一平面上に分割してトランスジューサ2を配置し、
かつ、これらのトランスジューサ2に個別に電極3を取
付けたもの(同図C)等がある。このように複数枚のト
ランスジューサ2を使用したり、あるいは複数個の電極
3を使用したりする理由は、駆動回路との整合を取り易
くすることおよび薄膜(例えば数10μm)のトランス
ジューサ2の製作を容易にすること等が挙げられる。
Conventionally, such an optical deflection device includes one transducer 2 and one electrode 3 mounted on the same plane of an optical deflection element 1 (FIG. 5a), as shown in FIG. One transducer 2 is placed on the same plane as the other, and this transducer 2 is divided and two electrodes 3 are attached (see figure b), or an optical deflector 1 is arranged on the same plane.
The transducer 2 is divided and arranged on the same plane,
There is also a transducer 2 in which an electrode 3 is individually attached to the transducer 2 (see C in the same figure). The reason for using a plurality of transducers 2 or a plurality of electrodes 3 in this way is to facilitate matching with the drive circuit and to facilitate the production of a thin film (for example, several tens of micrometers) transducer 2. Examples include making it easier.

(発明が解決しようとする問題点) 従って、光偏向素子1の材質を決めた場合、(1)式に
おいて性能指数M2が定まっているので、100%の回
折効率ηを得るために必要な駆動超音波電力Psの大き
さは電極長しと電極幅Hとで決定される。即ち、駆動超
音波電力Psは電極長しが大きく、電極幅Hが小さくな
る程小さくてすむことになる。
(Problem to be Solved by the Invention) Therefore, when the material of the optical deflection element 1 is determined, since the figure of merit M2 is determined in equation (1), the drive required to obtain 100% diffraction efficiency η is The magnitude of the ultrasonic power Ps is determined by the electrode length and electrode width H. In other words, the driving ultrasonic power Ps can be reduced as the electrode length increases and the electrode width H decreases.

■ しかし、電極長りを大きくすると、駆動超音波電力
Psを小さくできるが、上記(2)式から明らかなよう
に立上がり時間Trが遅くなる。
(2) However, if the electrode length is increased, the driving ultrasonic power Ps can be decreased, but as is clear from the above equation (2), the rise time Tr becomes slower.

このことは立ち上がり時間Trの速い光偏向器を得る場
合には電極長りを大きくできない。
This means that when obtaining an optical deflector with a fast rise time Tr, the electrode length cannot be increased.

逆に、電極長りを短くすれば、立ち上がり時間T「は速
くなるが、今度はブラッグ回折からラマンナス回折に近
くなり、実質的に回折効率が低下してしまう。
Conversely, if the electrode length is shortened, the rise time T' becomes faster, but Bragg diffraction becomes closer to Ramannus diffraction, and the diffraction efficiency substantially decreases.

そこで、回折効率との関係からは電極長しの下限を知り
、その限界ぎりぎりに設定することか考えられる。因み
に、電極長しの下限は、一般的には (Lλ/2A2 )  >>1        ・・・
(4)から得られることが知られている。そこで、この
(4)式を変形すると、(Lλ/2A2 )がある定数
Cであるとすると、 とナル。ココテ、C’−2/2V2.B−Lf2と表わ
すことができる。また、(3)式を上式のBを用いて表
わすと、 となる。上式においてC−2λ/πWo■である。
Therefore, it is conceivable to know the lower limit of the electrode length from the relationship with the diffraction efficiency and set it just at the limit. Incidentally, the lower limit of the electrode length is generally (Lλ/2A2) >>1...
It is known that it can be obtained from (4). Therefore, if we transform this equation (4), if (Lλ/2A2) is a constant C, we get the following and null. Kokote, C'-2/2V2. It can be expressed as B-Lf2. Moreover, when formula (3) is expressed using B in the above formula, it becomes as follows. In the above formula, C-2λ/πWo■.

従って、(2)式からAが小さいほど立ち上がり時間T
rは速くなる。つまり、周波数が高いほど立ち上がり時
間Trが速いことになる。しかし、トランスジューサの
厚みが薄くなり、製造が難しい。この厚みは、(周波数
定数)−(トランスジユーザの厚み)×(超音波周波数
)の式から求められる。さらに、薄いほど接着が困難で
ある。
Therefore, from equation (2), the smaller A is, the more the rise time T
r becomes faster. In other words, the higher the frequency, the faster the rise time Tr. However, the transducer becomes thinner and difficult to manufacture. This thickness is determined from the formula: (frequency constant) - (thickness of transducer) x (ultrasonic frequency). Furthermore, the thinner the adhesive, the more difficult it is to adhere.

■ 一方、電極幅Hを小さくすれば、上記(1)式から
駆動超音波電力Psを小さくできるが、光偏向素子中を
透過する光ビーム半径W。よりも小さくすることは回折
効率ηを低下させるので実際的ではない。
(2) On the other hand, if the electrode width H is made smaller, the drive ultrasonic power Ps can be made smaller based on equation (1) above, but the radius W of the light beam transmitted through the optical deflection element. Making it smaller than this is not practical because it lowers the diffraction efficiency η.

従って、以上の観点から立ち上がり時間T「を速くする
場合、(4)式に基づいて電極長りを限界ぎりぎり小さ
くし、かつ、電極幅Hを小さくすることにより、駆動超
音波電力を押えつつ回折効率をそれ程低下させずに実現
することが望ましい。
Therefore, from the above point of view, when increasing the rise time T, the electrode length is made as small as possible based on equation (4), and the electrode width H is made small, thereby suppressing the driving ultrasonic power while diffracting It is desirable to achieve this without significantly reducing efficiency.

しかし、かかる条件を満足させた光偏向器を実現するこ
とは難しい。何となれば、実際上、構成部品の加工精度
等の問題や光軸の調整誤差等が生じてくるので、電極幅
Hは光ビーム径の2倍とするのが一般的と考えられてい
る。゛また、上記(2)式について超音波の波長へをパ
ラメータとして計算してみると、第6図に示すように超
音波の波長へが大きいほど、すなわち、駆動超音波の周
波数が低いほど立ち上がり時間が速くなることが理解で
きる。但し、第6図は、材質:As2Se3゜λ: 1
. 3μm、 WO: 0. 1mm、  L : 1
0tnm。
However, it is difficult to realize an optical deflector that satisfies these conditions. In practice, problems such as processing precision of component parts and adjustment errors of the optical axis may arise, so it is generally considered that the electrode width H is twice the light beam diameter.゛Also, when calculating the above formula (2) using the wavelength of the ultrasonic wave as a parameter, as shown in Figure 6, the larger the wavelength of the ultrasonic wave, that is, the lower the frequency of the driving ultrasonic wave, the faster the rise. I can understand that time goes by faster. However, in Figure 6, material: As2Se3゜λ: 1
.. 3 μm, WO: 0. 1mm, L: 1
0tnm.

H= 1 amの場合の特性図である。It is a characteristic diagram in the case of H=1 am.

しかし、回折角θは、 2ΔSINθ−λ      ・・・・・・(5)式か
ら求められるので、光の波長λを一定とすれば超音波の
波長へが大きくなるほど小さくなる。
However, since the diffraction angle θ is obtained from the equation (5), the diffraction angle θ becomes smaller as the wavelength of the ultrasonic wave increases, assuming that the wavelength λ of the light is constant.

このことは回折光と直進光とを確実に分離するためには
非常に長い距離が必要となる。光ビームは、レーザ光の
コヒレンシー、光の回折等によって完全な平行光ではな
く多少の広がりを持っている。
This means that a very long distance is required to reliably separate the diffracted light and the straight light. The light beam is not completely parallel light but has some spread due to the coherency of the laser light, the diffraction of the light, etc.

その為、光ビームを空間中で長く飛ばすと光ビーム径が
大きくなり、光ファイバとの間の結合効率が低下し実質
的な回折効率が低下することになる。
Therefore, when a light beam is emitted for a long time in space, the diameter of the light beam increases, the coupling efficiency with the optical fiber decreases, and the substantial diffraction efficiency decreases.

従って、光ビームを空間中セ長く飛ばすことは困難であ
る。
Therefore, it is difficult to make the light beam travel a long distance through space.

本発明は上記実情に鑑みてなされたもので、光信号のオ
ン・オフの立ち上がり時間を速くできる光偏向装置を提
供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an optical deflection device that can speed up the rise time of turning on and off an optical signal.

(問題点を解決するための手段および作用)本発明によ
る光偏向装置は、前記光偏向素子のトランスジューサ取
付は面として第1の光偏向素子の基準面部を基準にして
第2の光偏向素子または前記第1の光偏向素子の一部を
前記所定角度の2(n−1)倍(nは基準面部を含むト
ランスジューサを取付ける面の個数で2以上の整数)ず
つの傾斜角度をもった傾斜面部に設定し、これらの基準
面部および傾斜面部にそれぞれトランスジューサ18.
19(電極16.17を含む)を取付け、前記光偏向素
子内に入射する直進光を各トランスジューサで順次偏向
していくことにより、全体としての回折動作によって大
きな回折角を得るようにし、かつ、前記(2)式および
(3)式から導かれる立ち上がり時間を速くするもので
ある。さらにまた、本発明による光偏向装置は、第1の
光偏向器を基準にして第2の光偏向器2(n−1)倍(
nは基準面部を含むトランスジューサをとりつける面の
個数で2以上の整数)ずつの傾斜角度をもった傾斜面部
に配置し、前記光偏向素子内に入射する直進光を各光偏
向器で順次偏向していくことにより、全体としての回折
動作によって大きな回折角を得るようにするものである
(Means and Effects for Solving the Problems) In the optical deflection device according to the present invention, the transducer mounting of the optical deflection element is performed as a plane with respect to the reference surface portion of the first optical deflection element, and the second optical deflection element or A part of the first optical deflection element is formed into an inclined surface portion having an inclination angle of 2(n-1) times the predetermined angle (n is the number of surfaces on which the transducer is attached, including the reference surface portion, and is an integer of 2 or more). The transducers 18.
19 (including electrodes 16 and 17), and by sequentially deflecting the straight light incident on the optical deflection element with each transducer, a large diffraction angle is obtained by the overall diffraction operation, and This is to speed up the rise time derived from equations (2) and (3) above. Furthermore, in the optical deflection device according to the present invention, the second optical deflector is 2 (n-1) times (2(n-1) times (
n is the number of surfaces on which the transducers are mounted, including the reference surface portion, and is arranged on inclined surface portions having an inclination angle of 2 or more), and each optical deflector sequentially deflects the straight light that enters the optical deflection element. By doing so, a large diffraction angle can be obtained by the overall diffraction operation.

(実施例) 以下、本発明の第1の実施例について第1図および第2
図を参照して説明する。第1図は2つの光偏向器の設定
状態を示す図、第2図は2つの光偏向器の取付は状態図
である。第1図において11A、11Bは入射直進光を
所望の回折角度に偏向して出力する第1および第2の光
偏向器の光偏向素子である。これらの光偏向素子11A
(Example) The first example of the present invention will be described below with reference to FIGS. 1 and 2.
This will be explained with reference to the figures. FIG. 1 is a diagram showing the setting state of two optical deflectors, and FIG. 2 is a diagram showing the installation state of the two optical deflectors. In FIG. 1, reference numerals 11A and 11B indicate optical deflection elements of first and second optical deflectors that deflect incident straight light to a desired diffraction angle and output the deflected light. These optical deflection elements 11A
.

11Bのトランスジューサ取付は面にはそれぞれトラン
スジューサ18.19が個別に取付けられるが、特に第
1の光偏向器の光偏向素子11Aのトランスジューサ取
付は面を基準面とすると、第2の光偏向器の光偏向素子
11Bのトランスジューサ取付は面は前記基準面を基準
として所定の傾斜角度例えば2θ(θは直進光入射角度
)となる様に設定される。
11B, the transducers 18 and 19 are individually attached to each surface, but in particular, when the transducer of the optical deflection element 11A of the first optical deflector is attached with the surface as the reference surface, the transducers 18 and 19 of the second optical deflector are attached individually. The transducer mounting surface of the optical deflection element 11B is set so that it has a predetermined inclination angle, for example, 2θ (θ is the angle of incidence of straight light) with respect to the reference plane.

このような構成にすれば、入射直進光は第1の光偏向素
子11Aでθだけ偏向され、この偏向光が第2の光偏向
素子11Bに入射直進光として入ってここで更にθだけ
偏向されるので、前記駆動超音波の波長を長くして角度
θを小さくしても全体として回折角は大きくできる。な
お、2つの光偏向素子11A、IIBを用いたが、3つ
以上用い、同様な要領で傾斜させてもよい。第2図は2
つの光偏向器31.32の取付は状態図であって、基板
31に接希材32等を用いて2つの光偏向器31.32
が固定されている。
With this configuration, the incident straight light is deflected by θ at the first optical deflection element 11A, and this polarized light enters the second optical deflection element 11B as the incident straight light, where it is further deflected by θ. Therefore, even if the wavelength of the driving ultrasonic wave is made longer and the angle θ is made smaller, the overall diffraction angle can be made larger. Although two optical deflection elements 11A and IIB are used, three or more may be used and tilted in a similar manner. Figure 2 is 2
The mounting of the two optical deflectors 31 and 32 is shown in the state diagram, and the mounting of the two optical deflectors 31 and 32 is shown in FIG.
is fixed.

次に、本発明の第2の実施例について第3図および第4
図を参照して説明する。第3図は光偏向器の概略構成図
、第2図はトランスジューサおよびその電極の取付は状
態を示す図である。これらの図において11は入射直進
光を所望の回折角度に偏向して出力する光偏向素子であ
って、この光偏向素子11には3つのボートが設けられ
ている。
Next, regarding the second embodiment of the present invention, FIGS.
This will be explained with reference to the figures. FIG. 3 is a schematic diagram of the optical deflector, and FIG. 2 is a diagram showing how the transducer and its electrodes are attached. In these figures, reference numeral 11 denotes a light deflection element that deflects incident rectilinear light to a desired diffraction angle and outputs it, and this light deflection element 11 is provided with three boats.

その1つのポート側には光信号送出系つまり光源(図示
せず)、光ファイバ12およびレンズ13等が配置され
、この光源からの光信号が光ファイバ12およびレンズ
13の順序で通って前記光偏向素子11に入射される。
On the one port side, an optical signal transmission system, that is, a light source (not shown), an optical fiber 12, a lens 13, etc. are arranged, and the optical signal from this light source passes through the optical fiber 12 and lens 13 in this order, and the optical signal is transmitted through the optical fiber 12 and the lens 13 in this order. The light is incident on the deflection element 11.

なお、光ファイバ12を用いずに光源からの光信号を直
接レンズ13を通して光偏向索子11に入射してもよい
Note that the optical signal from the light source may be directly input to the optical deflector 11 through the lens 13 without using the optical fiber 12.

この光偏向索子11のトランスジューサ取付は面は、例
えばレンズ13からの直進光の入射端側に近い側に光偏
向索子11内の回折格子にほぼ平行な基準面部1.、1
 aが形成され、さらに回折光の出射側に近い側に前記
2!準面部11aに連結しかつこの基準面部11aに対
し所定の傾斜角度θの傾斜を有する傾斜面部11bが形
成されている。
The transducer mounting surface of the light deflection cable 11 has a reference plane 1 which is substantially parallel to the diffraction grating in the light deflection cable 11 on the side near the incident end of the straight light from the lens 13, for example. ,1
2! is formed on the side closer to the output side of the diffracted light. An inclined surface portion 11b is formed which is connected to the reference surface portion 11a and is inclined at a predetermined angle of inclination θ with respect to the reference surface portion 11a.

この傾斜角度θは上記(5)式を満たす角度に形成され
る。2つの場合には2θとなる。即ち、使用する光の波
長λと駆動超音波波長へが定まれば、(5)式からθを
求めることができる。そして、以上のように形成された
各基準面部11aおよび傾斜面部11bにはそれぞれ個
別に電極16゜17を持ったトランスジューサ18.1
9が取付。
This inclination angle θ is set to an angle that satisfies the above equation (5). In two cases, it is 2θ. That is, once the wavelength λ of the light to be used and the driving ultrasound wavelength are determined, θ can be determined from equation (5). Each reference surface portion 11a and inclined surface portion 11b formed as described above is provided with a transducer 18.1 having an individual electrode 16°17.
9 installed.

けられている。これらの電極16.17には駆動回路2
0から高周波信号が与えられ、これによってトランスジ
ューサ18.19から超音波が発生されて光偏向素子1
1に印加される様になっている。
I'm being kicked. These electrodes 16, 17 are connected to the drive circuit 2.
A high frequency signal is given from the transducer 18.
1 is applied.

前記光偏向索子11にあっては、トランスデユーサ18
.19による超音波の非印加時、光信号送出系からの光
束は光偏向索子11の内部を直進して別のポートより出
射される。このボートから出射された光束の直進方向に
はレンズ21および光ファイバ22の順序で配置されて
いる。従って、当該ポートから出射された光束はレンズ
21を通って光ファイバ22を通って受光器(図示せず
)により受光される。
In the optical deflection cable 11, the transducer 18
.. When no ultrasonic waves are applied by 19, the light beam from the optical signal sending system travels straight inside the optical deflector 11 and is emitted from another port. A lens 21 and an optical fiber 22 are arranged in this order in the straight direction of the light beam emitted from the boat. Therefore, the light beam emitted from the port passes through the lens 21, the optical fiber 22, and is received by a light receiver (not shown).

一方、光偏向索子11への超音波印加時、入射直進光は
超音波の印加によって偏向されて別のポートから出射さ
れる。このポート側にはレンズ23および光ファイバ2
4が配置され、光偏向索子11内で偏向された回折光が
レンズ23.光ファイバ24を通って受光器(図示せず
)で受光される。なお、光パルス試験器等のように被測
定光ファイバからの戻り光の特性を得ようする場合、レ
ンズ21.光ファイバ等を光信号送出系とし、レンズ1
3および光フアイバ12等を被測定系とし、かつ、該被
測定光ファイバ側からの反射による戻り光が機器内部光
ファイバ12およびレンズ13を通って光偏向素子11
に入射されるものとする。
On the other hand, when applying ultrasonic waves to the optical deflection cable 11, the incident straight light is deflected by the application of the ultrasonic waves and exits from another port. A lens 23 and an optical fiber 2 are connected to this port side.
4 is arranged, and the diffracted light deflected within the optical deflector 11 is transmitted to the lens 23 . The light passes through the optical fiber 24 and is received by a light receiver (not shown). Note that when trying to obtain the characteristics of the return light from the optical fiber to be measured, such as in an optical pulse tester, the lens 21. An optical fiber or the like is used as an optical signal transmission system, and lens 1
3 and an optical fiber 12 as a system to be measured, and the return light due to reflection from the optical fiber to be measured passes through an optical fiber 12 and a lens 13 inside the device to an optical deflection element 11.
It is assumed that the

従って、以上のように光偏向器では、光信号送出系から
の入射直進光または被測定光ファイバからの反射による
戻り光は光ファイバ12を通ってレンズで平行光束とさ
れた後、光偏向索子11に入射される。このとき、駆動
回路20から各電極16.17を介してトランスジュー
サ18.19に高周波信号を供給されていると、それぞ
れのトランスジューサ18.19から光偏向素子11内
に超音波が与えられる。その結果、光偏向素子11に入
射された平行ビームつまり直進光はトランスジューサ1
8によって発生した超音波により角度θだけ偏向され、
引き続き、トランスジューサ19によって発生した超音
波により更に角度θだけ偏向されるために、光偏向素子
から11から出射される回折光の回折角は実質的に20
となる。
Therefore, in the optical deflector as described above, the incident straight light from the optical signal transmission system or the return light due to reflection from the optical fiber to be measured passes through the optical fiber 12 and is made into a parallel beam by the lens, and then the optical deflector The light is input to the child 11. At this time, if a high frequency signal is supplied from the drive circuit 20 to the transducers 18.19 via each electrode 16.17, an ultrasonic wave is applied from each transducer 18.19 into the optical deflection element 11. As a result, the parallel beam, that is, the straight light that is incident on the optical deflection element 11, is transmitted to the transducer 1.
Deflected by an angle θ by the ultrasonic wave generated by 8,
Subsequently, the ultrasonic wave generated by the transducer 19 further deflects the light by an angle θ, so that the diffraction angle of the diffracted light emitted from the light deflection element 11 is substantially 20
becomes.

このため駆動超音波の波長を長くして角度θを小さくし
ても、全体としての回折角は大きくすることができる。
Therefore, even if the wavelength of the driving ultrasonic wave is made longer and the angle θ is made smaller, the overall diffraction angle can be made larger.

単純に言えば、第3図および第4図では基準面部11a
と傾斜面部11bの角度がθとなっているので駆動超音
波の波長を2倍としても、回折角は2θになるので、機
器の大きさを変えずに形状のみを変えることにより、光
信号のオン・オフの立ち上がり時間の速い光偏向器を実
現することが可能である。
Simply speaking, in FIGS. 3 and 4, the reference surface portion 11a
Since the angle of the inclined surface portion 11b is θ, even if the wavelength of the driving ultrasonic wave is doubled, the diffraction angle will be 2θ. Therefore, by changing only the shape without changing the size of the device, the optical signal can be improved. It is possible to realize an optical deflector with fast on/off rise time.

なお、上記実施例では基準面部11aに対して1つの傾
斜面部11bを形成したが、2つ以上の傾斜面部を形成
してもよいことは言うまでもない。
In the above embodiment, one inclined surface section 11b is formed with respect to the reference surface section 11a, but it goes without saying that two or more inclined surface sections may be formed.

また、1つのトランスジューサに例えば複数の電極を設
けてもよい。その他、本発明はその要旨を逸脱しない範
囲で種々変形して実施できる。
Also, one transducer may be provided with a plurality of electrodes, for example. In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

(発明の効果) 以上詳記したように本発明によれば、機器の大きさを変
えずに形状または配置のみを変えることにより、光信号
のオン・オフの立ち上がり時間を速くできる光偏向装置
を提供できる。
(Effects of the Invention) As detailed above, the present invention provides an optical deflection device that can speed up the rise time of turning on and off an optical signal by changing only the shape or arrangement without changing the size of the device. Can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明に係わる光偏向装置の第1
の実施例を説明するために示したもので、第1図は2つ
の光偏向器の配置関係を示す図、第2図は2つの光偏向
器の設置状態図、第3図および第4図は本発明の光偏向
装置の第2の実施例を説明するために示したもので、第
3図は光偏向装置の全体構成を示す図、第4図は光偏向
素子へのトランスジューサおよび電極の取付は例を示す
図、第5図は従来機器における光偏向素子へのトランス
ジューサおよび電極の取付は例を示す図、第6図は従来
装置の駆動超音波周波数と立ち上がり時間との関係図で
ある。 11、 11A、IIB、、、光偏向素子、11 a 
−・・基準面部、llb・・・傾斜面部、16.17・
・・電極、18.19・・・トランスデユーサ、20・
・・駆動回路、31・・・第1の光偏向器、32・・・
第2の光偏向器。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第4図
FIGS. 1 and 2 show the first part of the optical deflection device according to the present invention.
Figure 1 is a diagram showing the arrangement relationship of two optical deflectors, Figure 2 is a diagram showing the installation state of the two optical deflectors, and Figures 3 and 4 are shown to explain the embodiment. are shown to explain the second embodiment of the optical deflection device of the present invention, FIG. 3 is a diagram showing the overall configuration of the optical deflection device, and FIG. 4 is a diagram showing the transducer and electrodes connected to the optical deflection element. FIG. 5 is a diagram showing an example of how a transducer and electrode are attached to an optical deflection element in a conventional device. FIG. 6 is a diagram showing the relationship between driving ultrasonic frequency and rise time of a conventional device. . 11, 11A, IIB, , optical deflection element, 11 a
-...Reference surface part, llb...Slanted surface part, 16.17.
...electrode, 18.19...transducer, 20.
...Drive circuit, 31...First optical deflector, 32...
Second optical deflector. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)光偏向素子(11)の一側面にトランスジューサ
(18)を備え、該光偏向素子に入射された光を所定の
回折角度に偏向して出力する第1の光偏向器(31)と
、該第1の光偏向器のトランスジューサ取付け面に対し
て前記所定角度の2^(^n^−^1^)倍(nは光偏
向器の数でn≧2)だけ順次傾斜したトランスジューサ
取付け面を有して順次配置された第2、第3、・・・・
・・、第nの光偏向器(32)とを備え、入射された光
を前記第1、第2、第3、・・・・・・第nの光偏向器
で順次偏向せしめることを特徴とする光偏向装置。
(1) A first optical deflector (31) that includes a transducer (18) on one side of the optical deflection element (11) and deflects the light incident on the optical deflection element to a predetermined diffraction angle and outputs the deflected light. , the transducer is mounted sequentially at an angle of 2^(^n^-^1^) times the predetermined angle (n is the number of optical deflectors and n≧2) with respect to the transducer mounting surface of the first optical deflector. 2nd, 3rd, etc. arranged sequentially with faces
..., an n-th optical deflector (32), and the incident light is sequentially deflected by the first, second, third, . . . n-th optical deflectors. A light deflection device.
(2)前記第1の光偏向器(31)の光偏向素子と前記
第2、第3、・・・・・・第nの光偏向器の光偏向素子
が単一の素子からなることを特徴とする特許請求の範囲
第1項記載の光偏向装置。
(2) The optical deflection element of the first optical deflector (31) and the optical deflection elements of the second, third, . . . , n-th optical deflectors are composed of a single element. An optical deflection device according to claim 1, characterized in:
JP2639387A 1987-02-09 1987-02-09 Light deflecting device Pending JPS63194236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2639387A JPS63194236A (en) 1987-02-09 1987-02-09 Light deflecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2639387A JPS63194236A (en) 1987-02-09 1987-02-09 Light deflecting device

Publications (1)

Publication Number Publication Date
JPS63194236A true JPS63194236A (en) 1988-08-11

Family

ID=12192299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2639387A Pending JPS63194236A (en) 1987-02-09 1987-02-09 Light deflecting device

Country Status (1)

Country Link
JP (1) JPS63194236A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990002969A1 (en) * 1988-09-08 1990-03-22 Klaus Kinzinger Device for deflecting a light beam
FR2708355A1 (en) * 1993-07-01 1995-02-03 Aa Sa Multicell acoustooptic deflector
JP2011085952A (en) * 2004-06-07 2011-04-28 Electro Scientific Industries Inc Aom modulation technique for improving laser system performance
EP2634623A2 (en) * 2006-09-12 2013-09-04 UCL Business PLC Imaging apparatus and methods
US9069227B2 (en) 2011-04-20 2015-06-30 Ucl Business Plc Methods and apparatus to control acousto-optic deflectors
US9341919B2 (en) 2010-04-21 2016-05-17 Ucl Business Plc Methods and apparatus for controling drive frequencies of acousto-optic deflectors

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990002969A1 (en) * 1988-09-08 1990-03-22 Klaus Kinzinger Device for deflecting a light beam
FR2708355A1 (en) * 1993-07-01 1995-02-03 Aa Sa Multicell acoustooptic deflector
JP2011085952A (en) * 2004-06-07 2011-04-28 Electro Scientific Industries Inc Aom modulation technique for improving laser system performance
EP2634623A2 (en) * 2006-09-12 2013-09-04 UCL Business PLC Imaging apparatus and methods
EP2634623A3 (en) * 2006-09-12 2013-12-04 UCL Business PLC Imaging apparatus and methods
US8687268B2 (en) 2006-09-12 2014-04-01 Ucl Business Plc Imaging apparatus and methods
US9104087B2 (en) 2006-09-12 2015-08-11 Ucl Business Plc Imaging apparatus and methods
US9341919B2 (en) 2010-04-21 2016-05-17 Ucl Business Plc Methods and apparatus for controling drive frequencies of acousto-optic deflectors
US9069227B2 (en) 2011-04-20 2015-06-30 Ucl Business Plc Methods and apparatus to control acousto-optic deflectors

Similar Documents

Publication Publication Date Title
US3919669A (en) Surface wave transducer array and acousto-optical deflector system or frequency-selective transmission system, utilizing the same
US4371964A (en) Circuit arrangement for controlling a multi-beam acousto-optical cell in which Bragg diffraction is used for the generation of a plurality of outgoing laser beams
US4164717A (en) Acoustooptic modulation and deflection
GB1369909A (en) Acousto-optical deflection system
JPS63194236A (en) Light deflecting device
US4624534A (en) Acoustooptic deflection device capable of reducing a reflection loss over a wide frequency band
JPS5921535B2 (en) Diffractive electroacoustic transducer
US5805743A (en) Optical deflector and scanning optical system provided with the optical deflector
EP0085581B1 (en) Light beam deflector
US3931592A (en) Surface acoustic wave tuned laser
US4941722A (en) Light beam deflector
US4638266A (en) Acoustooptical modulator and/or deflector
JPH0450564B2 (en)
JPH04226430A (en) Acoustooptic deflector
US3614204A (en) Acoustic light deflection cells
JPS6210411B2 (en)
JPS60136719A (en) Acoustooptic device
JPH07270736A (en) Waveguide type acousto-optical element
WO2021056545A1 (en) Manufacturing method for adjustable optical phase array and adjustable optical phase array
JPS58156919A (en) Acoustooptic optical modulator
JPS6343728B2 (en)
CN111562706A (en) Two-dimensional large deflection angle acousto-optic deflection system
JPS62242921A (en) Optical deflecting device for surface acoustic wave
JPS622293B2 (en)
GB2069167A (en) Acousto-optic deflector