JPS63192562A - Method and device for profile control in welding - Google Patents

Method and device for profile control in welding

Info

Publication number
JPS63192562A
JPS63192562A JP2234187A JP2234187A JPS63192562A JP S63192562 A JPS63192562 A JP S63192562A JP 2234187 A JP2234187 A JP 2234187A JP 2234187 A JP2234187 A JP 2234187A JP S63192562 A JPS63192562 A JP S63192562A
Authority
JP
Japan
Prior art keywords
welding
gap
weaving
power spectrum
gap width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2234187A
Other languages
Japanese (ja)
Inventor
Jun Nakajima
潤 中嶋
Takeshi Araya
荒谷 雄
Tsugio Udagawa
宇田川 次男
Kyoichi Kawasaki
川崎 恭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2234187A priority Critical patent/JPS63192562A/en
Publication of JPS63192562A publication Critical patent/JPS63192562A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform a good profile welding on the joint having a gap by extracting the power spectrum of the specific frequency components in the welding current at weaving time and using the welding conditions corresponding to the calculation value by finding the gap width from the relation of the power spectrum and gap width. CONSTITUTION:A fillet welding is performed by following up a torch 3 to a weld line with weaving it for the lap joint of the thin plate having a gap G between an upper plate 1 and lower plate 2. A gap detection device 10 extracts the power spectrum of the frequency components two-three times a weaving frequency from in the waveform of welding current to find the gap width G from the relation of the power spectrum stored in advance in a memory device 11 to the gap width. The detection device 10 further selects the optimum welding conditions for the calculated gap width G from the relation of the gap width stored in advance in a memory device 12 to the welding conditions to output a conditions changing signal to a control device 7. Thus, good profile welding can be performed on the joint having a gap.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶接トーチをウィービングさせながら溶接線
を検出し、自動倣い溶接を行う方法及びその装置に係り
、特にギャップのある溶接継手に好適な溶接倣い制御方
法とその装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and apparatus for automatically copying welding by detecting a weld line while weaving a welding torch, and is particularly suitable for welding joints with gaps. This invention relates to a welding profile control method and its device.

〔従来の技術〕[Conventional technology]

従来、この種の装置のようなウィービング時のアーク特
性を利用した倣い制御装置には、ギャップ検出装置は無
く、特開昭54−114446号公報に示されるように
、工業用テレビジョンを用い撮像したビデオ信号から溶
接線及びギャップ幅を検出する方法等が知られている。
Conventionally, a scanning control device using arc characteristics during weaving, such as this type of device, does not have a gap detection device, and as shown in Japanese Patent Application Laid-Open No. 54-114446, an industrial television is used to capture images. A method of detecting a weld line and gap width from a video signal is known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この従来方法は、溶接線及びギャップ幅の正確な検出を
行えるようにしたものがあるが、溶接トーチ回りに特別
の検出器を必要とし、高価格となる他、スパッタ或いは
溶接粉塵からテレビカメラを保護する必要がある等実用
上問題があった。
This conventional method allows accurate detection of the weld line and gap width, but it requires a special detector around the welding torch, is expensive, and prevents the TV camera from being exposed to spatter or welding dust. There were practical problems such as the need for protection.

本発明は、上記の点に鑑みて成されたものであり、その
目的とするところは、低価格で実用性のあるギャップ検
出機能を具備した溶接倣い制御方法及びその装置を提供
することにある。
The present invention has been made in view of the above points, and its purpose is to provide a welding tracing control method and device thereof that are inexpensive and equipped with a practical gap detection function. .

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、トーチをウィービングさせた時の溶接電流
等電気信号の変化から溶接線を検出する方法及びその装
置において、溶接電流中の特定周波数成分のパワースペ
クトルを抽出する手段と、得られた周波数パワースペク
トルの値と予め具備されたギャップ幅との関係を記憶し
た手段とにより達成される。
The above object is to provide a method and device for detecting a welding line from changes in electrical signals such as welding current when weaving a torch, and a means for extracting the power spectrum of a specific frequency component in the welding current, and This is achieved by means of storing the relationship between the power spectrum value and the gap width provided in advance.

本発明者はウィービング時の2〜3倍周波数成分のパワ
ースペクトルの値と被溶接物間のギャップとの関係に略
比例関係のあることを発見し、これに基づいて本発明に
至ったものである。
The present inventor discovered that there is a substantially proportional relationship between the value of the power spectrum of the 2nd to 3rd frequency component during weaving and the gap between the workpieces to be welded, and based on this, the present invention was developed. be.

本願第1番目の発明は、溶接トーチをウィービングさせ
ながら自動的に溶接トーチを溶接線に追従させる溶接倣
い制御方法である。そしてウィービング時の溶接電気信
号波形の中からウィービング周波数の2〜3倍周波数成
分のパワースペクトルを抽出し、一方当該2〜3倍周波
数成分のパワースペクトルと被溶接母材間のギャップ幅
との関係を予め記憶しておき、抽出パワースペクトルと
記憶関係とからギャップ幅を算出してこの算出ギャップ
幅に応じた溶接条件の出力に基づいて倣い溶接を行う方
法である。
The first invention of the present application is a welding tracing control method that automatically causes a welding torch to follow a welding line while weaving the welding torch. Then, the power spectrum of the frequency component 2 to 3 times the weaving frequency is extracted from the welding electric signal waveform during weaving, and the relationship between the power spectrum of the frequency component 2 to 3 times the welding frequency and the gap width between the base metals to be welded. is stored in advance, the gap width is calculated from the extracted power spectrum and the stored relationship, and copy welding is performed based on the output of the welding conditions according to the calculated gap width.

本願第2番目の発明は、上記本願第1番目の発明を装置
に具現化したものである。すなわちライ−ピング動作を
する溶接トーチの溶接電気信号波形を検出すると共にこ
の検出波形の中からウィービング周波数の2〜3倍周波
数成分のパワースペクトルを抽出するパワースペクトル
算出手段を備えている。一方当該2〜3倍周波数成分の
パワースペクトルと被溶接母材間のギャップ幅との関係
を予め記憶する第1の記憶手段を備え、この第1の記憶
手段及びスペクトル算出手段と電気的に接続されて両手
段のデータから溶接電気信号波形検出時(つまり現時点
での)ギャップ幅を算出するギャップ算出手段を備えて
いる。更にギャップ幅と溶接条件との関係を予め記憶す
る第2の記憶手段と、ギャップ算出手段及び第2の記憶
手段と電気的に接続されて両手段のデータから当該ギャ
ップ幅に応じた溶接条件を出力する溶接条件設定手段と
を備えており、以上の各手段を備えた溶接倣い制御装置
である。
The second invention of the present application is an embodiment of the above-mentioned first invention of the present application into an apparatus. That is, it is equipped with a power spectrum calculation means that detects the welding electric signal waveform of the welding torch performing the riping operation and extracts a power spectrum of frequency components two to three times the weaving frequency from this detected waveform. On the other hand, it is provided with a first storage means that stores in advance the relationship between the power spectrum of the 2nd to 3rd frequency component and the gap width between the base metals to be welded, and is electrically connected to the first storage means and the spectrum calculation means. and gap calculating means for calculating the gap width at the time of detecting the welding electric signal waveform (that is, at the present moment) from the data of both means. Furthermore, a second storage means for storing the relationship between the gap width and the welding conditions in advance, and a second storage means that is electrically connected to the gap calculation means and the second storage means and calculates the welding conditions according to the gap width from the data of both means. This welding tracing control device includes a welding condition setting means for outputting the output, and is provided with the above-mentioned means.

溶接電気信号波形とは、溶接電流波形及び/または溶接
電圧波形の意味である。前者はCOx溶接やMAG溶接
等の定電圧特性を有する溶接において有効であり、後者
はTIG溶接等の定電流特性を有する溶接において有効
である。
Welding electric signal waveform means welding current waveform and/or welding voltage waveform. The former is effective in welding with constant voltage characteristics such as COx welding and MAG welding, and the latter is effective in welding with constant current characteristics such as TIG welding.

算出ギャップ幅により出力される最適な溶接条件は、溶
接電流、溶接電圧、溶接速度、ウィービング幅若しくは
これらの組合せである。ウィービングの周波数は可変溶
接条件の中に含めない。
The optimal welding conditions output from the calculated gap width are welding current, welding voltage, welding speed, weaving width, or a combination thereof. The weaving frequency is not included in the variable welding conditions.

被溶接母材間のギャップとは、本来ならば溶接対象ワー
クが互いに隙間なく接触し溶接線を形成する場合に対し
、ワーク加工時のプレス精度或いは組み立て精度に起因
して生じる間隙を示す。従って若し、同一の溶接条件で
溶接を行った場合1、ギャップの有無或いはギャップの
幅によって適正な(溶接品質の維持)溶接を施工できな
くなる。
The gap between the base materials to be welded refers to a gap that occurs due to press accuracy or assembly accuracy during workpiece processing, whereas the workpieces to be welded would normally contact each other without a gap to form a weld line. Therefore, if welding is performed under the same welding conditions, proper welding (maintaining welding quality) cannot be performed depending on the presence or absence of a gap or the width of the gap.

現状では溶接品質を確保する為、ギャップの幅は例えば
1mmというように施工上限定されているのが通例であ
る。しかし、ワークの加工或いは組み立て精度をあげる
には生産ラインの高コスト化や生産効率の低下などの問
題が生じ、そのため従来よりギャップ検出器の必要性が
高まってきている。
Currently, in order to ensure welding quality, the width of the gap is usually limited to, for example, 1 mm for construction purposes. However, increasing the accuracy of processing or assembling workpieces causes problems such as increased production line costs and decreased production efficiency, and therefore the need for gap detectors has increased.

本発明は、ギャップ幅の増加に伴い、溶接電流波形中の
ウィービング周波数の2〜3倍周波数成分のパワースペ
クトルが比例的に増大する現象を発見したことから生ま
れたものである。
The present invention was developed based on the discovery that as the gap width increases, the power spectrum of frequency components two to three times the weaving frequency in the welding current waveform increases proportionally.

〔作用〕[Effect]

例えば薄板の重ね継手の溶接において、継手部材間にギ
ャップが存在する場合、そのギャップの大きさと、ウィ
ービングの2倍乃至3倍周波数成分のパワースペクトル
との間には略比例関係が成立することが本発明者の実験
で明らかになった。
For example, when welding a lap joint of thin plates, if a gap exists between the joint members, a nearly proportional relationship can be established between the size of the gap and the power spectrum of the frequency component twice or triple the weaving. This was revealed through experiments conducted by the inventor.

ギャップが無い場合には、ウィービング時の電流波形は
下板へのウィービング端近傍で最大値、上板へのウィー
ビング端近傍で最小値を示す。これは、すみ肉の場合と
異なり、上板がアークで十分に溶接されるからである。
When there is no gap, the current waveform during weaving has a maximum value near the weaving end to the lower plate and a minimum value near the weaving end to the upper plate. This is because, unlike the fillet, the top plate is fully welded with an arc.

しかし上板と下板間にギャップが生じると、上板が十分
溶融されないままウィービングが実行されるので、上板
へのウィービング端近傍でアーク長が短かくなり電流は
増加する。そこであたかもすみ肉継手のウィービングを
行っているかの如く、ウィービングの2倍乃至3倍の周
波数成分のパワースペクトルが増大することになるもの
と推測される。
However, if a gap occurs between the upper plate and the lower plate, weaving is performed without sufficiently melting the upper plate, so the arc length becomes short near the weaving end to the upper plate and the current increases. Therefore, it is assumed that the power spectrum of the frequency component twice to three times that of the weaving increases as if the fillet joint were weaved.

本発明においてはこの関係を予め記憶しておく手段と、
ウィービングの2倍乃至3倍周波数成分のパワースペク
トルを求める手段とによりギャップを検出するものであ
る。
In the present invention, means for storing this relationship in advance,
A gap is detected by means of obtaining a power spectrum of a frequency component twice or triple that of weaving.

尚、本発明において従来の位置ずれ検出装置(ウィービ
ング時の溶接電流または電圧等の電気信号を利用して溶
接線に対する溶接トーチのねらい位置ずれを検出する装
置)を併用することは勿論差し支えない。
In the present invention, it is of course possible to use a conventional positional deviation detection device (a device that detects the aimed positional deviation of the welding torch with respect to the welding line using electrical signals such as welding current or voltage during weaving).

また上記の説明では便宜上板の重ね継手を例にしたので
「上板」 「下板Jと表現しているが、本発明はワーク
(被溶接母材)の置かれている姿勢、溶接トーチの姿勢
(例えば水平隅肉溶接)若しくは溶接継手の種類(隅肉
9重ね、突き合わせ)によらず適用可能であり、要する
に本発明において求め或いは利用するギャップは被溶接
岸林間の継手部におけるギャップである。
In addition, in the above explanation, for convenience, a lap joint of plates is used as an example, so the expressions ``upper plate'' and ``lower plate J'' are used. It can be applied regardless of the orientation (for example, horizontal fillet welding) or the type of welded joint (9 fillet overlaps, butt), and in short, the gap sought or utilized in the present invention is the gap at the joint between the welded areas. .

〔実施例〕〔Example〕

以下、本発明の実施例を図面に従って説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明におけるギャップ検出の原理を説明した
図であり、重ねすみ肉継手を対象例とした。第1図にお
いて被溶接部材の上板1と下板2間の重ね溶接継手にギ
ャップGが生じた場合、溶接トーチ3をWで示すように
foなる周波数でウィービング溶接を行うと、溶接電流
のフィルタ出力波形の周波数パワースペクトルPにおい
て、前記ウィービング周波数fo及び2倍或いは3倍の
ウィービング周波数2io 、3fo成分のパワースペ
クトルと前記ギャップGとの間には夫々第2図に示した
関係がある。尚、信頼性の面で本実施例では2倍のウィ
ービング周波数成分のパワースペクトルをギャップ検出
の為に利用した。
FIG. 1 is a diagram illustrating the principle of gap detection in the present invention, and uses a lap fillet joint as an example. In Fig. 1, when a gap G occurs in the lap weld joint between the upper plate 1 and the lower plate 2 of the welded parts, when weaving welding is performed with the welding torch 3 at a frequency fo as shown by W, the welding current In the frequency power spectrum P of the filter output waveform, there is a relationship shown in FIG. 2 between the weaving frequency fo and the power spectra of the weaving frequency 2io and 3fo components, which are double or triple the weaving frequency, and the gap G, respectively. Incidentally, from the viewpoint of reliability, in this embodiment, the power spectrum of twice the weaving frequency component is used for gap detection.

第3図は、本発明の一実施例の溶接倣い制御装置を備え
た溶接装置の概略構成図である。
FIG. 3 is a schematic configuration diagram of a welding apparatus equipped with a welding profile control device according to an embodiment of the present invention.

第3図において、4は溶接機、5は例えばシャント、フ
ィルタから成る溶接電流検出部、6は溶接トーチ3を保
持し、ウィービング及びトーチの駆動を行うトーチ駆動
部であり、産業用ロボット本体等も含まれる。7は例え
ばロボット本体の制御装置であり、溶接トーチ3の位置
制御を行うとともに溶接機インターフェイス8を介して
溶接機4の出力(溶接電流及び電圧)を制御する。9は
前記溶接電流検出部5からの出力信号S50に基づき、
溶接線に対する溶接トーチ3のねらい位置ずれを検出す
る位置ずれ検出装置、10は同様に出力信号850の特
定周波数成分のパワースペクトルを抽出してギャップの
有無及びギャップ幅を検出するギャップ検出装置であり
、ウィービングの2倍周波数成分のパワースペクトルと
ギャップ幅との関係Sllを記憶した第1次記憶装置1
1と、被溶接部材の板厚に対し、任意のギャップ幅に対
応して、最適溶接条件512(溶接速度、溶接電流、溶
接電圧など)を記憶した第2次記憶装置を備えている。
In FIG. 3, 4 is a welding machine, 5 is a welding current detection unit consisting of a shunt and a filter, and 6 is a torch drive unit that holds the welding torch 3 and performs weaving and driving the torch, including the main body of an industrial robot, etc. Also included. Reference numeral 7 denotes a control device for the robot body, for example, which controls the position of the welding torch 3 and also controls the output (welding current and voltage) of the welding machine 4 via the welding machine interface 8 . 9 is based on the output signal S50 from the welding current detection section 5,
A positional deviation detection device detects a deviation in the aim position of the welding torch 3 with respect to the welding line, and 10 is a gap detection device that similarly extracts the power spectrum of a specific frequency component of the output signal 850 to detect the presence or absence of a gap and the gap width. , a primary storage device 1 that stores the relationship Sll between the power spectrum of the double frequency component of weaving and the gap width.
1, and a secondary storage device that stores optimal welding conditions 512 (welding speed, welding current, welding voltage, etc.) corresponding to an arbitrary gap width with respect to the plate thickness of the member to be welded.

次に本発明の溶接倣い制御装置の動作について第3図お
よび第4図を用いて説明する。
Next, the operation of the welding profile control device of the present invention will be explained using FIGS. 3 and 4.

第3図において位置ずれ検出装置9は、ウィービング周
波数成分のパワースペクトルの大きさに基づいてトーチ
3のねらいずれの検出を行うものであってもよい。この
場合には、ギャップ検出装置10も兼用できるため、本
発明の溶接倣い制御の動作については、上記兼用の場合
について説明する。
In FIG. 3, the positional deviation detection device 9 may detect the aim of the torch 3 based on the magnitude of the power spectrum of the weaving frequency component. In this case, since the gap detection device 10 can also be used, the operation of the welding tracing control of the present invention will be described for the case where the gap detection device 10 is used also.

第3図においてギャップ検出装置10は、溶接電流検出
部5からの出力信号8.50に基づき、第4図に示すよ
うに例えばディジタル的にフーリエ変換などによりウィ
ービングの2倍周波数成分のパワースペクトルを求める
。これはハードウェアによって実行されることも含まれ
る。次に第1次記憶装置11に予め記憶されている前記
Sllを読み出しギャップの有無及びギャップ幅を求め
る6ギヤツプ有りを検出した場合は、求めたギャップ幅
から第2次記憶装置12に予め記憶されている前記81
.2を読み出し、検出したギャップ幅に最適な溶接条件
を選択し、条件変更信号S10を制御装置7に出力する
。この場合にはトーチ位置の修正は行わない。ギャップ
無しを検出した場合には、演算されたトーチ位置修正信
号S90を制御装置7に出力しトーチ位置の修正を行う
、尚、本発明は重ね継手を一例に実施したが、すみ内継
手の場合には、ギャップ検出のための周波数成分として
ウィービングの3倍周波数成分を利用することで適用で
きる。
In FIG. 3, the gap detection device 10 calculates the power spectrum of the double frequency component of weaving by digitally using Fourier transform, as shown in FIG. 4, based on the output signal 8.50 from the welding current detection section 5. demand. This also includes being performed by hardware. Next, read out the Sll previously stored in the primary storage device 11 and determine the presence or absence of a gap and the gap width.If the existence of a 6-gap is detected, the information is stored in the secondary storage device 12 in advance based on the determined gap width. 81
.. 2 is read out, the optimum welding conditions for the detected gap width are selected, and a condition change signal S10 is output to the control device 7. In this case, the torch position is not corrected. If no gap is detected, the calculated torch position correction signal S90 is output to the control device 7 to correct the torch position.Although the present invention has been implemented using a lap joint as an example, in the case of a corner joint can be applied by using a triple frequency component of weaving as a frequency component for gap detection.

本発明の実施例では溶接電流波形からウィービング周波
数の2〜3倍周波数成分のパワースペクトルを抽出して
ギャップを検出しているが、この場合は定電圧特性の電
源を用いた時に特に有効であり、他の実施例において定
電流特性の電源を用いる場合は溶接電圧から同様にウィ
ービング周波数の2〜3倍周波数成分のパワースペクト
ルを抽出することによってギャップの検出が達成できる
In the embodiment of the present invention, the gap is detected by extracting the power spectrum of frequency components two to three times the weaving frequency from the welding current waveform, but this is particularly effective when using a power source with constant voltage characteristics. In other embodiments, when a power source with constant current characteristics is used, gap detection can be achieved by similarly extracting the power spectrum of frequency components two to three times the weaving frequency from the welding voltage.

更に本実施例においてウィービング周波数の2〜3倍周
波数成分のパワースペクトルがギャップ間と略比例関係
を示す理由につき以下に説明する。
Furthermore, in this embodiment, the reason why the power spectrum of the frequency component two to three times the weaving frequency shows a substantially proportional relationship with the gap will be explained below.

隅肉継手をウィービング溶接した場合、ウィービング波
形と溶接電流波形(ローパスフィルタを介し高域周波数
成分をカットした場合)の関係は第5図に示す如くなる
。夫々の板のウィービング端で電流値はピークとなる。
When a fillet joint is weaved welded, the relationship between the weaving waveform and the welding current waveform (when high frequency components are cut through a low-pass filter) is as shown in FIG. The current value reaches its peak at the weaving end of each plate.

しかし、薄板(例えば板厚21以下)の重ね継手のウィ
ービング溶接の場合は隅肉継手の場合と異なり、第6図
に示す関係が実験で得られる。
However, in the case of weaving welding of lap joints of thin plates (for example, plate thickness 21 or less), unlike the case of fillet joints, the relationship shown in FIG. 6 is experimentally obtained.

同図右側の実寸法で示すように実際には上板は溶接アー
クによって溶かされ、アークが上板内部までもぐるため
にアーク長が伸びて溶接が減少する。したがって溶接電
流波形にはウィービング周波数成分が多く含まれること
になる。またウィービング周波数成分のパワースペクト
ルは第2図に示すようにギャップ幅によらずほぼ一定値
であることが実験で知られている。これは溶接トーチが
一定のウィービング動作で運動を繰り返しており、これ
は溶接電流に直接反映されるので、ウィービング周波数
成分のパワースペクトルは極端な場合(アーク切れが多
発し溶接の続行が不可能になるくらいギャップが大きい
場合)を除き、ギャップ幅によらないことで説明できる
As shown in the actual dimensions on the right side of the figure, the upper plate is actually melted by the welding arc, and the arc extends inside the upper plate, increasing the arc length and reducing the amount of welding. Therefore, the welding current waveform contains many weaving frequency components. Furthermore, it has been experimentally known that the power spectrum of the weaving frequency component has a substantially constant value regardless of the gap width, as shown in FIG. This is because the welding torch repeats a constant weaving motion, and this is directly reflected in the welding current, so the power spectrum of the weaving frequency component may be extreme (arc breaks occur frequently and it is impossible to continue welding). This can be explained by not depending on the gap width, except when the gap is large enough to make sense.

一方、第2図に示すようにウィービング周波数の2〜3
倍周波数成分のパワースペクトルは測定結果(FFTア
ナライザ)より求めると、ギャップ幅の増加に伴い、は
ぼ比例的に増大している。
On the other hand, as shown in Figure 2, the weaving frequency is 2 to 3.
The power spectrum of the doubled frequency component is determined from the measurement results (FFT analyzer) and is found to increase almost proportionally as the gap width increases.

このときの溶接電流の波形は第7図に示されるように近
似できる。即ち、ウィービングの動作中、ギャップの出
現によりギャップのところでアークが伸び、溶接電流は
これに伴って減少する。ギャップ幅が小さいときはウィ
ービング動作に伴うトーチ位置(ワイヤ先端のアーク点
)がギャップ位置を通過して上板に至った時、上板を溶
かすため2〜3倍周波数成分のパワースペクトルは小さ
な値を示すが、ギャップ幅が大きくなるにつれ上板が溶
けにくくなり、換言すればギャップがないときのような
上板の溶融に伴うアーク長の伸びは認められず、逆にギ
ャップ通過直後アーク長が短くなり溶接電流が増大しそ
の結果第7図に示すような溶接電流波形を呈し、そのた
め第2図のような関係になると説明できる。
The waveform of the welding current at this time can be approximated as shown in FIG. That is, during the weaving operation, the appearance of a gap causes the arc to extend at the gap, and the welding current decreases accordingly. When the gap width is small, when the torch position (arc point at the tip of the wire) that accompanies the weaving operation passes through the gap position and reaches the upper plate, the power spectrum of the 2nd to 3rd frequency components will have a small value because it will melt the upper plate. However, as the gap width increases, the upper plate becomes more difficult to melt.In other words, the arc length does not increase as the upper plate melts as it does when there is no gap.On the contrary, the arc length increases immediately after passing through the gap. The welding current increases as the welding current becomes shorter, resulting in a welding current waveform as shown in FIG. 7, which can be explained as the relationship shown in FIG. 2.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、溶接トーチのまわ
りに特別な検出器を必要とせずに、特定の周波数成分の
パワースペクトルを溶接電流から抽出することによって
容易にギャップを検出できるので、溶接条件の制御を可
能とするため、極めて安価でかつ高性能の溶接倣い制御
を実現することができる。
As explained above, according to the present invention, gaps can be easily detected by extracting the power spectrum of specific frequency components from the welding current without requiring a special detector around the welding torch. Since the conditions can be controlled, it is possible to realize extremely low-cost and high-performance welding profiling control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る溶接倣い制御装置の溶
接トーチ付近の拡大説明図、第2図は同実施例によるパ
ワースペクトルとギャップとの関係を示す特性図、第3
図は同実施例を用いた溶接装置の概略系統図、第4図は
同実施例の動作手順を示すフロー図、第5図は隅肉継手
をウィービング溶接した場合のウィービング波形と溶接
電流波形との関係を示す特性図、第6図は薄板重ね継手
をウィービング溶接した場合のウィービング波形と溶接
電流波形との関係を示す特性図、第7図はウィービング
とギャップ幅を変えた溶接電流波形との関係を示す特性
図である。 3・・・溶接トーチ、5・・・溶接電流検出部、10・
・・ギャップ検出装置、】1・・・第1次記憶装置、1
2・・・第2次記憶装置。 第 1  図 第 2 (2)
FIG. 1 is an enlarged explanatory diagram of the vicinity of the welding torch of a welding profile control device according to an embodiment of the present invention, FIG. 2 is a characteristic diagram showing the relationship between the power spectrum and the gap according to the embodiment, and FIG.
The figure is a schematic system diagram of a welding device using the same embodiment, Figure 4 is a flow diagram showing the operating procedure of the same embodiment, and Figure 5 is a weaving waveform and a welding current waveform when weaving a fillet joint. Figure 6 is a characteristic diagram showing the relationship between weaving waveforms and welding current waveforms when a thin plate lap joint is weaved welded, and Figure 7 is a characteristic diagram showing the relationship between weaving and welding current waveforms with different gap widths. It is a characteristic diagram showing a relationship. 3... Welding torch, 5... Welding current detection section, 10.
...gap detection device, ]1 ... primary storage device, 1
2... Secondary storage device. Figure 1, Figure 2 (2)

Claims (1)

【特許請求の範囲】 1、溶接トーチをウイービングさせながら自動的に該溶
接トーチを溶接線に追従させる溶接倣い制御方法におい
て、前記ウイービング時の溶接電気信号波形の中からウ
イービング周波数の2〜3倍周波数成分のパワースペク
トルを抽出し、一方当該2〜3倍周波数成分のパワース
ペクトルと被溶接母材間のギャップ幅との関係を予め記
憶しておき、前記抽出パワースペクトルと該記憶関係と
からギャップ幅を算出して該算出ギャップ幅に応じた溶
接条件の出力に基づく倣い溶接を行うことを特徴とする
溶接倣い制御方法。 2、ウイービング動作をする溶接トーチの溶接電気信号
波形を検出すると共に該検出波形の中から該ウイービン
グ周波数の2〜3倍周波数成分のパワースペクトルを抽
出するパワースペクトル算出手段と、当該2〜3倍周波
数成分のパワースペクトルと被溶接母材間のギャップ幅
との関係を予め記憶する第1の記憶手段と、該第1の記
憶手段及び前記スペクトル算出手段と電気的に接続され
て両手段のデータから前記溶接電気信号波形検出時のギ
ャップ幅を算出するギャップ算出手段と、前記ギャップ
幅と溶接条件との関係を予め記憶する第2の記憶手段と
、前記ギャップ算出手段及び該第2の記憶手段と電気的
に接続されて両手段のデータから当該ギャップ幅に応じ
た溶接条件を出力する溶接条件設定手段とを備えてなる
ことを特徴とする溶接倣い制御装置。
[Scope of Claims] 1. In a welding tracing control method for automatically following a welding line while weaving a welding torch, a welding frequency 2 to 3 times the weaving frequency is selected from among the welding electric signal waveforms during weaving. The power spectrum of the frequency component is extracted, and the relationship between the power spectrum of the 2nd to 3rd frequency component and the gap width between the base metals to be welded is stored in advance, and the gap width is determined from the extracted power spectrum and the stored relationship. A welding profile control method, comprising calculating a width and performing profile welding based on an output of welding conditions corresponding to the calculated gap width. 2. A power spectrum calculating means for detecting a welding electric signal waveform of a welding torch performing a weaving operation and extracting a power spectrum of a frequency component 2 to 3 times the weaving frequency from the detected waveform; a first storage means that stores in advance the relationship between the power spectrum of the frequency component and the gap width between the base metals to be welded; and a first storage means that is electrically connected to the first storage means and the spectrum calculation means and stores data of both the means. a gap calculation means for calculating a gap width at the time of detecting the welding electric signal waveform from the above, a second storage means for storing in advance a relationship between the gap width and welding conditions, and the gap calculation means and the second storage means. and a welding condition setting means electrically connected to the welding condition setting means for outputting welding conditions according to the gap width from the data of both means.
JP2234187A 1987-02-04 1987-02-04 Method and device for profile control in welding Pending JPS63192562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2234187A JPS63192562A (en) 1987-02-04 1987-02-04 Method and device for profile control in welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2234187A JPS63192562A (en) 1987-02-04 1987-02-04 Method and device for profile control in welding

Publications (1)

Publication Number Publication Date
JPS63192562A true JPS63192562A (en) 1988-08-09

Family

ID=12079990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2234187A Pending JPS63192562A (en) 1987-02-04 1987-02-04 Method and device for profile control in welding

Country Status (1)

Country Link
JP (1) JPS63192562A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014001884A3 (en) * 2012-06-27 2014-02-27 Lincoln Global, Inc. Arc welding system with power converter and controller for operating the power|converter through a waveform control signal and the motion of the electrode|through a motion control signal based both on welding state and motion state|tables and sensing data
US10035211B2 (en) 2013-03-15 2018-07-31 Lincoln Global, Inc. Tandem hot-wire systems
US10086465B2 (en) 2013-03-15 2018-10-02 Lincoln Global, Inc. Tandem hot-wire systems
US10239145B2 (en) 2012-04-03 2019-03-26 Lincoln Global, Inc. Synchronized magnetic arc steering and welding
US10464168B2 (en) 2014-01-24 2019-11-05 Lincoln Global, Inc. Method and system for additive manufacturing using high energy source and hot-wire
US11027362B2 (en) 2017-12-19 2021-06-08 Lincoln Global, Inc. Systems and methods providing location feedback for additive manufacturing
CN114682878A (en) * 2020-12-30 2022-07-01 卡尔克洛斯焊接技术有限责任公司 Welding method with seam tracking for operating a welding robot

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10239145B2 (en) 2012-04-03 2019-03-26 Lincoln Global, Inc. Synchronized magnetic arc steering and welding
WO2014001884A3 (en) * 2012-06-27 2014-02-27 Lincoln Global, Inc. Arc welding system with power converter and controller for operating the power|converter through a waveform control signal and the motion of the electrode|through a motion control signal based both on welding state and motion state|tables and sensing data
CN104411440A (en) * 2012-06-27 2015-03-11 林肯环球股份有限公司 Arc welding system with power converter and controller for operating the power converter through a waveform control signal and the motion of the electrode through a motion control signal based both on welding state and motion state tables and sensing data
US10183351B2 (en) 2012-06-27 2019-01-22 Lincoln Global, Inc. Parallel state-based controller for a welding power supply
US10035211B2 (en) 2013-03-15 2018-07-31 Lincoln Global, Inc. Tandem hot-wire systems
US10086465B2 (en) 2013-03-15 2018-10-02 Lincoln Global, Inc. Tandem hot-wire systems
US10464168B2 (en) 2014-01-24 2019-11-05 Lincoln Global, Inc. Method and system for additive manufacturing using high energy source and hot-wire
US11027362B2 (en) 2017-12-19 2021-06-08 Lincoln Global, Inc. Systems and methods providing location feedback for additive manufacturing
CN114682878A (en) * 2020-12-30 2022-07-01 卡尔克洛斯焊接技术有限责任公司 Welding method with seam tracking for operating a welding robot
EP4023380A1 (en) * 2020-12-30 2022-07-06 Carl Cloos Schweißtechnik Gesellschaft mit beschränkter Haftung Welding method for operating a welding robot with welding seam tracking

Similar Documents

Publication Publication Date Title
CA1205145A (en) Automatic weld line following method
US6429404B1 (en) Method and apparatus for determining seam tracking control of arc welding
KR880000635B1 (en) Method of controlling a weaving path of a welding torch in arc welding with a consumable electrode
JPS63192562A (en) Method and device for profile control in welding
US4937426A (en) Automatic groove tracing method for an arc welding robot
JPS6117364A (en) Double electrode type narrow groove welding
JP3075038B2 (en) Arc sensor
JPS613676A (en) Follow-up device for weld line
JP3371720B2 (en) Consumable electrode arc welding machine
JP3230457B2 (en) Welding method by arc welding
JP3230476B2 (en) Root gap detection method in arc welding
JPS6376762A (en) Automatic welding method
JPS6348638B2 (en)
JP3323935B2 (en) Arc sensor
JP3115206B2 (en) Arc sensor device
JP2002361416A (en) Arc welding control method
JPH09253857A (en) Method for controlling profiling of welding line and device therefor
JPS59185573A (en) Weld line follow-up device
JP3248148B2 (en) Arc sensor device
JPH09253856A (en) Controller for profiling welding line
JP2000094150A (en) Sensor for defective welding
JP3219360B2 (en) AC self-shielded arc welding method
Nagarajan et al. On-line identification and control of part-preparation and fixturing errors in arc welding
JP3075032B2 (en) Arc sensor
JPS63242471A (en) Method and device for controlling welding profile