JPS63191945A - Method and apparatus for quantitative determination of non-functional nitrogen - Google Patents

Method and apparatus for quantitative determination of non-functional nitrogen

Info

Publication number
JPS63191945A
JPS63191945A JP2357787A JP2357787A JPS63191945A JP S63191945 A JPS63191945 A JP S63191945A JP 2357787 A JP2357787 A JP 2357787A JP 2357787 A JP2357787 A JP 2357787A JP S63191945 A JPS63191945 A JP S63191945A
Authority
JP
Japan
Prior art keywords
nitrogen
absorbance
wavelengths
ultraviolet light
nitrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2357787A
Other languages
Japanese (ja)
Other versions
JPH0619326B2 (en
Inventor
Toyohiko Matsushima
松島 豊彦
Ichiro Yamamoto
一郎 山本
Masaki Aizawa
藍沢 正樹
Misao Aizawa
会沢 操
Yoshinari Inoue
井上 能成
Hiroaki Miyakoshi
宮腰 博明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kankyo Engineering Co Ltd
Original Assignee
Kankyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kankyo Engineering Co Ltd filed Critical Kankyo Engineering Co Ltd
Priority to JP62023577A priority Critical patent/JPH0619326B2/en
Publication of JPS63191945A publication Critical patent/JPS63191945A/en
Publication of JPH0619326B2 publication Critical patent/JPH0619326B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make quantitative determination of nitrate nitrogen and nitrite nitrogen in test water simultaneously from a difference in absorptivity by making use of two kinds of UV rays of different wavelengths, one of which has the absorptivity different per unit concn. with respect to the nitrate nitrogen and nitrite nitrogen. CONSTITUTION:The absorbancies of the test water are respectively obtd. by the UV rays of the two wavelengths which are different in the absorptivity per unit concn. The concns. of the nitrate nitrogen and nitrite nitrogen in the test water are respectively easily calculated from the equations I and II, where ENOX-N.a and ENOX-N.b are respective by the absorbancies of NOx-N at the wavelengths (a), (b), eNO3-N.a and eNO3-N.b are respectively the absorbancies per unit concn. of NO2-N at the wavelengths (a), (b). NO3-N and NO2-N are respectively the concns. (mg/l) of the nitrate nitrogen and nitrite nitrogen.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は検水中の無機態窒素の定量方法及び定量装置に
関し、更に詳しくは検水中の硝酸態窒素と亜硝酸態窒素
の濃度を同時に定量可能な定量方法及び定量装置に関す
る。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method and apparatus for quantifying inorganic nitrogen in sample water, and more specifically to a method for simultaneously quantifying the concentration of nitrate nitrogen and nitrite nitrogen in sample water. Regarding possible quantitative methods and devices.

(従来の技術) 従来、生活排水或いは産業排水の浄化方法としては、種
々の方法が行われているが、最も広く利用されている方
法は、微生物の浄化作用を利用する活性汚泥方式である
(Prior Art) Conventionally, various methods have been used to purify domestic or industrial wastewater, but the most widely used method is an activated sludge method that utilizes the purifying action of microorganisms.

この活性汚泥方式は、排水を好気条件下で処理して排水
中の有機物を酸化分解して除去する方式であり、この好
気工程において有機物が酸化分解されるとともに、アミ
ンやアンモニウム態窒素等の窒素化合物は、硝酸態窒素
と亜硝酸態窒素に酸化され、排水中の窒素化合物は主に
これらの硝酸態窒素と亜硝酸態窒素とになる。
This activated sludge method is a method in which wastewater is treated under aerobic conditions to remove organic matter in the wastewater by oxidative decomposition.In this aerobic process, organic matter is oxidized and decomposed, and amines, ammonium nitrogen, etc. The nitrogen compounds in the wastewater are oxidized to nitrate nitrogen and nitrite nitrogen, and the nitrogen compounds in wastewater mainly become nitrate nitrogen and nitrite nitrogen.

これらの無機B窒素はそのまま放流されると河川、湖、
海、特に閉鎖水域中の富栄養化現象を生じるため、放流
mlに十分に除去することが必要である。
If these inorganic B nitrogens are discharged as they are, they will be released into rivers, lakes,
Since it causes eutrophication phenomena in the sea, especially in closed waters, it is necessary to remove it sufficiently in the effluent ml.

これら無機態窒素の除去は、前記好気処理に続いて嫌気
処理を行い、脱窒菌により硝酸態窒素と亜硝酸態窒素と
を還元して窒素ガスとして除去する方法によって行われ
ている。
These inorganic nitrogens are removed by performing anaerobic treatment following the aerobic treatment, and reducing nitrate nitrogen and nitrite nitrogen using denitrifying bacteria and removing them as nitrogen gas.

この嫌気工程では、硝酸態窒素と亜硝酸態窒素とを窒素
ガスに還元するために還元性物質として主としてメタノ
ール等の有機物(以下mにメタノールという)が使用さ
れている。
In this anaerobic process, an organic substance such as methanol (hereinafter referred to as methanol) is mainly used as a reducing substance to reduce nitrate nitrogen and nitrite nitrogen to nitrogen gas.

この脱窒工程において使用するメタノールが少なすぎる
と、硝酸態窒素と亜硝酸態窒素の除去が不十分となるの
で、常に過剰量のメタノールを使用することが必要であ
る。しかしながらあまりに過剰のメタノールを使用する
と、このメタノール自体が排水のBODとなって、更に
このメタノールを除去する工程が要求される。従ってメ
タノールの使用を適正とするためには、排水中、特に嫌
気工程時の排水中の硝酸態窒素と亜硝酸態窒素を十分に
把握して、排水中に存在している硝酸態窒素と亜硝酸態
窒素に丁度見合う量のメタノールを添加するのか望まし
いのは当然である。
If too little methanol is used in this denitrification step, removal of nitrate nitrogen and nitrite nitrogen will be insufficient, so it is necessary to always use an excess amount of methanol. However, if too much methanol is used, this methanol itself becomes BOD of the waste water, and a further step is required to remove this methanol. Therefore, in order to use methanol appropriately, it is necessary to fully understand the nitrate nitrogen and nitrite nitrogen present in the waste water, especially during the anaerobic process. It goes without saying that it is desirable to add methanol in an amount that exactly corresponds to the amount of nitrate nitrogen.

以上の如き排水中の無機態窒素を定量する方法としては
、従来はブルシン吸光光度法、硫酸ヒドラジン還元法、
エチレンジアミン法、紫外吸光光度法等の方法が利用さ
れている。
Conventional methods for quantifying inorganic nitrogen in wastewater as described above include brucine absorption spectrophotometry, hydrazine sulfate reduction method,
Methods such as ethylenediamine method and ultraviolet absorption spectrophotometry are used.

(発明が解決しようとしている問題点)上記排水中の無
機態窒素を定量する方法としては、主として紫外吸光光
度法が利用されているが、この方法は、例えば、波長2
10乃至230 nmの吸光度と波長250乃至270
 nmの吸光度の両方を測定し、下記式に従って硝酸態
窒素と亜硝酸態窒素の合量を算出する方法である。
(Problem to be Solved by the Invention) Ultraviolet absorption spectrophotometry is mainly used as a method for quantifying inorganic nitrogen in the above-mentioned wastewater.
Absorbance from 10 to 230 nm and wavelength from 250 to 270 nm
In this method, both the absorbance in nm is measured and the total amount of nitrate nitrogen and nitrite nitrogen is calculated according to the following formula.

無機態窒素(Nし)濃度(mg/fL)=(E+  E
zXa)xk ここでElは波長210乃至’230 nmの紫外光の
吸光度であり、E2は波長250乃至270 nmの紫
外光の吸光度であり、aは試料中の有機物のE+/Ez
てあり、kは無機態窒素の波長210乃至230 nm
における吸光度係数である。
Inorganic nitrogen (N) concentration (mg/fL) = (E + E
zXa)
where k is the wavelength of inorganic nitrogen from 210 to 230 nm.
is the absorbance coefficient at

上記の如き方法によれば好気工程を終了した時点及び嫌
気工程時の排水中の無機態窒素を求めることができ、こ
のような無機態窒素を測定し、この値に従って還元剤で
あるメタノールを嫌気工程時に加えることによって効率
の良い無機R窒素の還元が期待された。
According to the method described above, it is possible to determine the inorganic nitrogen in the wastewater at the end of the aerobic process and at the time of the anaerobic process, measure such inorganic nitrogen, and adjust the reducing agent methanol according to this value. By adding it during the anaerobic process, efficient reduction of inorganic R nitrogen was expected.

しかしながら、実際にはこのような無機態窒素の測定値
に従ってメタノールを加えても、そのメタノールの量を
適正な量にすることはできず、多くの場合にメタノール
の添加の過不足が生じ、従フて常に過剰のメタノールを
使用しなければならないものであった。
However, in reality, even if methanol is added according to the measured value of inorganic nitrogen, the amount of methanol cannot be adjusted to the appropriate amount, and in many cases, methanol is added too much or too little, resulting in Therefore, an excess of methanol always had to be used.

その理由は無機態窒素中の硝191態窒素と亜硝酸態窒
素との比率が常に変化しており、細胞合成に使用される
量も含めると、硝酸態窒素は2.5モル倍量のメタノー
ルを消費し、これに対して亜硝酸態窒素は1.5モル倍
量のメタノールを消費するためであり、このように変動
する硝酸態窒素と亜硝酸態窒素との比率を正確に把握し
ない限り、常に無機態窒素の全量を硝酸態窒素と仮定し
てメタノールを添加することが要求され、その結果、非
常に不経済となっていた。
The reason for this is that the ratio of nitrate nitrogen and nitrite nitrogen in inorganic nitrogen is constantly changing, and when including the amount used for cell synthesis, nitrate nitrogen is 2.5 times the molar amount of methanol. This is because nitrite nitrogen consumes 1.5 times the molar amount of methanol, and unless the ratio of nitrate nitrogen and nitrite nitrogen, which fluctuates in this way, is accurately grasped, However, it is required to always add methanol on the assumption that the entire amount of inorganic nitrogen is nitrate nitrogen, which is extremely uneconomical.

従って脱窒工程で使用するメタノール添加量を適正量に
するためには、常に無機態窒素中の硝酸態窒素と亜硝酸
態窒素との比率を知る必要がある。
Therefore, in order to adjust the amount of methanol added in the denitrification step to an appropriate amount, it is necessary to always know the ratio of nitrate nitrogen to nitrite nitrogen in the inorganic nitrogen.

硝酸態窒素と亜硝酸態窒素とを別々に定量する方法は勿
論公知であるが、いずれの方法も複雑な処理と計算を必
要とし、排水源とともに、また好気処理条件とともに変
化する排水中の無機態窒素の硝酸態窒素と亜硝酸態窒素
との比を迅速に把握するには不適当であり、工業的には
いずれも利用不可能であった。
Methods for quantifying nitrate nitrogen and nitrite nitrogen separately are, of course, publicly known, but all of these methods require complex processing and calculations, and are sensitive to the effects of water in wastewater, which changes with the wastewater source and aerobic treatment conditions. It is inappropriate to quickly grasp the ratio of inorganic nitrogen, nitrate nitrogen and nitrite nitrogen, and none of them can be used industrially.

従って、排水中の無機態窒素中の硝酸態窒素と亜硝酸態
窒素との比率を容易に且つ簡便に定量できる無機態窒素
の定量方法と定量装置とが強く要望されている。
Therefore, there is a strong demand for an inorganic nitrogen quantification method and a quantification device that can easily and simply quantify the ratio of nitrate nitrogen to nitrite nitrogen in inorganic nitrogen in waste water.

(問題点を解決するための手段) 本発明者は上述の如き要望に応えるべく鋭意研究の結果
、本発明を完成した。
(Means for Solving the Problems) The present inventor completed the present invention as a result of intensive research in order to meet the above-mentioned demands.

すなわち、本発明は2発明からなり、その第一の発明は
、硝酸態窒素と亜硝酸態窒素との少なくとも一方を含有
する検水中の無機態窒素を紫外吸光光度法により定量す
る方法において、容態の窒素に対して共に吸収があり且
つ波長の異なる2種の紫外光であって少なくともその一
方が硝酸態窒素と亜硝酸態窒素に対して単位濃度あたり
異なる吸光度を存する波長の紫外光を利用して、それぞ
れの波長の紫外光の検水による吸光度を測定し、これら
の吸光度の差から検水中の硝酸態窒素と亜硝酸態窒素と
を同時に定量することを特徴とする無機態窒素の定量方
法であり、第二の発明は、紫外吸光光度計と、該吸光光
度計からの出力信号を増幅する増幅回路と、該増幅され
た出力信号を予め定められた換算式に従って換算する演
璋回路と、換算された値を出力する出力装置とからなる
無機態窒素の定量装置において、紫外吸光光度計が、容
態の窒素に対して共に吸収があり且つ波長の異なる2種
の紫外光であってその少なくとも一方が硝酸態窒素と亜
硝酸態窒素とに対して単位濃度あたり異なる吸光度を有
する紫外光による検水の吸光度を出力することを特徴と
する無機態窒素の定量装置である。
That is, the present invention consists of two inventions, the first of which is a method for quantifying inorganic nitrogen in sample water containing at least one of nitrate nitrogen and nitrite nitrogen by ultraviolet absorption photometry. Utilizing two types of ultraviolet light that both absorb nitrogen and have different wavelengths, at least one of which has a different absorbance per unit concentration for nitrate nitrogen and nitrite nitrogen. A method for quantifying inorganic nitrogen characterized by measuring the absorbance of ultraviolet light of each wavelength in a sample water, and simultaneously quantifying nitrate nitrogen and nitrite nitrogen in the sample water from the difference in these absorbances. The second invention comprises an ultraviolet absorption photometer, an amplifier circuit that amplifies an output signal from the absorption photometer, and an operator circuit that converts the amplified output signal according to a predetermined conversion formula. , an output device that outputs a converted value, and an output device that outputs the converted value. This inorganic nitrogen quantification device is characterized in that it outputs the absorbance of water tested using ultraviolet light, at least one of which has different absorbances per unit concentration for nitrate nitrogen and nitrite nitrogen.

次に本発明を更に詳しく説明すると、本発明者の詳細な
研究によれば、上述の通り、検水中の無機態窒素を定量
するに際して、好ましくは波長が210乃至230 n
mの範囲内にある異なる2波長の紫外光によりそれぞれ
検水の吸光度を測定するのみで、該検水中の硝酸態窒素
と亜硝酸態窒素とが容易にそれらの吸光度から算出でき
ることを知見したものである。
Next, to explain the present invention in more detail, according to detailed research by the present inventor, as mentioned above, when quantifying inorganic nitrogen in sample water, preferably the wavelength is 210 to 230 nm.
It was discovered that nitrate nitrogen and nitrite nitrogen in a sample water can be easily calculated from the absorbance by simply measuring the absorbance of each sample water using two different wavelengths of ultraviolet light within the range of m. It is.

例えば、硝酸態窒素水溶液と亜硝酸態窒素水溶液の紫外
部の吸光度曲線は、添付図面の第1図の如くであり、い
ずれも200乃至250 nmにおいて吸光度を示すが
、両者は両者の曲線が交わる1点を除いては単位濃度あ
たりの吸光度に差があるものである。
For example, the ultraviolet absorbance curves of a nitrate nitrogen aqueous solution and a nitrite nitrogen aqueous solution are as shown in Figure 1 of the attached drawings, and both exhibit absorbance at 200 to 250 nm, but the two curves intersect. Except for one point, there is a difference in absorbance per unit concentration.

そこで、単位濃度あたりの吸光度が異なる2波長の紫外
光により、それぞれ検水の吸光度を求め、それらの吸光
度差から硝酸態窒素と亜硝酸態窒素の濃度の算出につい
て研究したところ、下記式(1)及び(2)からそれぞ
れ検水中の硝酸態窒素と亜硝酸態窒素の濃度が容易に算
出でき、且つ実際の測定においても殆ど誤差を生しない
ことを見出したものである。
Therefore, we determined the absorbance of the sample water using two wavelengths of ultraviolet light with different absorbances per unit concentration, and researched how to calculate the concentrations of nitrate nitrogen and nitrite nitrogen from the difference in absorbance.We found the following formula (1 ) and (2), it has been found that the concentrations of nitrate nitrogen and nitrite nitrogen in sample water can be easily calculated, and there is almost no error in actual measurements.

(1) E Now−N、a = e NO3−?la
 X N03−N+ eNO2−11a XN02−N (2) E NO+−11b = e No1−N、b
 X N03−N” e No2−N・b X N02
−Nここで、 ENOx−H9a =波長aにおけるNoX−!4の吸
光度ENOx−N−b ”彼長すにおけるNo、−Nの
吸光度eNO3−N、a =波長aにおけるN03−N
の単位濃度吸光度 eNO2−N−b =波長すにおけるNO□−Nの雫位
濃度吸光度 No、−N=硝酸態窒素濃度(mg/ 1 )NO□−
N=亜硝酸態窒素濃度<mg/l)である。
(1) E Now-N, a = e NO3-? la
X N03-N+ eNO2-11a XN02-N (2) E NO+-11b = e No1-N, b
X N03-N” e No2-N・b X N02
-N where ENOx-H9a = NoX- at wavelength a! Absorbance of 4 ENOx-N-b ``Absorbance of No, -N at the length eNO3-N, a = N03-N at wavelength a
Unit concentration absorbance eNO2-N-b = Drop-level concentration absorbance of NO□-N at wavelength No, -N = Nitrate nitrogen concentration (mg/1) NO□-
N=nitrite nitrogen concentration<mg/l).

F記式(1)及び(2)においてENOX−N、aとE
)IOX−11bは実測される値であり、eNO3−N
、aとe 802−s4.とは予め求められる値である
ため、後は計算によって硝酸態窒素濃度(No、−N)
及び亜硝酸態窒素濃度(No2−N)は容易に算出可能
である。
In F notations (1) and (2), ENOX-N, a and E
)IOX-11b is an actually measured value, eNO3-N
, a and e 802-s4. is a value that can be determined in advance, so the nitrate nitrogen concentration (No, -N) is determined by calculation.
and nitrite nitrogen concentration (No2-N) can be easily calculated.

上記本発明の方法を実例を挙げて更に具体的に説明する
The method of the present invention will be explained in more detail by giving examples.

まず、硝酸態窒素の2a+g/flの水溶液と亜硝酸態
窒素の2mg/42の水溶液を調製し、これらを混合し
て下記第1表の検水A乃至Eを調製し、これらの検水に
ついてそれぞれ波長a及びbとして220 nm及び2
25 nmの紫外光を選択し、それぞわの検水の吸光度
を求めたところ、下記第2表の結果を得た; =AI−」−一ノ(− AQ    2.0   混合比N03−N/No。−
N−07IB   0.5  1.5   混合比N0
3−N/No□−N−1/3C1,01,0混合比N0
a−N/NO□−N・I/ID    1.5  0.
5   混合比No3−N/No□−N−3/IE  
 2.G   O混合比N08−N/No□−N−11
0−]五−じも−j1− 杭木  ユ独匣Ju1 ユ住里郭己渡 A       O,5260,:155B     
  (1,5150,/3’17CD、499    
   030B D       0.485       0.276
E        O,46:]         0
.240次に上記の硝酸態窒素の2mg/IIの水溶液
と亜硝酸態窒素の2+ng/Qの水溶液をそれぞれ別個
に紫外部における吸光度を求めたところ、吸光度曲線は
第1図の通りであり、これらの吸光度曲線から硝酸態窒
素と亜硝酸態窒素との単位濃度あたりの220 nmと
225 nInでの吸光度を求めたところ、下記第3表
の通りであった。
First, prepare a 2a+g/fl aqueous solution of nitrate nitrogen and a 2mg/42 aqueous solution of nitrite nitrogen, mix these to prepare test water A to E shown in Table 1 below, and about these test waters. 220 nm and 2 as wavelengths a and b, respectively.
When 25 nm of ultraviolet light was selected and the absorbance of each sample water was determined, the results shown in Table 2 below were obtained; /No.-
N-07IB 0.5 1.5 Mixing ratio N0
3-N/No□-N-1/3C1,01,0 mixing ratio N0
a-N/NO□-N・I/ID 1.5 0.
5 Mixing ratio No3-N/No□-N-3/IE
2. G O mixing ratio N08-N/No□-N-11
0-]Go-jimo-j1- Kueki YudokushoJu1 Yusumi Kakumito A O,5260,:155B
(1,5150,/3'17CD, 499
030B D 0.485 0.276
E O,46: ] 0
.. 240 Next, the absorbance in the ultraviolet region of the 2 mg/II aqueous solution of nitrate nitrogen and the 2+ng/Q aqueous solution of nitrite nitrogen was determined separately, and the absorbance curves were as shown in Figure 1. The absorbance at 220 nm and 225 nIn per unit concentration of nitrate nitrogen and nitrite nitrogen was determined from the absorbance curve, and the results were as shown in Table 3 below.

7 3〜 No2−N     O,2620,181No3−N
     O,2340,122上記第3表の測定値を
前記式(1)及び(2)に代入して、前記式(1) g
tび(2)を変形1゛ると下記式(3)及び(4)とな
る。
7 3~ No2-N O, 2620, 181 No3-N
O, 2340, 122 Substituting the measured values in Table 3 above into equations (1) and (2) above, equation (1) g
When t and (2) are transformed by 1, the following equations (3) and (4) are obtained.

(3) N03−N= 17.42 X ENOx−N
42゜25.22  X ENOx−N−22S(4)
 N(12−N=22,52 X ENox−s−2□
s11.74  X ENOx−N、22゜F記式(3
)及び(4)に第2表の吸光度を代入すると、それぞれ
の濃度における硝酸態窒素濃度(No 3− N )と
亜硝酸態窒素濃度(NO□−N)が求められ、その結果
下記第4表の通りであり、測定値と設定値は非常に良く
一致することか明らかである。
(3) N03-N= 17.42 X ENOx-N
42゜25.22 X ENOx-N-22S (4)
N(12-N=22,52 x ENox-s-2□
s11.74 X ENOx-N, 22°F notation (3
) and (4) by substituting the absorbance in Table 2, the nitrate nitrogen concentration (No 3-N) and nitrite nitrogen concentration (NO□-N) at each concentration are determined, and as a result, the following 4. As shown in the table, it is clear that the measured values and set values match very well.

γz  4 −E− A      O−0,04− B      O,50,492,0 C1,00,982,0 D      1..5     、t、44    
 11゜7E      2.Q      2.(l
i     −0,5A      2.(12,04
−2,QB      1.5     1.53  
  −2.t)C1,0+、03     −:]、O
D       O,50,52−4,OE     
   O−0,03− 以上が本発明の定量方法の基本原理であり、この本発明
の定量方法において使用する紫外光は、硝酸態窒素と亜
硝酸態窒素がともに吸収される紫外光(例えば、第1図
示の如<200乃至250nmの紫外光)であることが
必要であり、更に硝酸態窒素と亜硝酸態窒素とによる吸
光度が異なる(例えば、第1図における曲線の交点以外
)ことが必要であることを除けば、いずれの波長の紫外
光を用いてもよい。
γz 4 -E- A O-0,04- B O,50,492,0 C1,00,982,0 D 1. .. 5, t, 44
11°7E 2. Q2. (l
i-0,5A 2. (12,04
-2, QB 1.5 1.53
-2. t) C1,0+,03-:],O
DO,50,52-4,OE
O-0,03- The above is the basic principle of the quantitative method of the present invention, and the ultraviolet light used in the quantitative method of the present invention is ultraviolet light that absorbs both nitrate nitrogen and nitrite nitrogen (for example, As shown in Figure 1, it is necessary that the absorbance of nitrate nitrogen and nitrite nitrogen be different (e.g., other than the intersection of the curves in Figure 1). Any wavelength of ultraviolet light may be used, except that

しかしながら、本発明者の研究によれば、最も優れた結
果が得られるものは、2jO乃至230 nmの範囲の
紫外光、特に220止と225 nmの紫外光であった
However, according to the research conducted by the present inventors, the most excellent results were obtained with ultraviolet light in the range of 2jO to 230 nm, particularly ultraviolet light in the range of 220 nm to 225 nm.

また以上の本発明の無機態窒素の定量方法は、硝酸態窒
素と亜硝酸態窒素の少なくとも一方が含まれている水溶
液であれば、いずれの水溶液にも適用できるものであり
、好ましくは活性汚泥法による好気工程及び嫌気工程で
の排水中の無機態窒素の定量に最も有用であり、その他
処理前の排水、処理後の放流水、一般の排水、河川水、
湖水、海水等の無機態窒素の定量にも利用できるもので
ある。
Furthermore, the above method for quantifying inorganic nitrogen of the present invention can be applied to any aqueous solution as long as it contains at least one of nitrate nitrogen and nitrite nitrogen, and is preferably applied to activated sludge. It is most useful for quantifying inorganic nitrogen in wastewater in aerobic and anaerobic processes using the method, and can also be used for wastewater before treatment, effluent after treatment, general wastewater, river water,
It can also be used to quantify inorganic nitrogen in lake water, seawater, etc.

特に排水中の無機態窒素の定量に使用する場合には、排
水中には硝酸態窒素及び亜硝酸態窒素以外にも多くのB
OD、COD 、その他の成分が含ま4ており、これら
の中で、特にBOD 、COD等の打機物か存在すると
、これらの有機物もまた紫外部に吸光度を示すため、本
発明の方法における妨害物質として作用することかある
Especially when used to quantify inorganic nitrogen in wastewater, wastewater contains a large amount of B in addition to nitrate nitrogen and nitrite nitrogen.
It contains OD, COD, and other components4. Among these, especially when there are permeable substances such as BOD and COD, these organic substances also exhibit absorbance in the ultraviolet region, which may cause interference in the method of the present invention. It can act as a substance.

従って本発明の定量方法を排水中の無機態窒素の定量に
応用する場合には、上記の如き妨害物質を予め除去して
おくのが好ましい。勿論妨害物質が存在すると本発明の
方法が適用できないというものではなく、妨害物質によ
る吸光度への影響を十分に補正することによって本発明
方法はう分に利用できるものである。
Therefore, when applying the quantitative determination method of the present invention to the quantitative determination of inorganic nitrogen in waste water, it is preferable to remove the above-mentioned interfering substances in advance. Of course, the presence of interfering substances does not mean that the method of the present invention cannot be applied, but the method of the present invention can be easily utilized by sufficiently correcting the influence of the interfering substances on absorbance.

妨害物質を除去する最も好ましい方法は、本発明者等が
以前に開発した方法である。この方法は特願昭60−2
10289号明細書に七分に開示されているのでその詳
細は略するが、検水中の無機態窒素濃度を定量するにあ
たり、定量前に予め検水中の妨害物質をRO膜(逆浸透
膜)及び/又はOF膜(限外濾過膜)で除去する方法で
ある。
The most preferred method of removing interfering substances is the method previously developed by the inventors. This method was applied for in the patent application 1986-2.
10289, so the details will be omitted, but before quantifying the inorganic nitrogen concentration in the sample water, remove interfering substances from the sample water using an RO membrane (reverse osmosis membrane). /or a method of removing with an OF membrane (ultrafiltration membrane).

上記方法において使用するRO[とは、海水の淡水化、
種々の溶液中の溶質の濃縮或いは分離技術として広く知
られている逆浸透法に使用される膜であり、主として比
較的小さい分子の溶質の溶液の分離、濃縮或いはM製等
に使用されているものである。
RO used in the above method refers to seawater desalination,
This is a membrane used in reverse osmosis, which is widely known as a technique for concentrating or separating solutes in various solutions, and is mainly used for separating, concentrating, or making M-based solutions of solutes with relatively small molecules. It is something.

またUF膜とは、限外濾過膜として公知であり5上記の
RO膜による溶質よりも大きい分子量の溶質の濃縮、分
離或いは精製を行う限外濾過方法に使用されているもの
である。
Further, the UF membrane is known as an ultrafiltration membrane and is used in an ultrafiltration method for concentrating, separating, or purifying solutes having a larger molecular weight than the solutes using the RO membrane described above.

このようなRO膜及びUFlliは^bcor Inc
、、八jaxln−t1.(:arp、  、 Am1
con  Corp、、 八qua−chem、Inc
 、、 Cu−Cu−1li Intl、(:o、、D
orr−of 1vir、lnc、、Dowche−m
−ical Co、、DuponL、(:o、、Env
irogcnics Co、、Genera−1Ele
ct、ric Co  その他多くのメーカーから、種
々の孔径のRO膜又はUP11!2として市販されてお
り、これらのものがいずれも入手でき、選択して本発明
に使用することができる。
Such RO membrane and UFlli are available from ^bcor Inc.
,,8jaxln-t1. (:arp, , Am1
con Corp,, Yaqua-chem, Inc.
,,Cu-Cu-1li Intl,(:o,,D
orr-of 1vir, lnc,, Dowche-m
-ical Co,,DuponL,(:o,,Env
irogcnics Co,,Genera-1Ele
ct, ric Co, and many other manufacturers as RO membranes or UP11!2 with various pore sizes, any of these membranes are available and can be selected and used in the present invention.

以上の如きRO膜及び/又は+n;Hzは、食塩等の小
さい分子の無機塩等を透過しないものから、無機塩等は
透通ずるが中程度の分子量の有機化合物或いは高分子打
機化合物を透過しないもの等種々の孔径のものが入手し
且つ使用できるので、予め検水の種類からその内に含ま
れる各種夾雑物の種類を調べておき、無機態窒素は実質
的に透過できるが、それらより分:f世の大なる夾雑物
、例えば、各種界面活性剤、洗剤、石鹸、微生物等は実
質的に透過しないRoll!4又はl]Flliを採用
するのが好ましい。
The above-mentioned RO membranes and/or +n; Hz range from those that do not transmit small-molecule inorganic salts such as common salt, to those that transmit inorganic salts, etc., but permeate medium-molecular-weight organic compounds or high-molecular weight compounds. Since various types of pore sizes are available and can be used, such as those that do not have a Minutes: Roll! is virtually impermeable to major contaminants such as various surfactants, detergents, soaps, microorganisms, etc. 4 or l]Flli is preferably employed.

例えば、好ましいROII!2或いはIJF膜の選定方
法としては、排水中に含有されていると考えられる」二
足の如き各種の夾雑物及び無機態窒素を水に溶解して擬
似排水を作成し、この擬似排水を用いて種々の孔径のR
O@及び/又はlIF@により、無機態窒素を実質的に
透過するが、無機態窒素より大きな分子量の夾雑物は実
質的に透過しないRO膜又はOF膜を採用することがで
きる。またこれらのRO膜とIJF膜とを組合せて使用
することもできる。
For example, favorable ROI! 2 or IJF membrane selection method is to create a simulated wastewater by dissolving various impurities and inorganic nitrogen that are thought to be contained in wastewater in water, and using this simulated wastewater. R of various pore diameters
It is possible to employ an RO membrane or an OF membrane that substantially permeates inorganic nitrogen due to O@ and/or lIF@, but substantially does not transmit impurities having a molecular weight larger than that of inorganic nitrogen. Furthermore, these RO membranes and IJF membranes can also be used in combination.

本発明者の研究によれば、1つの好ましいRO膜は、塩
除去率が30乃至70%のRO膜であることを知見した
According to research conducted by the present inventors, it has been found that one preferred RO membrane is an RO membrane with a salt removal rate of 30 to 70%.

すなわち、食塩とドデシルベンゼンスルホン酸ナトリウ
ム(DBS)とを含有する擬似排水を調製し、この擬似
排水中の食塩とDBSのRO膜による除去率を測定した
ところ、塩除去率が30乃至70%のRO膜が、無機態
窒素の大部分を実質的に透過させ、且つDBSを実質上
透過しないことを知見したものである。勿論、このよう
なRO@の物質透過率(除去率)は、使用するRO膜の
運転条件、特に使用する運転圧力によって大いに影!さ
れるので、適切な運転条件の設定も重要である。
That is, when a simulated wastewater containing salt and sodium dodecylbenzenesulfonate (DBS) was prepared and the removal rate of salt and DBS in this simulated wastewater by the RO membrane was measured, the salt removal rate was 30 to 70%. It was discovered that the RO membrane substantially transmits most of the inorganic nitrogen and does not substantially transmit the DBS. Of course, the substance permeability (removal rate) of RO@ is greatly affected by the operating conditions of the RO membrane used, especially the operating pressure used! Therefore, setting appropriate operating conditions is also important.

運転条件に関する本発明者の詳細な検討によれば、RO
liの通常の運転圧力はモジュール入側が20乃至50
 kgf/c+nであるか、運転圧力として通常の圧力
より低い圧力、例えば、3乃至5 kgf/cmのモジ
ュール人側圧力を採用するときは、 DBS等の中乃至
高分子量の除去率は通常の圧力の場合と殆ど変化しない
が、無機態窒素等の無機塩等の透A率は著しく大となり
、従ってこのような運転条件を採用することによって、
無機態窒素を殆ど透過させ、且つ種々の夾雑物を十分に
除去できることを見い出した。このような傾向はUFl
lqについても同様であフだ。
According to the inventor's detailed study regarding operating conditions, RO
The normal operating pressure of li is 20 to 50 ℃ on the module inlet side.
kgf/c+n, or when using a pressure lower than the normal pressure as the operating pressure, for example, a pressure on the module side of 3 to 5 kgf/cm, the removal rate of medium to high molecular weights such as DBS will be lower than the normal pressure. Although there is almost no difference from the case of , the A permeability of inorganic salts such as inorganic nitrogen becomes significantly higher, so by adopting such operating conditions,
It has been found that most of the inorganic nitrogen can pass through, and various impurities can be sufficiently removed. This trend is UFl
The same goes for lq.

尚、上記の如き運転条件によっても、無機態窒素はRO
膜又はOF膜によっである程度、例えば、5乃至15%
程度は除去されるので、あらかじめRO膜等の無機態窒
素除去率を求めておいて、本発明方法による実際の無機
態窒素濃度分析値を補正することが望ましい。
In addition, even under the above operating conditions, inorganic nitrogen
membrane or OF membrane to some extent, e.g. 5 to 15%.
Since the inorganic nitrogen is removed to a certain extent, it is desirable to determine the inorganic nitrogen removal rate of the RO membrane or the like in advance and correct the actual inorganic nitrogen concentration analysis value by the method of the present invention.

以上の如きROIIQ又はUF@をフィルターとして検
水を前処理することによって、本発明方法により硝酸態
窒素の濃度と亜硝酸態窒素の濃度をより一層正確且つ迅
速に定量することができる。
By pre-treating sample water using ROIIQ or UF@ as described above as a filter, the nitrate nitrogen concentration and nitrite nitrogen concentration can be determined more accurately and quickly by the method of the present invention.

次に本発明の定量装置について説明する。Next, the quantitative device of the present invention will be explained.

本発明の無機態窒素の定量装置は上記本発明の方法を利
用するものであり、紫外吸光光度計と該吸光光度計から
の出力信号を増幅する増幅回路と、該増幅された出力信
号を予め定められた換算式に従って換算する演算回路と
、換算された値を出力する出力装置とからなるものであ
って、特に上記吸光光度計が容態の窒素に対してともに
吸収があり且つ波長の異なる2種の紫外光であって、そ
の少なくとも一方が硝酸態窒素と亜硝a態窒素とに対し
てm位濃度当り異なる吸光度を有する紫外光の検水によ
る吸光度を出力できる構成となっており、且つ、演算回
路が前記定量方法で説明した計算式から硝酸態窒素と亜
硝酸態窒素との濃度を演算できる回路であることを特徴
としている。
The inorganic nitrogen quantitative device of the present invention utilizes the method of the present invention described above, and includes an ultraviolet absorption photometer, an amplification circuit that amplifies the output signal from the absorption photometer, and a device that uses the amplified output signal in advance. It consists of an arithmetic circuit that converts according to a predetermined conversion formula and an output device that outputs the converted value, and in particular, the spectrophotometer absorbs nitrogen in the state and has two different wavelengths. It is configured to output the absorbance of ultraviolet light obtained by water testing of ultraviolet light, at least one of which has a different absorbance per m-level concentration for nitrate nitrogen and nitrite a-nitrogen, and The method is characterized in that the calculation circuit is a circuit capable of calculating the concentrations of nitrate nitrogen and nitrite nitrogen from the calculation formula described in the quantitative method.

1記の本発明の定量装置を構成する各ユニットについて
以下に詳細に説明する。
Each unit constituting the quantification device of the present invention described in No. 1 will be explained in detail below.

(1)紫外吸光光度計 本発明に用いる2波長の吸光光度計は、硝酸イオン及び
亜硝酸イオンにより吸収される2波長に固定し、−・個
のセル(流通形セル)に照射し、各信号を独自に測定す
る方式である(2波長測定・2現象測光)。
(1) Ultraviolet absorption photometer The two-wavelength absorption photometer used in the present invention is fixed at two wavelengths that are absorbed by nitrate ions and nitrite ions, and irradiates -. cells (flow-through type cells). This is a method of measuring signals independently (two-wavelength measurement/two-phenomenon photometry).

装置本体は一般の紫外吸光光度計(UV計)と同様であ
り、光源は重水素放電管、セルは石英セルを使用する。
The main body of the device is similar to a general ultraviolet absorption photometer (UV meter), and the light source is a deuterium discharge tube and the cell is a quartz cell.

また、排水中の懸濁物質だけでなく、溶解有機物質をも
除去する面処理装置(RO/UF)を使用する場合には
、セルの洗浄装置は不要である。
Further, when using a surface treatment device (RO/UF) that removes not only suspended solids in wastewater but also dissolved organic substances, a cell cleaning device is not necessary.

更に吸光度の値が、光度計の測定限界を越えた場合には
、前処理設備中の希釈水ポンプが自動的に稼動して、吸
光度を測定範囲内とする機構を備えている。
Furthermore, if the absorbance value exceeds the measurement limit of the photometer, a dilution water pump in the pretreatment equipment is automatically activated to bring the absorbance within the measurement range.

(2)増幅回路 上記紫外吸光光度計で得られた2つの紫外吸光度と比較
光強度の夫々に比例した電圧、を増幅した後、対数変換
し、各測定波長での吸光度を求める。
(2) Amplification circuit After amplifying the two ultraviolet absorbances obtained with the ultraviolet absorption photometer and a voltage proportional to each of the comparative light intensity, logarithmic conversion is performed to determine the absorbance at each measurement wavelength.

(3)演算回路 上記増幅回路で得られた各波長の吸光度に基すき、容態
の窒素濃度[N03−N、No□−N及びその合計(N
o、−N)]を算出する回路である。使用波長を、例え
ば、220nm(a)及び225nm(b)として2波
長の差により求める場合には、各波長の吸光度と容態の
窒素濃度との関係は、前記のように、 (1) EPIOX−N−220= eNO3−N−2
20XN03−N+ e No2−s、22o X N
02−N(2) ENOX−N−22S = eNO3
−N、22S xNO,、−N+e Noz−s、2z
s X N02−Nの関係となり、ここで、 ENOx−N−220及びENOx−s、225 =波
長220nm及び波長225nmにおけるNO,−Hの
吸光度e NO3−N−220及びe NO3−N−2
25=波長220nm及び波長225nmにおけるNO
,−Nの単位濃度吸光度e NO2−N−220及びe
 NO2−N−22!i =波長220nl及び波長2
25nmにおけるNo□−Nの単位濃度吸光度No、−
N=硝酸態窒素濃度(mg/INO□−N=亜硝酸態窒
素濃度(mg/ 42 )である。
(3) Arithmetic circuit Based on the absorbance of each wavelength obtained by the above amplifier circuit, the nitrogen concentration in the state [N03-N, No□-N and their total (N
o, -N)]. When determining the wavelength used by the difference between the two wavelengths, for example, 220 nm (a) and 225 nm (b), the relationship between the absorbance of each wavelength and the nitrogen concentration in the state is as described above: (1) EPIOX- N-220= eNO3-N-2
20XN03-N+ e No2-s, 22o X N
02-N(2) ENOX-N-22S = eNO3
-N, 22S xNO,, -N+e Noz-s, 2z
The relationship is s
25 = NO at wavelength 220 nm and wavelength 225 nm
, -N unit concentration absorbance e NO2-N-220 and e
NO2-N-22! i = wavelength 220nl and wavelength 2
Unit concentration absorbance of No□-N at 25 nm No, -
N=nitrate nitrogen concentration (mg/INO□-N=nitrite nitrogen concentration (mg/42).

更に上記式を変形すると5 となる。Further transforming the above formula, we get 5 becomes.

上記式(3)及び(4)においてE N0X−N−22
0とENO+c−9,,25は実測される値であり、e
 NO3−N−220、8N0j−N−225,e 8
02−N420及びeNO2−N、2□5は予め実験に
より求められる値であるため、上記式(3)及び式(4
)の定数項を整理すると、 (5) N03−N= 8 ×(ENow−p+’−z
□cr−1,,45X ENOX−N、22S)(6)
 NO2−N= b X (ENOX−N−22゜Q、
52X ENox−s、z□、) (a及びbはセル幅により決まる定数)となり、後は演
算によってN03−N及びNo、−Nは容易に算出され
る。
In the above formulas (3) and (4), E N0X-N-22
0 and ENO+c-9,,25 are actually measured values, e
NO3-N-220, 8N0j-N-225, e 8
Since 02-N420 and eNO2-N, 2□5 are values determined in advance through experiments, the above equations (3) and (4)
), we get (5) N03-N= 8 × (ENow-p+'-z
□cr-1,,45X ENOX-N, 22S) (6)
NO2-N= b X (ENOX-N-22゜Q,
52X ENox-s, z□, ) (a and b are constants determined by the cell width), and then N03-N, No, and -N can be easily calculated by calculation.

2波長の比より演算する場合は、N03−N及びN02
−Nの混合比とE 2215/E 220との関係は、
箪3図に示すように1対1の対応で表せる。
When calculating from the ratio of two wavelengths, N03-N and N02
The relationship between the -N mixing ratio and E 2215/E 220 is:
As shown in Figure 3, it can be expressed in a one-to-one correspondence.

式(1)又は(2)に第3図の吸光度比より求めた混合
比(αとβ)を代入すると、式(1)は次式により表せ
る。
By substituting the mixing ratio (α and β) obtained from the absorbance ratio in FIG. 3 into equation (1) or (2), equation (1) can be expressed by the following equation.

m ENOX−N、220 = eNO3−N−220
X N03−N++ e No2−N・zzo X N
02−8式(7)及び(8)は となり、予め第3図の相関をぴ算機に記憶させておくこ
とにより、 No、−N及びNo□−Nの値は速やかに
算出される。
m ENOX-N, 220 = eNO3-N-220
X N03-N++ e No2-N・zzo X N
02-8 Equations (7) and (8) are as follows.By storing the correlation shown in FIG. 3 in advance in the calculator, the values of No, -N and No□-N can be quickly calculated.

このように本発明の装置では、測定する2波長の差及び
2波長の比の何れの場合においても演尊可能である。
As described above, with the apparatus of the present invention, it is possible to reproduce both the difference between the two wavelengths to be measured and the ratio between the two wavelengths.

(4)出力装置 各態窒素濃度に比例した信号を出力し、表示パネルに各
態窒素濃度をデジタル表示又はアナログ表示し、この表
示によって各態窒素濃度における最適メタノールの制御
が可能となる。
(4) Output device outputs a signal proportional to each nitrogen concentration, displays each nitrogen concentration digitally or analogously on a display panel, and this display enables optimal methanol control at each nitrogen concentration.

例えば、生物学的脱窒工程におけるメタノール必要量は
、曝気槽内の溶酸製濃度を含めると、次式で求めること
ができる。
For example, the required amount of methanol in the biological denitrification process can be determined by the following formula, including the concentration of dissolved acid in the aeration tank.

メタノール必要量(mg/l =2.47XNO,−N
 +1.53xNO,−N +0.87xDODOは一
般のDO計において連続且つ瞬時に測定可能であり、本
発明の装置によりNo、−N及びNo□−Nを同時に且
つ個別に測定することにより、上記演算式により脱窒剤
(メタノール)を過不足なく添加することが可能となり
、非常に経済的且つ安定した処理効果か得られる。
Required amount of methanol (mg/l = 2.47XNO, -N
+1.53xNO, -N +0.87xDODO can be measured continuously and instantaneously with a general DO meter, and by measuring No, -N and No□-N simultaneously and individually with the device of the present invention, the above calculation can be performed. The formula makes it possible to add just the right amount of denitrifying agent (methanol), resulting in very economical and stable treatment effects.

以上の如きユニットからなる本発明の定量装置は、更に
検水中の妨害物質を除去するための前処理装置を付加す
るのが好ましい。
It is preferable that the quantification device of the present invention, which is composed of the unit as described above, further includes a pretreatment device for removing interfering substances in the sample water.

れらの妨害物質の除去の目的、除去方法及び装置、更に
それらの作用効果は既に説明した通りである。
The purpose of removing these interfering substances, the removal method and apparatus, and their effects have already been explained.

また、本発明の装置は、2波長測定(2現象測光)を採
用しているが、同法においてもその構成は多種多様であ
る。
Further, although the apparatus of the present invention employs two-wavelength measurement (two-phenomenon photometry), there are various configurations in this method as well.

第2図のブロック図は、基本的には光源から出た光をセ
ルに通し、ハーフミラ−で分光し、透過光中の目的波長
をフィルターを用いて選択し、2つの検出器で測定する
オーツドックスな方法である。
The block diagram in Figure 2 is basically an automatic system in which light emitted from a light source is passed through a cell, separated by a half mirror, the target wavelength in the transmitted light is selected using a filter, and measured by two detectors. This is a dox method.

しかしながら、2波長測定(2現象測光)には、前述し
たように光源から出た光をモノクロメータ−等を用いて
2つの中1色光に分けてからセルに照射し、チョッパー
等により2波長を交互に測定し、検出器や前置増幅器を
1台とする方法等多種多様であり、何わの方法において
も測定可能である。
However, in two-wavelength measurement (two-phenomenon photometry), as mentioned above, the light emitted from the light source is divided into one of the two colors using a monochromator, etc., and then the cell is irradiated with the light, and the two wavelengths are separated using a chopper or the like. There are various methods such as alternately measuring and using one detector or preamplifier, and any method can be used for measurement.

次に本発明の定量装置の作動を添付図面の第2図を参照
して詳しく説明する。
Next, the operation of the metering device of the present invention will be explained in detail with reference to FIG. 2 of the accompanying drawings.

前処理装置1は、採水ポンプ、分離膜(例えばRO/1
4F ) 、希釈水ポンプにより構成されており、曝気
槽混合液や河川水等の試料を採水ポンプで採水し、分離
膜に圧入する。分離膜では、測定の妨害となる懸濁物質
や紫外吸光を示す有機物を主に除去する。
The pretreatment device 1 includes a water sampling pump, a separation membrane (for example, RO/1
4F) It consists of a dilution water pump, which collects samples such as aeration tank mixture and river water with a water sampling pump and pressurizes them into the separation membrane. Separation membranes primarily remove suspended solids and organic substances that absorb ultraviolet light, which can interfere with measurements.

前処理された検水はセル3に送られる。但し、検水中の
No、−N i5度が高い場合には、希釈水ポンプか稼
動し、測定可能濃度まで希釈してからセル3に送られる
The pretreated sample water is sent to cell 3. However, if the No, -N i5 degree in the test water is high, the dilution water pump is operated and the water is diluted to a measurable concentration before being sent to the cell 3.

紫外吸光光度計は、光源2からの光をハーフミラ−4を
用いて、セル3への光と対照検出器6への光とに分割さ
れ、セル3を透過した光はもう1つのハーフミラ−4で
更に分割され、測定波長のフィルターをセットとした2
つの紫外光検出器5へ送られる。
In the ultraviolet absorption photometer, light from a light source 2 is split into light to a cell 3 and light to a reference detector 6 using a half mirror 4, and the light transmitted through the cell 3 is split into another half mirror 4. It is further divided into 2 parts with a set of filters for the measurement wavelength.
The light is sent to two ultraviolet light detectors 5.

各検出器で得られた電圧は、前置増幅器7で増幅され、
対数変換器8により各測定波長での吸光度がリニアに求
められる。
The voltage obtained by each detector is amplified by a preamplifier 7,
A logarithmic converter 8 linearly determines the absorbance at each measurement wavelength.

対照検出器は光源の変動等の影習を除くためのもので、
一般のダブルビーム測光に相当し、2つの対数変換器に
送られ測光信号の補正を行う。
The reference detector is used to eliminate effects such as fluctuations in the light source.
Corresponding to general double beam photometry, the photometry signal is sent to two logarithmic converters and corrected.

対数変換器で求められた吸光度は、前述した演算式によ
り演算を行う演算回路9により、NOx、N02及びN
03態の窒素濃度が算出される。
The absorbance determined by the logarithmic converter is calculated by the arithmetic circuit 9, which calculates the absorbance using the above-mentioned arithmetic formula, for NOx, N02 and N02.
The nitrogen concentration in the 03 state is calculated.

出力器10は、NoX、 NO2及びNo、態の窒素濃
度をデジタル電圧計に表示するとともに、アナログ信号
として記録計に記録する。
The output device 10 displays the nitrogen concentrations in the NoX, NO2, and No. states on a digital voltmeter, and records them on a recorder as an analog signal.

更に本発明の装置は、外部出力端子を存することができ
、NoX、 No2及びN03態の窒素濃度の測定値に
比例した信号を出力することができる。
Furthermore, the device of the present invention may include an external output terminal, and may output a signal proportional to the measured nitrogen concentration in the NoX, No2, and N03 states.

外部出力は、前述のメタノール注入量等のプロセス制御
或いは外部指示計器へ計測信号を与えることを目的とす
るものである。
The purpose of the external output is to control the process, such as the amount of methanol injection mentioned above, or to provide a measurement signal to an external indicating instrument.

(作用・効果) 以上の如き本発明によれば、本発明は次の如き作用・効
果を奏する。
(Operations and Effects) According to the present invention as described above, the present invention has the following operations and effects.

(1)特別煩雑な操作及び複雑な処理や装置を要せずに
、任意の検水中の硝酸態窒素濃度、亜硝酸態窒素濃度及
びその合計量の定量が容易に且つ連続的に可能である。
(1) It is possible to easily and continuously quantify the nitrate nitrogen concentration, nitrite nitrogen concentration, and their total amount in any sample water without requiring particularly complicated operations or complicated processing or equipment. .

従って、排水、排水処理の放流水、河川水、湖水、海水
その他の検水の無機態窒素濃度及びその中の硝酸態窒素
と亜硝酸態窒素との比率を容易に定量できる。
Therefore, the inorganic nitrogen concentration of wastewater, discharged water from wastewater treatment, river water, lake water, seawater, and other sample water and the ratio of nitrate nitrogen to nitrite nitrogen therein can be easily determined.

(2)本発明を活性汚泥方式等の排水処理に利用するこ
とによフて、源排水、好気工程水、嫌気工程水、放流水
等の無機態窒素濃度及びその硝酸態窒素と亜硝酸態窒素
との比率が常に把握でき、良好な排水処理が実現される
(2) By applying the present invention to wastewater treatment such as the activated sludge method, it is possible to improve the concentration of inorganic nitrogen in source wastewater, aerobic process water, anaerobic process water, effluent water, etc., and its nitrate nitrogen and nitrite. Since the ratio of carbon dioxide to nitrogen can be constantly monitored, good wastewater treatment can be achieved.

特に上記好気工程で生じた無機態窒素の硝酸態窒素と亜
硝酸態窒素との比率が常に連続的に把握されるので、嫌
気工程で使用する還元剤、例えば、メタノールの使用量
を過不足のない適正量として添加できるので、処理コス
ト的に有利であるとともに、還元剤の添加不足や過剰添
加が生じないので、その後の処理が簡単であり、無機態
窒素濃度の少ない放流水とすることが可能となった。
In particular, since the ratio of inorganic nitrogen produced in the aerobic process to nitrate nitrogen and nitrite nitrogen is constantly monitored, the amount of reducing agent used in the anaerobic process, such as methanol, can be adjusted accordingly. It is advantageous in terms of processing costs because it can be added in an appropriate amount without any oxidation, and since there is no need to add too much or too little reducing agent, subsequent processing is easy and the effluent has a low concentration of inorganic nitrogen. became possible.

次に実際の活性汚泥式排水処理で生じた2種の好気工程
水(F及びG)の無機態窒素濃度の定量に利用した例を
示す。尚、比較の為に検水F及びGを夫々硝酸態窒素に
ついてはブルシン法により、また亜硝酸態窒素について
はN−(1−ナフチル)エチレンジアミン吸光光度法に
より定量した値を示す。これらの定量結果は下記第5表
の通ってあり、本発明による定量値は従来方法による定
量値とよく一致していた。
Next, an example will be shown in which it was used to quantify the inorganic nitrogen concentration of two types of aerobic process water (F and G) generated in actual activated sludge wastewater treatment. For comparison, nitrate nitrogen in test waters F and G was determined by the brucine method, and nitrite nitrogen was determined by N-(1-naphthyl)ethylenediamine spectrophotometry. These quantitative results are shown in Table 5 below, and the quantitative values according to the present invention were in good agreement with the quantitative values according to the conventional method.

γ  5 − F  1.75 1.14 1.73 1.7:+  
5.24 5.13G  1,77 0,96 6.5
1 6.62 1,02 0.84尚吸光度(1)は、
波長220 nmでの吸光度であり、吸光度(2)は、
波長225 nmでの吸光度であり、N03−N (3
)は、従来方法による定量値であり、No3−N(4)
は、本発明方法による定量値であり、NO□−N(5)
は、従来方法による定量値であり、NO□−N(6)は
、本発明方法による定量値である。
γ 5 − F 1.75 1.14 1.73 1.7:+
5.24 5.13G 1,77 0,96 6.5
1 6.62 1,02 0.84The absorbance (1) is
It is the absorbance at a wavelength of 220 nm, and the absorbance (2) is
It is the absorbance at a wavelength of 225 nm, and is N03-N (3
) is the quantitative value by the conventional method, No. 3-N (4)
is a quantitative value obtained by the method of the present invention, NO□-N(5)
is a quantitative value obtained by the conventional method, and NO□-N(6) is a quantitative value obtained by the method of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は硝酸態窒素水溶液と亜硝酸態窒素水溶液くいず
れも濃度2II1g/4)の紫外部吸光度曲線を示し、
以軸は吸光度を5横軸は波長n!l+を示す。第2図は
本発明の定量装置を説明するブロック図であり、第3図
は硝酸態窒素と亜硝酸態窒素の混合比とE22S/E2
□。との関係を示す図である。 1:前処理装置  2:光源 3:セル     4:ハーフミラー 5:紫外光検出器 6.対照検出器 7:前置増幅器  8:対数変換器 9:演算回路  10:出力器 出願人 環境エンジニアリング株式会社代理人  弁理
士 吉 1)勝 広 ゛第1図 A(1〕りnmン 第3図 り邑L 〔−〕 ε2λO
Figure 1 shows the ultraviolet absorbance curves of nitrate nitrogen aqueous solution and nitrite nitrogen aqueous solution (concentration 2II1 g/4).
The following axes represent absorbance, and the horizontal axis represents wavelength n! Indicates l+. FIG. 2 is a block diagram explaining the quantitative device of the present invention, and FIG. 3 shows the mixing ratio of nitrate nitrogen and nitrite nitrogen and E22S/E2
□. FIG. 1: Pretreatment device 2: Light source 3: Cell 4: Half mirror 5: Ultraviolet light detector 6. Control detector 7: Preamplifier 8: Logarithmic converter 9: Arithmetic circuit 10: Output device Applicant Kankyo Engineering Co., Ltd. Agent Patent attorney Yoshi 1) Katsuhiro ゛Figure 1 A (1) Rin nm 3rd diagram Ou L [−] ε2λO

Claims (8)

【特許請求の範囲】[Claims] (1)硝酸態窒素と亜硝酸態窒素との少なくとも一方を
含有する検水中の無機態窒素を紫外吸光光度法により定
量する方法において、各態の窒素に対して共に吸収があ
り且つ波長の異なる2種の紫外光であって少なくともそ
の一方が硝酸態窒素と亜硝酸態窒素に対して単位濃度あ
たり異なる吸光度を有する波長の紫外光を利用して、そ
れぞれの波長の紫外光の検水による吸光度を測定し、こ
れらの吸光度の差から検水中の硝酸態窒素と亜硝酸態窒
素とを同時に定量することを特徴とする無機態窒素の定
量方法。
(1) In a method for quantifying inorganic nitrogen in sample water containing at least one of nitrate nitrogen and nitrite nitrogen by ultraviolet absorption spectrophotometry, each form of nitrogen has absorption and has a different wavelength. Using two types of ultraviolet light, at least one of which has a different absorbance per unit concentration for nitrate nitrogen and nitrite nitrogen, the absorbance of each wavelength of ultraviolet light is determined by water testing. A method for quantifying inorganic nitrogen, characterized in that nitrate nitrogen and nitrite nitrogen in sample water are simultaneously determined from the difference in absorbance.
(2)2種の紫外光が、210乃至230nmの範囲の
波長の異なる紫外光である特許請求の範囲第(1)項に
記載の無機態窒素の定量方法。
(2) The method for quantifying inorganic nitrogen according to claim (1), wherein the two types of ultraviolet light have different wavelengths in the range of 210 to 230 nm.
(3)2種の波長が、220nmと225nmの波長の
紫外光である特許請求の範囲第(1)項に記載の無機態
窒素の定量方法。
(3) The method for quantifying inorganic nitrogen according to claim (1), wherein the two types of wavelengths are ultraviolet light having wavelengths of 220 nm and 225 nm.
(4)検水を予め処理して検水中の妨害物質を除去する
特許請求の範囲第(1)項に記載の無機態窒素の定量方
法。
(4) The method for quantifying inorganic nitrogen according to claim (1), wherein the sample water is treated in advance to remove interfering substances in the sample water.
(5)紫外吸光光度計と、該吸光光度計からの出力信号
を増幅する増幅回路と、該増幅された出力信号を予め定
められた換算式に従って換算する演算回路と、換算され
た値を出力する出力装置とからなる無機態窒素の定量装
置において、紫外吸光光度計が、各態の窒素に対して共
に吸収があり且つ波長の異なる2種の紫外光であってそ
の少なくとも一方が硝酸態窒素と亜硝酸態窒素とに対し
て学位濃度あたり異なる吸光度を有する紫外光による検
水の吸光度を出力することを特徴とする無機態窒素の定
量装置。
(5) An ultraviolet absorption photometer, an amplification circuit that amplifies the output signal from the absorption photometer, an arithmetic circuit that converts the amplified output signal according to a predetermined conversion formula, and outputs the converted value. In an apparatus for quantifying inorganic nitrogen, the ultraviolet absorption photometer emits two types of ultraviolet light that both absorb nitrogen in each state and have different wavelengths, at least one of which is in the form of nitrate nitrogen. An apparatus for quantifying inorganic nitrogen, characterized in that it outputs the absorbance of water tested using ultraviolet light, which has different absorbances per degree concentration for nitrite nitrogen and nitrite nitrogen.
(6)2種の紫外光が、210乃至230nmの範囲の
波長の異なる紫外光である特許請求の範囲第(5)項に
記載の無機態窒素の定量装置。
(6) The inorganic nitrogen quantitative device according to claim (5), wherein the two types of ultraviolet light have different wavelengths in the range of 210 to 230 nm.
(7)2種の波長が、220nmと225nmの波長の
紫外光である特許請求の範囲第(5)項に記載の無機態
窒素の定量装置。
(7) The inorganic nitrogen quantitative device according to claim (5), wherein the two types of wavelengths are ultraviolet light having wavelengths of 220 nm and 225 nm.
(8)検水中の妨害物質を除去する前処理装置が更に組
合されている特許請求の範囲第(5)項に記載の無機態
窒素の定量装置。
(8) The inorganic nitrogen quantitative determination device according to claim (5), further comprising a pretreatment device for removing interfering substances in the test water.
JP62023577A 1987-02-05 1987-02-05 Method for quantifying inorganic nitrogen Expired - Lifetime JPH0619326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62023577A JPH0619326B2 (en) 1987-02-05 1987-02-05 Method for quantifying inorganic nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62023577A JPH0619326B2 (en) 1987-02-05 1987-02-05 Method for quantifying inorganic nitrogen

Publications (2)

Publication Number Publication Date
JPS63191945A true JPS63191945A (en) 1988-08-09
JPH0619326B2 JPH0619326B2 (en) 1994-03-16

Family

ID=12114407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62023577A Expired - Lifetime JPH0619326B2 (en) 1987-02-05 1987-02-05 Method for quantifying inorganic nitrogen

Country Status (1)

Country Link
JP (1) JPH0619326B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100427928C (en) * 2005-01-17 2008-10-22 浙江大学 Nitrate and nitrite rapid testing paper and use thereof
JP2014113547A (en) * 2012-12-10 2014-06-26 Japan Organo Co Ltd Apparatus and method for treating waste water containing nitric acid and nitrous acid
JP2019109054A (en) * 2017-12-15 2019-07-04 国立大学法人豊橋技術科学大学 Method and apparatus for detecting concentration of nitrate ion and nitrite ion, and plant growth and prolongation agent manufacturing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330379A (en) * 1976-09-01 1978-03-22 Agency Of Ind Science & Technol Measurement of inorganic form nitrogen
JPS5565139A (en) * 1978-11-10 1980-05-16 Horiba Ltd Measuring method of nitric and nitrous acid ion concentration and its unit
JPS56151951U (en) * 1980-04-14 1981-11-13
JPS61172031A (en) * 1986-01-09 1986-08-02 Agency Of Ind Science & Technol Method for measuring combined amount of nitrate nitrogen and nitrite nitrogen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330379A (en) * 1976-09-01 1978-03-22 Agency Of Ind Science & Technol Measurement of inorganic form nitrogen
JPS5565139A (en) * 1978-11-10 1980-05-16 Horiba Ltd Measuring method of nitric and nitrous acid ion concentration and its unit
JPS56151951U (en) * 1980-04-14 1981-11-13
JPS61172031A (en) * 1986-01-09 1986-08-02 Agency Of Ind Science & Technol Method for measuring combined amount of nitrate nitrogen and nitrite nitrogen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100427928C (en) * 2005-01-17 2008-10-22 浙江大学 Nitrate and nitrite rapid testing paper and use thereof
JP2014113547A (en) * 2012-12-10 2014-06-26 Japan Organo Co Ltd Apparatus and method for treating waste water containing nitric acid and nitrous acid
JP2019109054A (en) * 2017-12-15 2019-07-04 国立大学法人豊橋技術科学大学 Method and apparatus for detecting concentration of nitrate ion and nitrite ion, and plant growth and prolongation agent manufacturing apparatus

Also Published As

Publication number Publication date
JPH0619326B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
Zhu et al. Development of analytical methods for ammonium determination in seawater over the last two decades
Chellam et al. Simplified analysis of contaminant rejection during ground-and surface water nanofiltration under the information collection rule
US10302552B2 (en) Apparatus, composition and method for determination of chemical oxidation demand
CN106186388B (en) A kind of membrane type household water filter
JPS63191945A (en) Method and apparatus for quantitative determination of non-functional nitrogen
Kim et al. Competitive adsorption of trace organics on membranes and powdered activated carbon in powdered activated carbon-ultrafiltration system
Gholami et al. Textile dye removal by membrane technology and biological oxidation
JP4334404B2 (en) Water treatment method and water treatment system
JP5696517B2 (en) Nitrite nitrogen concentration monitoring method and nitrite nitrogen concentration monitoring device
JPH1054829A (en) Apparatus for measuring concentration of liquid phase ozone of ozone-process water and detecting apparatus for permanganate ion
Brooks et al. The effect of intermittent chlorination on freshwater phytoplankton
JPS6359396A (en) Biological treatment of waste water
JPH08136526A (en) Continuous measuring apparatus for concentration of dissolved ozone
JPH0493638A (en) Continuous measurement device of low density absorbance
JP2009236831A (en) Monitoring method and device for dissolved pollutant
JP7420333B2 (en) Sensitizer for ammonium ion chemiluminescence measurement, ammonium ion analysis method, and ammonium ion analysis device
JPS6270734A (en) Method and apparatus for quantitative analysis of nox nitrogen
JP3223726B2 (en) Method and apparatus for measuring ultraviolet absorbance for process
Fujioka et al. Online monitoring of bromate in treated wastewater: implications for potable water reuse
JPS60178353A (en) Analytical method and apparatus of nitrogen compound in water
JP3077461B2 (en) How to monitor hazardous substances in water
JPH0735741A (en) Bod measuring equipment
JPH08297119A (en) Method and device for measuring ultraviolet-ray absorbance of process
JP7441066B2 (en) Pretreatment method, pretreatment device, urea concentration measurement method, urea concentration measurement device, ultrapure water production method, and ultrapure water production system
JP4331048B2 (en) Ozone water treatment control system