JPS63191059A - Continuous analysis of mercury in gas - Google Patents

Continuous analysis of mercury in gas

Info

Publication number
JPS63191059A
JPS63191059A JP2178387A JP2178387A JPS63191059A JP S63191059 A JPS63191059 A JP S63191059A JP 2178387 A JP2178387 A JP 2178387A JP 2178387 A JP2178387 A JP 2178387A JP S63191059 A JPS63191059 A JP S63191059A
Authority
JP
Japan
Prior art keywords
gas
mercury
liquid
continuously
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2178387A
Other languages
Japanese (ja)
Inventor
Motoshi Omura
大村 元志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIMEJI KANKYO GIJUTSU CENTER KK
Original Assignee
HIMEJI KANKYO GIJUTSU CENTER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIMEJI KANKYO GIJUTSU CENTER KK filed Critical HIMEJI KANKYO GIJUTSU CENTER KK
Priority to JP2178387A priority Critical patent/JPS63191059A/en
Publication of JPS63191059A publication Critical patent/JPS63191059A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To perform the continuous analysis of mercury regardless of the concn. thereof, by continuously injecting an oxidizing absorbing solution in the gas continuously taken out from a gas generation part and subsequently introducing the gas-liquid mixture into a gas-liquid separator and adjusting the separation amount of the gas in the gas-liquid separator. CONSTITUTION:Specimen gas is taken out from a discharge flue 1 to be introduced into a line 3 and an oxidizing absorbing solution is supplied to the line 3 by a pump 5 to perfectly oxidize and absorb mercury in a reaction part 6. Next, the specimen gas and the absorbing liquid are introduced into a gas-liquid separator 7 and a predetermined amount of exhaust gas from which mercury is separated is discharged through a line 3a, and the residual gas and the absorbing solution are taken out to the line 3 and a reducing solution is supplied by a pump 12 to generate mercury vapor. The mercury vapor is passed through a gas-liquid separator 14 and a dehumidifier 16 and mercury in the gas to be analyzed is subsequently analyzed by an analyzer 17. By changing the volume ratio of the exhaust gas flowing to the line 3a and the gas to be analyzed flowing to the line 3b by the control of suction pumps 10, 18, the concn. of mercury in the gas to be analyzed can be arbitrarily changed.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、大気環境中、排ガス中、含粉塵排ガス中等
、ガス中に含まれている水銀の連続分析方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for continuous analysis of mercury contained in gases such as the atmospheric environment, exhaust gas, and dust-containing exhaust gas.

(従来の技術) 例えば、排ガス中の水銀分析についてはJISKO22
2排ガス中の水銀排ガス一定められており、繰り返えし
サンプリング・分析するバッチ方式が示されている。
(Prior art) For example, for the analysis of mercury in exhaust gas, JISKO22
2 The amount of mercury in the flue gas is fixed, and a batch method of repeated sampling and analysis is shown.

即ち、排ガス発生源からフィルターを介して排ガスを取
り出して、これを酸化吸収液が入った吸収ビンに捕集し
、これを分析個所に持ち帰り、所要の酸化促進処理を施
してのち、還元容器に移し、これに還元剤溶液を性別し
、その中へ空気を注入して水銀蒸気を空気中に拡散する
。この空気を分析計に導びいて排ガス中の水銀濃度を分
析する方法である。
That is, exhaust gas is taken out from the exhaust gas generation source through a filter, collected in an absorption bottle containing an oxidizing absorption liquid, taken back to the analysis site, subjected to the necessary oxidation promotion treatment, and then transferred to a reduction container. A reducing agent solution is added to the solution, and air is injected into the solution to diffuse mercury vapor into the air. In this method, this air is introduced into an analyzer to analyze the mercury concentration in the exhaust gas.

(発明が解決しようとする問題点) 所が上記の方法によれば次記の如き問題点かある。(1
)先ず第1に、分析の迅速性に欠けることである。
(Problems to be Solved by the Invention) However, the above method has the following problems. (1
) First of all, the speed of analysis is lacking.

上記の如く試料採取と分析工程は分かれており、分析工
程は試料を持ち帰ってから分析個所にて処理するのが一
般的である。従って分析時間に最低でも約2時間を必要
とするものである。
As mentioned above, the sample collection and analysis processes are separated, and in the analysis process, the sample is generally processed at the analysis site after being taken home. Therefore, the analysis time requires at least about 2 hours.

(2)第2に、酸化吸収液の汚染による分析値のバラツ
キが大きいことである。分析操作は試薬・ガラス容器を
手作業で取り扱うため、水銀汚染を受は易い。そもそも
大気中には水銀蒸気がND〜100(μ1背)位存在し
ている。特に分析室の雰囲気は高目であることが多い。
(2) Second, there is a large variation in analytical values due to contamination of the oxidizing and absorbing liquid. Analytical operations involve manual handling of reagents and glass containers, making them susceptible to mercury contamination. To begin with, there is about ND~100 (μ1) of mercury vapor in the atmosphere. In particular, the atmosphere in the analysis room is often expensive.

又吸収液等は放っておくと、著るしく水銀蒸気を吸収し
てしまうので、試料採取前後の取扱いと分析操作時には
細心の注意が必要である。実際にはこのように慎重に行
っても、複数の空試験値のバラツキは大きいものである
Furthermore, if the absorption liquid is left alone, it will absorb a significant amount of mercury vapor, so extreme care must be taken when handling and analyzing samples before and after sampling. In reality, even with such care, there are large variations in the blank test values.

(3)更に第3に、長時間の連続透視ができないことで
ある。排ガス発生炉によっては、排ガス中の水銀濃度は
大きく変動する。ところがJIS法では、通常20−4
0分吸引し、試料を採取するため、平埼値しか得られず
、その間の変動は判からないため、例えばピーク値をも
って連続透視に供することができない。その他バッチ式
特有の労力、経済性について種々の問題を有するもので
ある。
(3) Thirdly, continuous fluoroscopy for a long period of time is not possible. The mercury concentration in the exhaust gas varies greatly depending on the exhaust gas generating furnace. However, according to the JIS method, it is usually 20-4.
Since the sample is collected after suctioning for 0 minutes, only the average value can be obtained, and fluctuations during that time cannot be determined. Therefore, for example, the peak value cannot be used for continuous fluoroscopy. In addition, there are various problems regarding labor and economy peculiar to the batch method.

一方、一般に排ガス中のガス状水銀以外の粉塵等に含ま
れている水銀は、約5%程度と言われているが、場合に
よっては数10%以上になる場合もあり、公害という観
点から見れば、ガス状水銀は広く拡散してもそれ以外の
水銀は落下速度が早くて、発生源近くの周辺土壌に堆積
するため、例えば焼却場等の周辺では今後問題視される
ことが予想されるところである。
On the other hand, the amount of mercury contained in dust other than gaseous mercury in flue gas is said to be around 5%, but in some cases it can reach several tens of percent or more, making it difficult to see from a pollution perspective. For example, even though gaseous mercury is widely dispersed, other mercury falls at a faster rate and accumulates in the surrounding soil near the source, so it is expected that it will become a problem in the future, for example in the vicinity of incinerators. By the way.

この様なことから水銀分析においては、粒子状及びミス
ト状水銀の取扱いは重要であり、これらを含めた総水銀
として分析が行われることが望ましいが、上記J I’
S  KO222の試料採取装置では、ろ過材を介して
排ガスの取出し全行つtいるために、総水銀の分析を行
なうことができなかつた。
For this reason, in mercury analysis, handling of particulate and mist mercury is important, and it is desirable to analyze the total mercury including these, but the above J I'
With the sample collection device of SKO222, it was not possible to analyze total mercury because all exhaust gases had to be taken out through a filter medium.

この発明は、上記の難点を解決し、更に上記の要望に応
え得るガス中の水銀連続分析方法を提供するものである
The present invention provides a method for continuous analysis of mercury in gas that can solve the above-mentioned difficulties and also meet the above-mentioned demands.

(問題点を解決するための手段) 上記の目的は、次に掲げる本発明により達成されるもの
である。即ちこの発明はガス発生部からガスを連続的に
取出すと共に、このガスに酸化吸収液を連続江別して、
水銀蒸気及び水銀化合物を吸収した酸化吸収液を連続的
に取出して、この両者を気液分離器に導入し、この気液
分離器で気体の分離量を調整して、残余所定量のガスと
酸化吸収液を連続的に取出し、次いでこれに還元溶液を
連続江別して、酸化吸収液中の水銀を水銀蒸気としてガ
ス中に拡散させ、更に気液分離してガスを連続的ζ二水
銀分析すること及びガス発生部から含粉塵ガスを連続的
に取出すと共に、含粉塵ガス取出し部近傍において、粉
塵搬送液を連続註加後酸化吸収液を連続注那するガス中
の水一連続分析方法にある。
(Means for Solving the Problems) The above objects are achieved by the present invention listed below. That is, this invention continuously extracts gas from a gas generating section, and continuously separates an oxidizing absorption liquid into this gas.
The oxidation absorption liquid that has absorbed mercury vapor and mercury compounds is continuously taken out and both are introduced into a gas-liquid separator. The oxidized absorption liquid is continuously taken out, and then the reduced solution is continuously separated into it, the mercury in the oxidized absorption liquid is diffused into the gas as mercury vapor, and the gas is further separated into a liquid and the gas is continuously analyzed for ζdimercury. In addition, there is a method for continuous analysis of water in gas, in which dust-containing gas is continuously taken out from the gas generation part, and an oxidation absorption liquid is continuously injected after the dust-carrying liquid is continuously added near the dust-containing gas extraction part. .

以下、この発明の内容を詳細に説明する。The contents of this invention will be explained in detail below.

この発明の第1の特徴は、酸化吸収過程の後に気液分離
器を設け、この分離器によって排ガス中の水銀濃度に応
じて、ガスの分離量と酸化吸収液と共C二数り出すガス
量の比率を調節することにより、分析ガス中の水銀濃度
を任意にコントロール(高める方向)でき、低水銀濃度
域の排ガスの水銀の連続分析をも可能とした点である。
The first feature of this invention is that a gas-liquid separator is provided after the oxidation and absorption process, and this separator determines the amount of gas separated and the amount of C2 gas output together with the oxidation and absorption liquid, depending on the mercury concentration in the exhaust gas. By adjusting the ratio of amounts, the mercury concentration in the analysis gas can be arbitrarily controlled (increased), and continuous analysis of mercury in exhaust gas in a low mercury concentration range is also possible.

この効果は、単に連続化したソけでは得られないもので
ある。
This effect cannot be obtained simply by continuous sawing.

次ζ;第2の特徴は、上記第1の特徴(二より水銀の連
続分析が可能となったことにより、時々刻々発生する排
ガスの水銀のピーク値の検出が確実(二できるようにな
り、排ガス発生源から排出される水銀濃度の透視(モニ
ター)ができ、燃焼管理及び排ガス管理に寄与できる点
である。
Next ζ: The second feature is the above-mentioned first feature (2) By making continuous analysis of mercury possible, it is now possible to reliably detect the peak value of mercury in exhaust gas that is generated from time to time. It is possible to see through (monitor) the mercury concentration emitted from the exhaust gas generation source, contributing to combustion management and exhaust gas management.

第3の特徴は、排ガス中の水銀の分析が連続して行なえ
ることで、閉鎖型システムが確立され。
The third feature is that analysis of mercury in exhaust gas can be performed continuously, establishing a closed system.

従来のバッチ式での多数の汚染要因が排除される結果、
分析値の異常といったトラブルが大巾に減少する点であ
る。
As a result of eliminating many sources of contamination in traditional batch processes,
Problems such as abnormal analysis values are greatly reduced.

更に第4の特徴は、ガス中に含まれている粉塵の液体に
よる搬送技術を採用することにより、ラインを閉塞する
ことなく粉塵の取り出しができるようになり、排ガス中
に存在する粉塵等に含まれている水銀をも含めた総水銀
の連続分析が可能となり、水銀汚染の実態の総合評価を
可能とした点である。
Furthermore, the fourth feature is that by adopting a liquid transport technology for dust contained in gas, it is possible to remove dust without clogging the line, and the dust contained in exhaust gas can be removed. This makes it possible to conduct continuous analysis of total mercury, including mercury contained in water, making it possible to comprehensively evaluate the actual state of mercury pollution.

又、このことにより、この発明によれば、大気環境中の
総水銀の連続分析も可能となるものである。
Furthermore, this makes it possible to continuously analyze total mercury in the atmospheric environment according to the present invention.

以下、この発明の方法を第1図及び第2図に基づいて説
明する。
Hereinafter, the method of the present invention will be explained based on FIGS. 1 and 2.

第1図はこの発明の第1の発明の工程であり、第2図は
第2の発明の工程図である。
FIG. 1 shows a process of the first invention, and FIG. 2 shows a process diagram of the second invention.

第1図において1は例えば排ガスの煙道で、この排ガス
煙道1から常法にしたがって粉塵、ダスト、ヒユーム及
びミスト等(代表して粉塵と呼ぶ)が吸引されない様に
、フィルター2を介して排ガス試料をライン3へ取り出
す。
In Fig. 1, 1 is an exhaust gas flue, for example, and a filter 2 is passed through the exhaust gas flue 1 to prevent dust, dust, fume, mist, etc. (representatively referred to as dust) from being sucked from the flue gas flue 1 according to a conventional method. Take out the exhaust gas sample to line 3.

取り出された排ガス試料に対して、容器4内の酸化吸収
液(例えば、O,l (w/v%) 〜飽和K Mn 
O4を含む0.3〜5 N −H,So4溶液)を、ポ
ンプ5により供給して注加5′シ、ライン3に形成され
た環状反応部6で、気液接触を十分に行なって水銀蒸気
を吸収液に完全に酸化吸収し、気液分離器7に入る。反
応部では反応を促進するために加熱することも可能であ
る。
The oxidation absorption liquid in the container 4 (for example, O,l (w/v%) ~ saturated K Mn
0.3 to 5 N -H, So4 solution containing O4 is supplied by pump 5 and injected 5', and sufficient gas-liquid contact is made in the annular reaction section 6 formed in line 3 to remove mercury. The vapor is completely oxidized and absorbed into the absorption liquid and then enters the gas-liquid separator 7. It is also possible to heat the reaction section to promote the reaction.

この分離器7で水銀が分離された排ガスの所定量は、ラ
イン3aの除湿器8、流量計9及び吸引ポンプ10を通
して排出される。
A predetermined amount of the exhaust gas from which mercury has been separated in the separator 7 is discharged through the dehumidifier 8, flow meter 9, and suction pump 10 in the line 3a.

一方気液分離器7から吸収液及び残部所定量の排ガスを
ライン3bへ取り出し、ラインの途中で容器11内の還
元液(例えば0〜10 (w/ v%)NaCj + 
O〜10 (w/v%)硫酸ヒドロキシルアミン又はO
〜10(w/v%)塩酸ヒドロキシルアミン+3〜5 
(w/v% ) 5nCJ、、 −2H20又は2〜1
0(y / v % ) SnSO4を含む1〜5N−
H2So、溶液)を、ポンプ12により供給して性別1
2′シ、環状反応部13にて水銀酸化物を還元して水銀
蒸気を発生させる。その後気液分離器14にて、液を下
部より分離15し、分析ガスは除湿器16を通したのち
分析計17で分析し、吸引ポンプ18により吸引排出す
る。上記の分析は周知の例えば、水銀用原子吸光分析装
置により水銀蒸気の定量を行なう。
On the other hand, the absorption liquid and the remaining predetermined amount of exhaust gas are taken out from the gas-liquid separator 7 to the line 3b, and in the middle of the line, the reducing liquid (for example, 0 to 10 (w/v%) NaCj +
O~10 (w/v%) hydroxylamine sulfate or O
~10 (w/v%) Hydroxylamine hydrochloride +3-5
(w/v%) 5nCJ, -2H20 or 2-1
1~5N- containing 0(y/v%) SnSO4
H2So, solution) is supplied by pump 12 to
2', mercury oxide is reduced in the annular reaction section 13 to generate mercury vapor. Thereafter, a gas-liquid separator 14 separates the liquid from the lower part 15, and the analysis gas passes through a dehumidifier 16, is analyzed in an analyzer 17, and is suctioned and discharged by a suction pump 18. The above analysis is performed by quantifying mercury vapor using a well-known atomic absorption spectrometer for mercury, for example.

この発明の1つの大きな特徴は、吸引ポンプ10と18
の制御により、ライン3aへ流れる排ガスとライン3b
 (分析計17)へ流す分析ガスの容積比をコントロー
ルすることである。すなわち、この比率を任意に変える
ことにより、分析ガスの水銀濃度を任意に変えることが
でき、例えば9対1の比率で取り出せば10倍の感度、
99対1の比率で取り出せば100倍の感度に、更に9
999対lの比率で取り出せば10,000倍の感度が
得られるものであり、′排ガスのサンプリング濃度の変
動に合せて、任意の感度を随時得ることができるという
効果を奏するものである。
One major feature of this invention is that the suction pumps 10 and 18
control, the exhaust gas flowing to line 3a and line 3b
This is to control the volume ratio of the analysis gas flowing to the analyzer 17. In other words, by arbitrarily changing this ratio, the mercury concentration of the analysis gas can be changed arbitrarily.For example, if the mercury concentration is extracted at a ratio of 9:1, the sensitivity will be increased by 10 times.
If you take it out at a ratio of 99:1, it will be 100 times more sensitive, and an additional 9
If the sample is extracted at a ratio of 999 to 1, a sensitivity of 10,000 times can be obtained, and the effect is that any desired sensitivity can be obtained at any time in accordance with fluctuations in the sampling concentration of exhaust gas.

第2図は排ガス中の水銀と、この排ガス中に存在する粉
塵、ダスト、ヒユーム、ミスト中の水銀(総水銀)全分
析する方法を示したもので、その特徴はサンプリング部
にある。
Figure 2 shows a method for completely analyzing mercury in exhaust gas and mercury (total mercury) in dust, dust, fume, and mist present in this exhaust gas, and its characteristic lies in the sampling section.

第2図においてlは第1図の場合と同様排ガス煙道で、
その中に含粉塵排ガス取り出し管19を設け、この取り
出し管19の取り出し口20の近傍に、粉塵搬送液体注
加管21を接続する。この粉塵搬送液体は酸化吸収液に
混入して劣化させないものが望ましく二例えば水、H,
S O,溶液、I(No。
In Figure 2, l is the exhaust gas flue as in Figure 1,
A dust-containing exhaust gas extraction pipe 19 is provided therein, and a dust transport liquid injection pipe 21 is connected to the vicinity of the extraction port 20 of this extraction pipe 19 . It is preferable that this dust transporting liquid is one that does not mix with the oxidation absorption liquid and cause deterioration.For example, water, H,
SO, solution, I (No.

溶液が好適である。Solutions are preferred.

この様に取り出し口20の近傍において、粉塵搬送液体
を連続性別すること(二より、取り出し口20から吸引
される粉塵が、粉塵搬送液体中に懸濁されて、酸化吸収
液性加部5′で取り出されるため、粉塵によるライン3
内の閉塞が効果的に防止でき、以降第1図と同様の工程
で処理することにより含粉塵排ガス中の総水銀の連続分
析が行なえるものである。
In this way, the dust transport liquid is continuously separated in the vicinity of the take-out port 20 (secondarily, the dust sucked from the take-out port 20 is suspended in the dust transport liquid, and Line 3 due to dust
Blockage in the exhaust gas can be effectively prevented, and continuous analysis of total mercury in dust-containing exhaust gas can be performed by performing the same steps as shown in FIG. 1.

この第2図の工程によれば、大気環境の総水銀の連続分
析が行なえることは勿論である。上記第2図において、
排ガス温度が高温の場合には、必要に応じて冷却ン施こ
丁ことが望ましい。
According to the process shown in FIG. 2, it is of course possible to continuously analyze the total mercury in the atmospheric environment. In Figure 2 above,
If the exhaust gas temperature is high, it is desirable to perform cooling and cooling as necessary.

(実施例) 11石炭火力発電所煙突の一部に第1図に示した装置を
取り付け、第1表の分析条件により処理した。
(Example) The device shown in FIG. 1 was attached to a part of the chimney of 11 coal-fired power plants, and treated under the analysis conditions shown in Table 1.

第1表の如〈実施した結果の記録チャートの1例を第3
図に示す。
As shown in Table 1, an example of the record chart of the implementation results is shown in Table 3.
As shown in the figure.

第3図から石炭火力発電所のように比較的低濃度の水銀
においても、十分な感度で連続分析できることが判った
。従来法では約20分間の平均で分析していたものが、
この発明例では水銀濃度を100倍にすることにより精
度良く、分析所要時間約2分で結果を順次記録し、平均
値では短時間内(:大きな変動が無いと思われていたが
、実際(−は低濃度時の3倍以上のピーク波形があり、
比較的大きな変動を起としていることも判かるようにな
った。
From Figure 3, it is clear that even relatively low concentrations of mercury, such as those found in coal-fired power plants, can be continuously analyzed with sufficient sensitivity. In the conventional method, analysis was performed over an average of about 20 minutes, but
In this example of the invention, the mercury concentration was increased by 100 times to achieve high accuracy, and the results were sequentially recorded in approximately 2 minutes, and the average value was calculated within a short period of time. - has a peak waveform more than three times that of low concentration,
It has also become clear that relatively large fluctuations have occurred.

2、 ごみ焼却場煙突の一部に第2図に示した装置を取
り付け、第2表の分析条件により処理した。
2. The equipment shown in Figure 2 was installed in a part of the chimney of a garbage incinerator, and the waste was processed according to the analysis conditions shown in Table 2.

第2表の如〈実施した結果の記録チャートの1例を、第
4〜6図に示す。
As shown in Table 2, an example of a record chart of the results is shown in Figures 4-6.

この第4〜6図からごみ焼却場のように水銀濃度が大き
く変動する施設においても、任意の感度で総水銀の連続
分析を行えることが判った。
From these figures 4 to 6, it was found that continuous analysis of total mercury can be performed with arbitrary sensitivity even in facilities where the mercury concentration fluctuates greatly, such as garbage incinerators.

従来法では、ガス状水銀のみを約20分間の平均で分析
していたものが、この測定例では排ガス中の含塵も含め
て分析することにより総水銀の分析結果を得ることがで
き、又、排ガス中の水銀濃度に応じて、任意に測定レン
ジを変更することによって、感度良い連続波形を得るこ
とができた。
In the conventional method, only gaseous mercury was analyzed on an average of about 20 minutes, but in this measurement example, it is possible to obtain analysis results for total mercury by analyzing dust in the exhaust gas as well. By arbitrarily changing the measurement range according to the mercury concentration in the exhaust gas, we were able to obtain a continuous waveform with good sensitivity.

水銀の波形を見ると、変動するペースとなる波形に鋭い
高濃度ピークが多数乗った形状になっている。これは第
6図の如く分析所要時間約10秒と応答が早いために、
排ガス中の水銀の変動を鋭敏にとらえた結果得られるも
のである。尚、当施設排ガス中の総水銀変動は、大きい
ものであることが判かった。
Looking at the waveform of mercury, we see that the waveform has a fluctuating pace with many sharp high concentration peaks. This is due to the quick response time, which takes about 10 seconds for analysis, as shown in Figure 6.
This is the result of sensitively capturing fluctuations in mercury in exhaust gas. Furthermore, it was found that the total mercury fluctuation in the exhaust gas at this facility was large.

(発明の効果) 以上の如く、この発明によれば、大気環境、排ガス、含
粉塵排ガス中の水銀の連続分析が水銀濃度に関係な〈実
施できる様になり、環境管理に大きく寄与した。もので
ある。
(Effects of the Invention) As described above, according to the present invention, continuous analysis of mercury in the atmospheric environment, exhaust gas, and dust-containing exhaust gas can be carried out regardless of the mercury concentration, thereby greatly contributing to environmental management. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はこの発明の分析工程の一例の説明図
、第3図〜第6図は実施例の水銀記録チャートである。 3、3a、 3b・・・ガス取り出しライン4・・・酸
化吸収液容器  6,13・・・環状反応部7.14・
・・気液分離器   10.18・・・吸収ポンプ19
・・・金粉塵ガス取り出し管 21・・・粉塵搬送液体性別管 代理人 弁理士  茶野木 立 夫 手糸売M#jjE世! (自発) 昭和62年3月12日
FIGS. 1 and 2 are explanatory diagrams of an example of the analysis process of the present invention, and FIGS. 3 to 6 are mercury recording charts of the example. 3, 3a, 3b... Gas take-off line 4... Oxidation absorption liquid container 6, 13... Annular reaction section 7.14.
... Gas-liquid separator 10.18 ... Absorption pump 19
...Gold dust gas extraction pipe 21...Dust transport liquid gender management agent Patent attorney Tachi Chanoki Futete Itouri M#jjE! (Voluntary) March 12, 1986

Claims (2)

【特許請求の範囲】[Claims] (1)ガス発生部からガスを連続的に取出すと共に、こ
のガスに酸化吸収液を連続注加して、水銀蒸気及び水銀
化合物を吸収した酸化吸収液を連続的に取出して、この
両者を気液分離器に導入し、この気液分離器で気体の分
離量を調整して、残余所定量のガスと酸化吸収液を連続
的に取出し、次いでこれに還元溶液を連続注加して、酸
化吸収液中の水銀を水銀蒸気としてガス中に拡散させ、
更に気液分離してガスを連続的に水銀分析することを特
徴とするガス中の水銀連続分析方法。
(1) Gas is continuously taken out from the gas generation part, and an oxidizing absorption liquid is continuously injected into this gas, and the oxidizing absorption liquid that has absorbed mercury vapor and mercury compounds is continuously taken out, and both of these are vaporized. The gas is introduced into a liquid separator, and the amount of gas separated is adjusted in this gas-liquid separator, and a predetermined amount of remaining gas and oxidation absorption liquid are continuously taken out.Then, a reducing solution is continuously added to this, and the oxidation The mercury in the absorption liquid is diffused into the gas as mercury vapor,
A method for continuously analyzing mercury in gas, which further comprises separating gas and liquid and continuously analyzing the gas for mercury.
(2)ガス発生部から分粉塵ガスを連続的に取出すと共
に、含粉塵ガス取出し部近傍において、粉塵搬送液を連
続注加後、酸化吸収液を連続注加する特許請求の範囲第
(1)項記載のガス中の水銀連続分析方法。
(2) Claim No. 1, in which the divided dust gas is continuously taken out from the gas generating part, and the oxidation absorbing liquid is continuously added after the dust transport liquid is continuously injected in the vicinity of the dust-containing gas taking out part. Continuous analysis method for mercury in gas as described in section.
JP2178387A 1987-02-03 1987-02-03 Continuous analysis of mercury in gas Pending JPS63191059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2178387A JPS63191059A (en) 1987-02-03 1987-02-03 Continuous analysis of mercury in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2178387A JPS63191059A (en) 1987-02-03 1987-02-03 Continuous analysis of mercury in gas

Publications (1)

Publication Number Publication Date
JPS63191059A true JPS63191059A (en) 1988-08-08

Family

ID=12064660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2178387A Pending JPS63191059A (en) 1987-02-03 1987-02-03 Continuous analysis of mercury in gas

Country Status (1)

Country Link
JP (1) JPS63191059A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879948A (en) * 1997-05-12 1999-03-09 Tennessee Valley Authority Determination of total mercury in exhaust gases
WO2002021122A1 (en) * 2000-09-08 2002-03-14 Central Research Institute Of Electric Power Industry Method and apparatus for continuous fractional analysis of metallic mercury and water-soluble mercury in a gas
JP2007268427A (en) * 2006-03-31 2007-10-18 Nippon Instrument Kk Mercury-reducing catalyst, mercury-converting unit, and measuring device using the unit for measuring whole mercury in exhaust gas
JP2008190950A (en) * 2007-02-02 2008-08-21 Horiba Ltd Removing method and removing device for selenium oxide in sample, and measuring method and measuring device for mercury in coal combustion exhaust gas using them
CN108051383A (en) * 2017-12-02 2018-05-18 宁波亿诺维信息技术有限公司 Flue gas pollutant automatic monitoring system
JP2019049451A (en) * 2017-09-08 2019-03-28 キヤノン株式会社 Dust collector, substrate processing system, and article manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879948A (en) * 1997-05-12 1999-03-09 Tennessee Valley Authority Determination of total mercury in exhaust gases
WO2002021122A1 (en) * 2000-09-08 2002-03-14 Central Research Institute Of Electric Power Industry Method and apparatus for continuous fractional analysis of metallic mercury and water-soluble mercury in a gas
EP1324034A1 (en) * 2000-09-08 2003-07-02 Central Research Institute of Electric Power Industry Method and apparatus for continuous fractional analysis of metallic mercury and water-soluble mercury in a gas
US7144736B2 (en) * 2000-09-08 2006-12-05 Central Research Institute Of Electric Power Industry Method and apparatus for continuous fractional analysis of metallic mercury and water-soluble mercury in a gas
EP1324034A4 (en) * 2000-09-08 2008-10-22 Central Res Inst Elect Method and apparatus for continuous fractional analysis of metallic mercury and water-soluble mercury in a gas
JP2007268427A (en) * 2006-03-31 2007-10-18 Nippon Instrument Kk Mercury-reducing catalyst, mercury-converting unit, and measuring device using the unit for measuring whole mercury in exhaust gas
JP2008190950A (en) * 2007-02-02 2008-08-21 Horiba Ltd Removing method and removing device for selenium oxide in sample, and measuring method and measuring device for mercury in coal combustion exhaust gas using them
JP2019049451A (en) * 2017-09-08 2019-03-28 キヤノン株式会社 Dust collector, substrate processing system, and article manufacturing method
CN108051383A (en) * 2017-12-02 2018-05-18 宁波亿诺维信息技术有限公司 Flue gas pollutant automatic monitoring system

Similar Documents

Publication Publication Date Title
US7144736B2 (en) Method and apparatus for continuous fractional analysis of metallic mercury and water-soluble mercury in a gas
US7879134B2 (en) Conditioning system and method for use in the measurement of mercury in gaseous emissions
EP0172521B1 (en) Method for continuously analysing total gaseous mercury
DE2442346A1 (en) METHOD AND DEVICE FOR DETERMINING TRACES OF MERCURY IN LIQUIDS
CN112526070B (en) LEL and VOC combination formula waste gas analysis system
EP0164591A3 (en) Method for continuously determining and monitoring the concentration of noxious components in particle-laden gases
US4479379A (en) Method and apparatus for continuous analysis of a gas and particulate stream
CN205280707U (en) VOCs tail gas witnessed inspections evaluation device is discharged in industry
JPS63191059A (en) Continuous analysis of mercury in gas
JP3376600B2 (en) Atmosphere analysis method and analyzer, and clean room atmosphere control device
Nott Intercomparison of stack gas mercury measurement methods
JPH10221223A (en) Collecting/removing method for atmospheric material and its device
Gardner A rapid method for the determination of mercury in air by flameless atomic absorption spectrometry
Dahmann et al. Diesel particulate matter (DPM) in workplaces in Germany
CN218003025U (en) Flying ash ammonia sampling and analyzing device
Ealy et al. Determination of Lead in Whole Blood by Graphite Furnace Atomic Aborption Spectrophotometry
SU968764A1 (en) Device for monitoring gas content
Forrest et al. Sulphur isotope ratios of some power plant flue gases: A method for collecting the sulphur oxide
JPH11223626A (en) Analytical method for organohalogen in combustion exhaust gas
CN115494099A (en) Desulfurization tower slurry trace element online monitoring system and method
JP3267123B2 (en) Dust concentration measurement method
CN113640410A (en) Air quality source analysis method and system
CN109884246A (en) Measure SO in anode furnace2, CO content device and smelting control method
JPH06314680A (en) Evaluation method of properties of cleaning liquid for semiconductor wafer
Cartier et al. Balance carried out on an alpha waste incinerator in order to qualify its filtration system