JPS63190253A - Catalyst for electrode of fuel cell - Google Patents

Catalyst for electrode of fuel cell

Info

Publication number
JPS63190253A
JPS63190253A JP62020091A JP2009187A JPS63190253A JP S63190253 A JPS63190253 A JP S63190253A JP 62020091 A JP62020091 A JP 62020091A JP 2009187 A JP2009187 A JP 2009187A JP S63190253 A JPS63190253 A JP S63190253A
Authority
JP
Japan
Prior art keywords
catalyst
platinum
electrode
fuel cell
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62020091A
Other languages
Japanese (ja)
Inventor
Kazunori Tsurumi
和則 鶴見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP62020091A priority Critical patent/JPS63190253A/en
Publication of JPS63190253A publication Critical patent/JPS63190253A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a long lifetime of catalyst-activity by containing an alloy of platinum, nickle and chromium within a catalyst for an electrode. CONSTITUTION:A catalyst contains an alloy of platinum, nickel and chromium. Accordingly this catalyst suppresses any decrease in the surface area of platinum caused by gradual coherence of particulate platinum in use. Therefore, an electromotive force is rarely reduced and a initial activity as an oxygen reducing catalyst can also be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は燃料電池の電極に用いられる触媒に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a catalyst used in an electrode of a fuel cell.

(従来の技術) 従来、炭素粉末担体に白金を微粒子状で担持した触媒が
テトラフロロエチレン微粒子などの結着剤と共に混練さ
れて燃料電池用電極の電気化学的反応層として用いられ
ているが、特にりん酸を電解質とする燃料電池のカソー
ド(空気極)に於いては、微粒状の白金が長時間の運転
中に次第に凝集し、粒子成長を起こして、白金の表面積
が減少し、燃料電池の起電力が低下するという問題があ
った。
(Prior Art) Conventionally, a catalyst in which platinum is supported in the form of fine particles on a carbon powder carrier is kneaded with a binder such as fine particles of tetrafluoroethylene and used as an electrochemical reaction layer of an electrode for a fuel cell. Particularly in the cathode (air electrode) of a fuel cell that uses phosphoric acid as an electrolyte, fine particulate platinum gradually aggregates during long-term operation, causing particle growth and reducing the surface area of the platinum. There was a problem that the electromotive force decreased.

燃料電池の空気極に於いては酸電解質型燃料電池を例に
とれば、電池外部から供給される空気中の酸素が白金な
どの触媒活性金属表面で外部回路を経由して燃料極より
流入する電子と電池内部の電解質を経由して燃料極側よ
り供給されるプロトンと化合し水を生成する反応が起こ
っている。即ち燃料電池の空気極に於いては酸素の還元
反応を迅速に行わせる為に白金などの触媒活性物質を存
在させてその目的を達成せしめんとするもであるが、こ
の反応速度は反応物質の供給速度が充分であれば触媒物
質表面の活性サイト数に依存する。
At the air electrode of a fuel cell, taking an acid electrolyte fuel cell as an example, oxygen in the air supplied from outside the cell flows from the fuel electrode via an external circuit on the surface of a catalytically active metal such as platinum. A reaction occurs in which electrons combine with protons supplied from the fuel electrode via the electrolyte inside the battery to produce water. In other words, in the air electrode of a fuel cell, a catalytically active substance such as platinum is present in order to quickly carry out the oxygen reduction reaction, but this reaction rate is limited by the amount of reactants. The sufficient supply rate depends on the number of active sites on the surface of the catalyst material.

かくして、使用中の触媒活性金属表面積の減少防止とい
うことは燃料電池の性能の長寿命化に重、大な効果をも
たらすものであり、従来の白金だけを導電性炭素粉末上
に担持した触媒では必ずしも満足したものではなかった
Thus, preventing the reduction of the catalytic active metal surface area during use has a significant effect on extending the performance life of fuel cells. It wasn't always satisfying.

(発明の目的) 本発明は、この欠点を除去するため炭素粉末上に担持さ
れた活性金属の表面積の減少を抑制し、もって燃料電池
用電極の触媒活性寿命の長期化を計らんとするものであ
る。
(Object of the invention) In order to eliminate this drawback, the present invention aims to suppress the decrease in the surface area of the active metal supported on the carbon powder, thereby extending the catalytic activity life of the fuel cell electrode. It is.

(問題点を解決するための手段) 本発明の燃料電池電極用触媒は、白金とニッケルとクロ
ムとの合金を含有して成ることを特徴とするものである
(Means for Solving the Problems) The fuel cell electrode catalyst of the present invention is characterized by containing an alloy of platinum, nickel, and chromium.

本発明において触媒中に白金とニッケルとクロムの合金
を含ませる理由は、使用中に微粒状の白金が次第に凝集
し、粒子成長を起こして白金の表面積が減少するのを抑
制するためである。
The reason why an alloy of platinum, nickel, and chromium is included in the catalyst in the present invention is to suppress the gradual agglomeration of fine platinum particles during use, causing particle growth, and reducing the surface area of platinum.

(実施例) 2.700℃で熱処理をしてB、E、T法による比表面
積が166rrf/gをX線回折による面間隔d (0
02)が6,748人、結晶子サイズL c(002)
が221人になった導電性カーボンブラック90gを白
金10gを含む41のへキサクロロ白金酸(HzP t
 C1k>溶液に加え充分に攪拌した。次に1.25モ
ル濃度のギ酸ナトリウム(IICOONa)水溶液41
をこれに加えて3時間激しく攪拌しながら白金を還元し
た後、濾過、洗浄をした。このものを60℃に制御され
ている温風乾燥機にて乾燥しさらにN2気流中120℃
で乾燥処理し、粉砕して白金カーボン97gを得た。
(Example) 2. After heat treatment at 700°C, the specific surface area by B, E, T method was 166rrf/g, and the lattice spacing d (0
02), 6,748 people, crystallite size L c (002)
90 g of conductive carbon black, which had become 221 people, was mixed with 41 hexachloroplatinic acid (HzP t) containing 10 g of platinum.
C1k> solution and stirred thoroughly. Next, a 1.25 molar sodium formate (IICOONa) aqueous solution 41
was added to this and the platinum was reduced while vigorously stirring for 3 hours, followed by filtration and washing. This material was dried in a hot air dryer controlled at 60°C, and further dried at 120°C in a N2 stream.
The mixture was dried and pulverized to obtain 97 g of platinum carbon.

これの白金含有率を化学分、析した処9.9wt%であ
った。またX線回折の測定によると白金粒径は38人で
あり、電子顕微鏡による観察では白金粒子は炭素担体上
に均一に分散していた。
The platinum content of this was chemically analyzed and found to be 9.9 wt%. Further, the platinum particle size was determined to be 38 by X-ray diffraction measurement, and the platinum particles were uniformly dispersed on the carbon carrier by observation using an electron microscope.

この白金カーボン10gを400+++j’の水に分散
し、水酸化アンモニウム水溶液を滴下して’P IIを
8となし充分に攪拌し分散させた後、ニッケル3gを硝
酸ニッケルとしてまた、クロムIgを硝酸クロムとして
共に含有する水溶液Loom 1を攪拌しながら添加し
、さらに希硝酸を滴下してP Hを5となした。連続し
て20分間激しく攪拌を行った後、スラリーを濾過し、
60°Cで乾燥した。次いでこのケーキ状触媒を粉砕し
、水素5容量%を含む窒素気流中で920℃、3時間熱
処理して白金−ニノケルークロム合金を導電性炭素粉末
上に担持させた触媒を9.4g得た。X線回折によって
、白金は、白金−ニソケル合金又は白金−クロム合金と
は異なった合金になっていることが1iI認でき、白金
−ニッケルークロムの三元合金が生成されているものと
思われるが合金粒子が小さいため、合金中の二・ノケル
、クロムの正確な割合を決定するのは困難であった。化
学分析の結果ではこの触媒中の各金属元素の比率は重量
比で白金79%、ニッケル15.7%、クロム5.3%
であった。この白金−ニッケルークロム合金を担持した
触媒とテトラフロロエチレンの重量比が6:4になる様
に混練し、撥水処理をしたカーボンシート上にこれを塗
布、焼成して電極を製造し、合金粒径をX線回折で測定
したところ47人であった。この電極を使用して大量の
りん酸を電解質とする半電池を組立て190’C10,
8V (V、S、NHE)の空気極として100時間作
用させた後、合金粒径をX線回折で測定したところ58
人であった。
Disperse 10 g of this platinum carbon in 400+++j' water, drop an ammonium hydroxide aqueous solution to make P II 8, stir thoroughly and disperse, then 3 g of nickel as nickel nitrate and chromium Ig as chromium nitrate. The aqueous solution Loom 1 contained in the solution was added with stirring, and diluted nitric acid was further added dropwise to adjust the pH to 5. After continuous vigorous stirring for 20 minutes, the slurry was filtered;
Dry at 60°C. Next, this cake-like catalyst was crushed and heat treated at 920° C. for 3 hours in a nitrogen stream containing 5% by volume of hydrogen to obtain 9.4 g of a catalyst in which a platinum-Ninoker-chromium alloy was supported on conductive carbon powder. . X-ray diffraction has confirmed that platinum is in an alloy different from platinum-nickel alloy or platinum-chromium alloy, and it is thought that a ternary alloy of platinum-nickel-chromium is produced. However, because the alloy particles were small, it was difficult to determine the exact proportion of chromium in the alloy. As a result of chemical analysis, the weight ratio of each metal element in this catalyst is 79% platinum, 15.7% nickel, and 5.3% chromium.
Met. The catalyst carrying this platinum-nickel-chromium alloy and tetrafluoroethylene are kneaded at a weight ratio of 6:4, coated on a water-repellent carbon sheet, and fired to produce an electrode. When the alloy particle size was measured by X-ray diffraction, it was found to be 47 people. Using this electrode, a half cell with a large amount of phosphoric acid as an electrolyte was assembled, 190'C10,
After acting as a 8V (V, S, NHE) air electrode for 100 hours, the alloy particle size was measured by X-ray diffraction and found to be 58
It was a person.

(従来例) 実施例で作製した白金カーボンを触媒とし、これとテト
ラフロロエチレンの重量比が6:4になる様にこの触媒
とテトラフロロエチレンディスパージョン液を混練し、
1Ω水化処理をしたカーボンシート上にこれを塗布、焼
成して電極を製造した。
(Conventional example) Using the platinum carbon produced in the example as a catalyst, this catalyst and a tetrafluoroethylene dispersion liquid were kneaded so that the weight ratio of this catalyst and tetrafluoroethylene was 6:4,
This was coated on a carbon sheet that had been subjected to 1Ω hydration treatment and fired to produce an electrode.

電極に成形したものの白金粒径をX線回折で測定したと
ころ40人であった。この電極を使用して大量のりん酸
を電解質とする半電池を組立て190℃、0.8V、(
V、S、NHE)の空気極として100時間作用させた
後、電極を取り出し白金粒径をX線回折で測定したとこ
ろ80人に増大していた。
When the platinum particle size of the electrodes was measured by X-ray diffraction, it was found to be 40 people. Using this electrode, we assembled a half-cell with a large amount of phosphoric acid as the electrolyte at 190°C, 0.8V, (
After acting as an air electrode for 100 hours (V, S, NHE), the electrode was taken out and the platinum particle size was measured by X-ray diffraction, and it was found to have increased to 80 particles.

また実施例及び従来例で成形したと同じ内容の各々の電
極について電解質を100%りん酸とする半電池を組み
、触媒電極の背面から酸素を供給し、該触媒電極と対極
との間に電流を流し、同一の電解質内に該触媒電極の電
極電位を計測できる様に配置された水素基準電極に依っ
て190℃で該触媒電極が900mVの電位に保持され
る様にポテンシオスタットを用いて電位規制法による酸
素還元電流を測定した。              
 ′燃料電池の酸素還元触媒の活性度は電極電位900
m〜′に於いて電極中の白金1■当りに得られる電流値
(mA)で比較できる。
In addition, a half cell with 100% phosphoric acid as the electrolyte was assembled for each electrode having the same contents as those molded in the example and the conventional example, oxygen was supplied from the back side of the catalyst electrode, and a current was passed between the catalyst electrode and the counter electrode. using a potentiostat so that the catalyst electrode was maintained at a potential of 900 mV at 190° C. using a hydrogen reference electrode placed in the same electrolyte so that the electrode potential of the catalyst electrode could be measured. Oxygen reduction current was measured using the potential regulation method.
'The activity of the oxygen reduction catalyst in a fuel cell is at an electrode potential of 900
A comparison can be made using the current value (mA) obtained per square meter of platinum in the electrode at m~'.

従来例と同じ内容の白金を担持した触媒電極では28m
A/■、実施例と同じ内容の白金−二ノケル−クロム合
金を担持した触媒電極では45mA /■であった。
28 m for a catalyst electrode supporting platinum with the same content as the conventional example.
A/■, 45 mA/■ for a catalyst electrode supporting a platinum-dinochelium-chromium alloy having the same content as in the example.

以上のことから明らかなように実施例の導電性炭素粉末
に白金−ニノケルークロム合金を担持した触媒は、従来
例の導電性炭素粉末に白金を担持した触媒に比べて燃料
電池の起電力低下防止に大きな効果を与える触媒活性金
属粒子の粒径増大防止に有効であり、さらに酸素還元電
極用触媒としての初期活性も優れている。
As is clear from the above, the catalyst in which the platinum-Ninokeru chromium alloy is supported on the conductive carbon powder of the example has a lower electromotive force in the fuel cell than the catalyst in which the platinum is supported on the conductive carbon powder of the conventional example. It is effective in preventing an increase in the particle size of catalytically active metal particles, which has a great effect on prevention, and furthermore, it has excellent initial activity as a catalyst for oxygen reduction electrodes.

(発明の効果) 以上の説明で判るように、本発明の燃料電池電極用触媒
は、触媒活性金属粒子が白金単独でなく、白金−ニソケ
ルークロム合金であるから、長時間使用しても凝集し粒
子成長を起こして粒子の表面積が減少するのを抑制でき
るので、起電力低下が殆んどなく、またニッケル及びク
ロムの助触媒的作用により酸素還元触媒としての初期活
性も高いと云う効果がある。
(Effects of the Invention) As can be seen from the above explanation, in the fuel cell electrode catalyst of the present invention, since the catalytically active metal particles are not platinum alone but a platinum-nisokel-chromium alloy, the particles do not aggregate even after long-term use. Since it is possible to suppress the reduction in the surface area of particles due to growth, there is almost no drop in electromotive force, and the initial activity as an oxygen reduction catalyst is also high due to the promoter action of nickel and chromium.

Claims (2)

【特許請求の範囲】[Claims] (1)燃料電池に使用される電極用触媒に於いて前記触
媒が白金とニッケルとクロムとの合金を含むことを特徴
とする燃料電池電極用触媒。
(1) A fuel cell electrode catalyst used in a fuel cell, characterized in that the catalyst contains an alloy of platinum, nickel, and chromium.
(2)前記触媒が導電性の炭素上に前記合金を担持して
成ることを特徴とする特許請求の範囲第1項記載の燃料
電池電極用触媒。
(2) The catalyst for a fuel cell electrode according to claim 1, wherein the catalyst is formed by supporting the alloy on conductive carbon.
JP62020091A 1987-01-30 1987-01-30 Catalyst for electrode of fuel cell Pending JPS63190253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62020091A JPS63190253A (en) 1987-01-30 1987-01-30 Catalyst for electrode of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62020091A JPS63190253A (en) 1987-01-30 1987-01-30 Catalyst for electrode of fuel cell

Publications (1)

Publication Number Publication Date
JPS63190253A true JPS63190253A (en) 1988-08-05

Family

ID=12017438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62020091A Pending JPS63190253A (en) 1987-01-30 1987-01-30 Catalyst for electrode of fuel cell

Country Status (1)

Country Link
JP (1) JPS63190253A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662740B2 (en) * 2003-06-03 2010-02-16 Symyx Technologies, Inc. Platinum-chromium-copper/nickel fuel cell catalyst
CN106252677A (en) * 2016-08-03 2016-12-21 陕西瑞科新材料股份有限公司 A kind of preparation method of charcoal platinum catalyst

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618851A (en) * 1984-06-07 1986-01-16 ガイナー・インコーポレーテツド Fuel battery and electrolyte catalyst therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618851A (en) * 1984-06-07 1986-01-16 ガイナー・インコーポレーテツド Fuel battery and electrolyte catalyst therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662740B2 (en) * 2003-06-03 2010-02-16 Symyx Technologies, Inc. Platinum-chromium-copper/nickel fuel cell catalyst
CN106252677A (en) * 2016-08-03 2016-12-21 陕西瑞科新材料股份有限公司 A kind of preparation method of charcoal platinum catalyst

Similar Documents

Publication Publication Date Title
US4316944A (en) Noble metal-chromium alloy catalysts and electrochemical cell
DE3643332C2 (en)
US4603118A (en) Process for the preparation of a catalytically active electrode material for oxygen-consuming electrodes
Félix-Navarro et al. Bimetallic Pt–Au nanoparticles supported on multi-wall carbon nanotubes as electrocatalysts for oxygen reduction
JP2008515149A (en) Carbon-supported catalysts with reduced water retention
JPH04358540A (en) Improved catalyst material
JPWO2009104500A1 (en) Catalyst carrier, catalyst and method for producing the same
JPH01210037A (en) Method of forming alloy on carrier
Zeng A simple eco-friendly solution phase reduction method for the synthesis of polyhedra platinum nanoparticles with high catalytic activity for methanol electrooxidation
US7557057B2 (en) Method for preparation of highly dispersed supported platinum catalyst
CN110112430A (en) A kind of platinum alloy carbon-supported powder and preparation method thereof
JP2010507220A (en) Catalyst carrier for fuel cells
KR20090087018A (en) Carbon-supported metal sulphide catalyst for electrochemical oxygen reduction
JPH09167620A (en) Electrode catalyst for fuel cell and its manufacture, and electrode and fuel cell using the catalyst
US4513094A (en) Single-batch process to prepare noble metal vanadium alloy catalyst on a carbon based support
DE10253952A1 (en) Electrode catalyst for a fuel cell, fuel cell air electrode using the electrode catalyst, and method for evaluating the catalytic activity of the electrode catalyst
TWI740006B (en) Conductive materials and electrode materials
US4373014A (en) Process using noble metal-chromium alloy catalysts in an electrochemical cell
JP3236686B2 (en) Gas electrode and its manufacturing method
JPS63190253A (en) Catalyst for electrode of fuel cell
JP2014002981A (en) Method for producing electrode catalyst
CN115172784A (en) Preparation method of fuel cell cathode platinum-carbon catalyst
JPS63190254A (en) Catalyst for electrode of fuel cell
JPS598273A (en) Electrode for phosphotic acid fuel battery
JP4082800B2 (en) Catalyst production method