JPS63190018A - Deodorant fiber structure - Google Patents

Deodorant fiber structure

Info

Publication number
JPS63190018A
JPS63190018A JP62225873A JP22587387A JPS63190018A JP S63190018 A JPS63190018 A JP S63190018A JP 62225873 A JP62225873 A JP 62225873A JP 22587387 A JP22587387 A JP 22587387A JP S63190018 A JPS63190018 A JP S63190018A
Authority
JP
Japan
Prior art keywords
fiber
copper powder
polymer phase
fiber structure
deodorizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62225873A
Other languages
Japanese (ja)
Inventor
Shingo Emi
江見 慎悟
Tamio Mitamura
三田村 民雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Publication of JPS63190018A publication Critical patent/JPS63190018A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties

Abstract

PURPOSE:To provide the titled structure outstanding in deodorant performance, mechanical properties, processability and resistance to washing, also having bactericidal effect, useful as a material for paper diapers, insoles, etc., incorporated with fibrous material containing specific copper powder. CONSTITUTION:The objective structure can be obtained by incorporating the matrix with fibrous material containing copper powder which is passable through a 50 (pref. 80) mesh-sized shieve so as to be >=1wt.% on a basis of said copper powder. The above-mentioned fibrous material containing copper powder is preferably so constituted that the weight ratio of (A) a thermoplastic polymer phase containing 3.5-60wt.% of copper powder to (B) a fiber-forming thermoplastic polymer phase falls between 95/5 and 30/70 with a skin-core type conjugate structure in which the component A has been assigned to the skin and the component B to the core.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、消臭性を有する繊維構造物に関し、更に詳し
くは、銅粉末を含む消臭性繊維構造物に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fiber structure having deodorizing properties, and more particularly to a deodorizing fiber structure containing copper powder.

(従来の技術) 従来より病院その他のサニタリー分野で利用されている
マット類、カーペット[を建物等の内装材等に抗菌、防
黴性及び消臭性を付与するための検討が進められており
、主として抗菌剤、防黴剤、消臭側を繊維製品に付着せ
しめる方法が簡便かつ有効な方法として開発されてきた
(Prior art) Studies have been underway to impart antibacterial, antifungal, and deodorizing properties to mats and carpets used in hospitals and other sanitary fields to interior materials for buildings, etc. A method of attaching antibacterial agents, antifungal agents, and deodorizing agents to textile products has been developed as a simple and effective method.

更に、銅、銀、金、白金等の金属は固有の殺菌作用を持
っていることが知られており、抗菌及び抗菌効果による
消臭性が期待される。最近では数十ミクロンの直径の銅
の細線を天然繊維あるいは合成繊維と混繊又は混紡して
用いる方法も開発されてきている。
Furthermore, metals such as copper, silver, gold, and platinum are known to have inherent bactericidal effects, and are expected to have deodorizing properties due to their antibacterial and antibacterial effects. Recently, a method has been developed in which fine copper wires with a diameter of several tens of microns are mixed or spun with natural fibers or synthetic fibers.

(発明が解決しようとする問題点) しかしながら、前者の方法では処理剤を繊維製品に付着
せしめた直後は優れた効果を発揮するが、その効果の持
続性に乏しく、かつ洗濯等によってその効果が薄れると
いう欠点を有している。
(Problem to be solved by the invention) However, although the former method exhibits an excellent effect immediately after the treatment agent is applied to the textile product, the effect is not long-lasting, and the effect is degraded by washing etc. It has the disadvantage of fading.

また、後者の場合においても、洗濯等により銅線が切れ
ることがあり、切れた銅線により皮膚を傷つける恐れが
あり、更に、天然繊維や合成繊維と混繊・混紡する為に
は、銅線をかなり細くすることが必要であり、コスト高
になるという問題がある。
Also, in the latter case, the copper wire may break due to washing, etc., and there is a risk of skin injury due to the cut copper wire. It is necessary to make it considerably thinner, which raises the problem of high cost.

本発明の目的は、上記従来技術の欠点を解消しうる抗菌
性、消臭性、耐久性(耐洗濯性)、機械的特性等に優れ
た消臭性繊維構造物を提供することにある。
An object of the present invention is to provide a deodorizing fiber structure having excellent antibacterial properties, deodorizing properties, durability (washing resistance), mechanical properties, etc., which can overcome the drawbacks of the above-mentioned conventional techniques.

(問題点を解決するための手段) 本発明者は、上記目的を達成すべく鋭意検討を重ねた結
果、特定の銅粉末を含む繊維状物を含有した繊維構造物
が、優れた消臭効果を有していることを見出し本発明に
到達した。
(Means for Solving the Problems) As a result of intensive studies to achieve the above object, the present inventor has found that a fibrous structure containing a fibrous material containing a specific copper powder has an excellent deodorizing effect. The present invention was achieved by discovering that the present invention has the following properties.

即ち、本発明は、50メツシュの篩を通過する銅粉末を
含む繊維状物を、該銅粉末として1重量%以上含有する
ことを特徴とする消臭性繊維構造物である。
That is, the present invention is a deodorizing fiber structure characterized by containing 1% by weight or more of a fibrous material containing copper powder that passes through a 50-mesh sieve.

本発明で用いられる銅粉末は、通常の製造方法(主に電
気分解とアトマイズ法)で作られるもので良く、電解銅
粉、噴霧銅粉、搗砕銅粉、還元銅粉があげられる。該銅
粉末は、実質的量が50メツシュの篩を通過するもので
あることが必要であり、80メツシュの篩を通過するも
のであることが特に好ましい、銅粉末の粒径が大きくな
りすぎると、繊維中への添加混合が困難になり、更に消
臭効果も劣ったものとなる。
The copper powder used in the present invention may be produced by ordinary manufacturing methods (mainly electrolysis and atomization methods), and includes electrolytic copper powder, sprayed copper powder, milled copper powder, and reduced copper powder. A substantial amount of the copper powder must pass through a 50-mesh sieve, and it is particularly preferable that the copper powder pass through an 80-mesh sieve. , it becomes difficult to add and mix it into the fiber, and furthermore, the deodorizing effect becomes inferior.

本発明において、銅粉末を含む繊維状物としては、熱可
塑性重合体に銅粉末をブレンドしたものでもよく、更に
、銅粉末を3.5〜60重量%含有する熱可塑性重合体
相(A)と、繊維形成性を有する熱可塑性重合体相(B
)とからなり、重合体相(A)と(B)との重量比が9
5:5〜30 : 70である複合繊維であってもよい
In the present invention, the fibrous material containing copper powder may be a blend of thermoplastic polymer and copper powder, and further, a thermoplastic polymer phase (A) containing 3.5 to 60% by weight of copper powder may be used. and a thermoplastic polymer phase with fiber-forming properties (B
), and the weight ratio of the polymer phases (A) and (B) is 9.
A composite fiber having a ratio of 5:5 to 30:70 may be used.

この場合、熱可塑性重合体相(A)及び(B)としては
、ポリエステル、ポリアミド、ポリオレフィン、ポリビ
ニル系重合体、ポリカーボネート、ポリアセタール、ポ
リウレタン、フッ素系樹脂等があげられ、これらは単独
又は組み合わせて用いることができる。また重合体相(
A)と(B)とは同一の重合体でも異なっていてもよい
In this case, the thermoplastic polymer phases (A) and (B) include polyester, polyamide, polyolefin, polyvinyl polymer, polycarbonate, polyacetal, polyurethane, fluororesin, etc., and these may be used alone or in combination. be able to. Also, the polymer phase (
A) and (B) may be the same polymer or different.

重合体相(A)における銅粉末の含有量は3.5〜60
重量%とする。銅粉末の含有量が3.5重量%未満では
、十分な消臭、殺菌効果が得られない。
The content of copper powder in the polymer phase (A) is 3.5-60
Weight%. If the content of copper powder is less than 3.5% by weight, sufficient deodorizing and sterilizing effects cannot be obtained.

また銅粉末含有量が60重量%を超えると、繊維形成が
難しくなるうえ、コスト高となり、その割には、消臭、
殺菌効果が向上しない。
In addition, if the copper powder content exceeds 60% by weight, fiber formation becomes difficult and costs are high.
The bactericidal effect does not improve.

銅粉末の重合体相(A ’)への添加混合は、事前に種
々の混合装置を用いて、重合体へ十分均一に混合してチ
ップ化しておいてもよく、また繊維形成時に混合するよ
うにしてもよい。
The copper powder may be added and mixed into the polymer phase (A') in advance by using various mixing devices to sufficiently uniformly mix it into the polymer and form chips, or it may be mixed at the time of fiber formation. You may also do so.

また、上記複合繊維においては、重合体相(A)と(B
)とは、任意の複合形態をとることができるが、特に、
繊維の横断面において、重合体相(A)と(B)とが少
なくとも2つのブロック状を形成し、重合体相(A)は
、少なくとも繊維断面の周囲に露出した形で存在するも
の、重合体相(A)と(B)とは、繊維横断面において
、サイドバイサイドに少なくとも2つのブロックを形成
しているもの、或いは、重合体相(B)が芯成分であり
、重合体相(A)が鞘成分である鞘芯形の構造を形成し
ているのが好ましい。
Moreover, in the above composite fiber, the polymer phase (A) and (B
) can take any compound form, but in particular:
In the cross section of the fiber, the polymer phases (A) and (B) form at least two blocks, and the polymer phase (A) is present in an exposed form at least around the fiber cross section; The combined phases (A) and (B) are those that form at least two blocks side by side in the cross section of the fiber, or those in which the polymer phase (B) is the core component and the polymer phase (A) is the core component. It is preferable that the sheath component forms a sheath-core type structure.

更に、上記複合繊維は、横断面形状が円形であってもよ
いが消臭性能を高める為にも表面積を大きくとることが
好ましく、非円形でありその異形係数(D/d)が少な
くとも1.1であり、且つ該異形係数が繊維軸方向に沿
って不規則に変化していることが好ましい、又該繊維は
その繊維軸に垂直な断面の面積が軸方向に沿って不規則
な変化を有していることが好ましい。
Further, the composite fiber may have a circular cross-sectional shape, but it is preferable to have a large surface area in order to improve deodorizing performance, and the composite fiber should be non-circular and have a shape coefficient (D/d) of at least 1. 1, and the deformation coefficient preferably varies irregularly along the fiber axis direction, and the area of the cross section perpendicular to the fiber axis preferably varies irregularly along the axial direction. It is preferable to have.

ここで断面形状の非円形の程度は、断面における外接2
平行線の最大間隔(D)と、その外接2平行線の最小間
隔(d)との比(D/d)として表される異形係数で示
す。
Here, the degree of non-circularity of the cross-sectional shape is the circumference 2 of the cross-section.
It is expressed as an irregularity coefficient expressed as the ratio (D/d) of the maximum distance between parallel lines (D) and the minimum distance (d) between two circumscribed parallel lines.

銅粉末を含む上述の繊維状物中には、通常重合体中に添
加される、例えば顔料、難燃剤、安定剤、螢光増白剤な
どを含んでいてもよい。
The above-mentioned fibrous material containing copper powder may contain, for example, pigments, flame retardants, stabilizers, fluorescent brighteners, etc., which are usually added to polymers.

さらに本発明の繊維状物が複合繊維である場合には、複
合繊維はフィラメント状であってもよく、また適当な長
さを有する短繊維状であってもよい。
Furthermore, when the fibrous material of the present invention is a conjugate fiber, the conjugate fiber may be in the form of a filament or may be in the form of short fibers having an appropriate length.

短繊維状である場合その平均繊維長は20fl〜500
鶴の範囲、好ましくは25鶴〜400鶴の範囲、特に好
ましくは30m〜300mmの範囲が適当である。
In the case of short fibers, the average fiber length is 20 fl to 500 fl.
A range of cranes, preferably a range of 25 cranes to 400 cranes, particularly preferably a range of 30 m to 300 mm, is suitable.

本発明で用いられる銅粉末を含む繊維状物の製造法とし
ては、次のような方法が例示される。
Examples of methods for producing the fibrous material containing copper powder used in the present invention include the following methods.

まず、銅粉末をブレンドした熱可塑性重合体からなる繊
維状物を製造する方法としては、従来から知られている
オリフィス型溶融紡糸法でも又ガスを溶融したポリマー
内に混練しダイのスリットから押し出しガスのバースト
を利用した網状の繊維状物を得るバーストファイバー法
でもよく、又、本発明者等が先に提案した特開昭58−
91804号公報の明細書に記載された方法によっても
容易に製造できる。
First, as a method for manufacturing a fibrous material made of a thermoplastic polymer blended with copper powder, the conventionally known orifice type melt spinning method is also used. Gas is kneaded into a molten polymer and extruded through a slit in a die. A burst fiber method to obtain a net-like fibrous material using a burst of gas may also be used, or the method proposed by the present inventors in JP-A-58-
It can also be easily produced by the method described in the specification of Japanese Patent No. 91804.

また、上述した複合繊維の製造法の一例を述べると、本
発明者等が先に提案した特開昭58−70712号公報
の明細書に記載された方法によって容易に製造できる。
Further, to describe an example of the method for manufacturing the above-mentioned composite fiber, it can be easily manufactured by the method described in the specification of JP-A-58-70712, which was previously proposed by the present inventors.

つまり、2台の押出機によヮて一方から重合体相(A)
を形成する銅粉末含有重合体を押出し、もう一方の押出
機より重合体相(B)を形成する重合体を押出し、配管
にて合体化されたアダプタ一部に静止混合器(例えばK
enics型スタティラスタティックミキサー、溶融し
た両型合体を適当な層状混合状態にしI型ダイスへ送り
均一に吐出させる。
In other words, two extruders are used to produce the polymer phase (A) from one side.
The copper powder-containing polymer forming the polymer phase (B) is extruded from the other extruder, and a static mixer (for example, K
enics type static static mixer, the molten mixture of both types is mixed into a suitable layered state, and sent to an I-type die to be uniformly discharged.

又、得られた繊維束を1.2〜3.0倍程に延伸し、機
械捲縮または熱風による熱捲縮によって捲縮を付与する
こともできる。
Alternatively, the obtained fiber bundle may be stretched 1.2 to 3.0 times and crimped by mechanical crimping or thermal crimping using hot air.

重合体相(A)、(B)の混合状態や繊度は混合器とし
て用いられるスタティックミキサーのエレメント数と凹
凸口金として用いるメツシュ状金網の目のサイズ、延伸
倍率などにより簡単に制御することができる。
The mixing state and fineness of the polymer phases (A) and (B) can be easily controlled by the number of elements of the static mixer used as the mixer, the size of the mesh wire mesh used as the uneven mouthpiece, the stretching ratio, etc. .

かくして得られた繊維は、断面が非円形であって、その
異形係数(D/d)が少なくとも1.1であり、且つ該
異形係数が繊維軸方向に沿って不規則に変化しており又
その繊維軸に垂直な断面の面積が軸方向に沿って不規則
な変化を有している。
The fiber thus obtained has a non-circular cross section, a shape coefficient (D/d) of at least 1.1, and the shape coefficient varies irregularly along the fiber axis direction. The area of the cross section perpendicular to the fiber axis varies irregularly along the axial direction.

口金としては通電により発熱する物質より形成された網
(金網)を用いるのが好適である。
As the cap, it is preferable to use a mesh (wire mesh) made of a substance that generates heat when energized.

本発明の繊維構造物が、紡績糸、織編物である場合、上
記特定の銅粉末を含む繊維状物を混紡、混用する場合は
、その相手方の繊維としては、木綿、羊毛、レーヨン、
アセテート、ポリアミド繊維、ポリエステル繊維、ビニ
ル系ポリマー繊維等任意の繊維を用いることができる。
When the fiber structure of the present invention is a spun yarn or a woven or knitted fabric, and when a fibrous material containing the above-mentioned specific copper powder is blended or used, the other fibers include cotton, wool, rayon,
Any fiber such as acetate, polyamide fiber, polyester fiber, vinyl polymer fiber, etc. can be used.

これらの繊維に対する上記特定の銅粉末を含む繊維状物
の混紡、混用率は、該繊維状物を、銅粉末として1重量
%以上含有するように選定する。
The blending and mixing rate of the fibrous material containing the specific copper powder with respect to these fibers is selected so that the fibrous material contains 1% by weight or more as copper powder.

銅粉末の含有量が1重量%未満では、十分な消臭殺菌効
果が得られない、紡績糸の場合、上記銅粉末含有繊維状
、物と他の繊維とを通常の方法により均一に混紡しても
よく、また、前者を外層部に、後者を中心部に位置させ
た二層構造混紡糸とじてもよい、また、va編物の場合
上記特定の銅粉末を含む繊維状物は、フィラメント、ス
テープルファイバー等の任意の形態で使用することがで
きる。
If the copper powder content is less than 1% by weight, a sufficient deodorizing and sterilizing effect cannot be obtained.In the case of spun yarn, the above-mentioned copper powder-containing fibrous material and other fibers are uniformly blended by a normal method. Alternatively, it may be spun with a two-layer blended yarn in which the former is located in the outer layer and the latter is located in the center.In addition, in the case of VA knitted fabrics, the fibrous material containing the above-mentioned specific copper powder may be a filament, It can be used in any form such as staple fiber.

これらの繊維状物を織編物に混用するには、例えば、他
の繊維と混紡して成編織する方法、他の繊維と、混繊・
合撚して成編織する方法、他の繊維と交織・交編する方
法等を用いることができる。
In order to mix these fibrous materials into woven or knitted fabrics, for example, there are methods of blending them with other fibers, knitting and weaving them, or mixing them with other fibers.
A method of twisting and knitting, a method of mixing and knitting with other fibers, etc. can be used.

本発明は短繊維又は長繊維からなるウェブの乾式不織布
、湿式不織布、あるいはスパンボンド不織布、バースト
ファイバー不織布等従来公知のあらゆる不織布に適用で
きる。また、これら不織布を構成する繊維としては、木
綿、羊毛、レーヨン、アセテート、ポリアミド繊維、ポ
リエステル繊維、ビニル系ポリマー繊維等任意の繊維を
用いることができる。
The present invention is applicable to all conventionally known nonwoven fabrics such as dry-laid nonwoven fabrics, wet-laid nonwoven fabrics made of short fibers or long fibers, spunbond nonwoven fabrics, and burst fiber nonwoven fabrics. Further, as the fibers constituting these nonwoven fabrics, any fibers such as cotton, wool, rayon, acetate, polyamide fibers, polyester fibers, vinyl polymer fibers, etc. can be used.

これらの不織布構成繊維に対する上記特定の銅粉末を含
む繊維状物の配合割合は、該繊維状物を、該銅粉末とし
て1重量%以上含有するように選定する。該銅粉末の含
有量が1重量%未満では、十分な消臭殺菌効果が得られ
ない。
The blending ratio of the fibrous material containing the above-mentioned specific copper powder to the fibers constituting the nonwoven fabric is selected so that the fibrous material contains 1% by weight or more as the copper powder. If the content of the copper powder is less than 1% by weight, a sufficient deodorizing and sterilizing effect cannot be obtained.

上記特定の銅粉末を含む繊維状物を不織布に配合するに
は、不織布製造工程で不織布を構成する繊維と混合すれ
ばよく、また、紡糸工程で不織布を構成する繊維と複合
させてもよい。
In order to blend the fibrous material containing the above specific copper powder into a nonwoven fabric, it may be mixed with the fibers constituting the nonwoven fabric in the nonwoven fabric manufacturing process, or it may be combined with the fibers constituting the nonwoven fabric in the spinning process.

(実施例) 以下、実施例をあげて本発明を詳述するが本発明はこれ
らに同等限定を受けるものではない。
(Examples) Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not equally limited to these.

なお、消臭性の評価として、次のような方法で消臭率を
求めた。
In addition, as an evaluation of the deodorizing property, the deodorizing rate was determined by the following method.

即ち、Logの繊維構造物サンプルを42のデシケータ
に入れアスピレータで減圧し、測定ガス(液体)を一定
量注入する。その後、デシケータ内を大気圧に戻し、そ
の時のガス濃度を初期ガス濃度とする。初期濃度として
は200〜300ppmになる様に調節する。更に3時
間後のデシケータ内のガス濃度を測定し初期濃度と比較
して下記式により消臭率を算出した。
That is, a log fiber structure sample is placed in a desiccator 42, the pressure is reduced with an aspirator, and a certain amount of measurement gas (liquid) is injected. Thereafter, the inside of the desiccator is returned to atmospheric pressure, and the gas concentration at that time is set as the initial gas concentration. The initial concentration is adjusted to 200 to 300 ppm. Furthermore, the gas concentration in the desiccator after 3 hours was measured and compared with the initial concentration to calculate the deodorization rate using the following formula.

実施例1 特開昭58−70712号公報に記載された第4図の如
き装置により複合繊維を成形した。
Example 1 A composite fiber was molded using an apparatus as shown in FIG. 4 described in Japanese Patent Application Laid-Open No. 58-70712.

即ち2基の30φ押出機の一方Aから、300メツシュ
の篩を通過する電解銅粉末を40重量%含有するポリプ
ロピレン(宇部興産■製、S−5−1l5チツプを24
0 g /分で、もう一方の押出機Bからポリエチレン
(三菱化成■製ノーブレンMK−40)チップを75g
/分で、それぞれ定量的に溶融押出しアダプタ一部直前
にて合流させた。押出し温度はA側押出機が210℃〜
250℃、B側押出機が220℃〜260℃、アダプタ
一部以後ダイまでが250℃であった。アダプタ一部に
はKenics型スタティックミキサー(エレメント数
8ケ)を配置し、両成分ポリマーを混合させた。
That is, from one A of two 30φ extruders, 24 pieces of polypropylene containing 40% by weight of electrolytic copper powder (manufactured by Ube Industries, Ltd., S-5-115 chips) that passed through a 300-mesh sieve were
At a rate of 0 g/min, 75 g of polyethylene (Noblen MK-40 manufactured by Mitsubishi Kasei) chips were added from the other extruder B.
/min, and were quantitatively merged just before a portion of the melt extrusion adapter. The extrusion temperature is 210℃~ for the A side extruder.
The temperature was 250°C, the B side extruder was 220°C to 260°C, and the temperature after the part of the adapter up to the die was 250°C. A Kenics type static mixer (8 elements) was placed in a part of the adapter to mix both component polymers.

次いで、ステンレス製の60メツシュ平織金網からなる
凹凸口金から混合ポリマーを吐出し、冷却風を吹きつけ
ながら6m/分の速度で引取った。
Next, the mixed polymer was discharged from a concave-convex nozzle made of a 60-mesh plain-woven stainless steel wire mesh, and taken off at a speed of 6 m/min while blowing cooling air.

この際、口金には約50Aの電流を流しジュール熱を発
生させ口金部の温度コントロールを計った。
At this time, a current of about 50 A was passed through the cap to generate Joule heat to control the temperature of the cap.

かくして得られた吐出繊維を、引きつづき、120℃に
制御された熱板上で、2.0倍に延伸した。
The thus obtained discharged fibers were then stretched 2.0 times on a hot plate controlled at 120°C.

得られた繊維は、銅粉末含有ポリプロピレンとポリエチ
レンとがサイドバイサイドに配置され、銅粉末含有ポリ
プロピレンの一部が横断面の周囲に露出しており、繊維
の横断面が非円形で、異形係数は少なくとも1.4であ
り、該異形係数及び横断面積が繊維軸方向に沿って不規
則に変化している複合繊維であった。また、平均単糸デ
ニールは6゜8de、強度は1.2 g/de、伸度は
45%であった。
In the obtained fiber, the copper powder-containing polypropylene and polyethylene are arranged side by side, a part of the copper powder-containing polypropylene is exposed around the cross section, the cross section of the fiber is non-circular, and the deformation coefficient is at least 1.4, and was a conjugate fiber in which the deformation coefficient and cross-sectional area varied irregularly along the fiber axis direction. The average single yarn denier was 6°8 de, the strength was 1.2 g/de, and the elongation was 45%.

この繊維の消臭率は第1表に示す通りであった。The deodorization rate of this fiber was as shown in Table 1.

第1表 また、この繊維について、細菌数の経時的測定試験(生
理食塩水を使用して常温で測定)を行ったところ、第2
表に示すような効果が得られた。
Table 1 Also, when we conducted a test to measure the number of bacteria over time (measured at room temperature using physiological saline) on this fiber, we found that
The effects shown in the table were obtained.

黒カビ、白セン菌の発生は認められなかった。No occurrence of black mold or white fungus was observed.

第2表 実施例2〜4、比較例1 実施例1と同様の方法により得られた複合繊維を51f
lにカットし、110℃で5分間熱風処理を施し、10
ケ/25酊の立体捲縮を有するカット綿を得た。このカ
ット綿と、繊度4de、繊維長64■、捲縮数13ケ/
25flのポリエチレンテレフタレートステープルファ
イバーとを銅粉末含有量が第3表に示す如くなるように
、種々の割合で混打綿工程で混合し、20番手の紡績糸
を得た。
Table 2 Examples 2 to 4, Comparative Example 1 Composite fibers obtained by the same method as Example 1 were
Cut into 10 liters, heat-treated at 110°C for 5 minutes,
Cut cotton having a three-dimensional crimp of 25 degrees was obtained. This cut cotton has a fineness of 4de, a fiber length of 64cm, and a number of crimps of 13/
25 fl of polyethylene terephthalate staple fiber was mixed in various proportions in a batting process so that the copper powder content was as shown in Table 3 to obtain a 20 count spun yarn.

これらの紡績糸の消臭率及び細菌数の経時的測定試験(
生理食塩水を使用して常温で測定)結果は、第3表に示
す通りであった。
A test to measure the deodorization rate and bacterial count of these spun yarns over time (
The results (measured using physiological saline at room temperature) are shown in Table 3.

(本頁、以下余白) 第3表 実施例5〜7、比較例2 実施例2で使用した電解銅粉末含有ポリプロピレンを鞘
成分、ポリエチレンを芯成分とする重量比50 : 5
0の同心円型芯鞘複合となるように、エクストルーダー
型溶融複合紡糸機を用い、紡糸孔数15孔(孔径0.3
mm)の紡出孔がら吐出させ、500m/分で巻取った
。この未延伸糸を70t’の温水中で2.5倍に延伸し
た。
(This page, blank space below) Table 3 Examples 5 to 7, Comparative Example 2 Weight ratio of the electrolytic copper powder-containing polypropylene used in Example 2 as a sheath component and polyethylene as a core component: 50:5
Using an extruder type melt composite spinning machine, the number of spinning holes was 15 (pore diameter 0.3
It was discharged from a spinning hole of 500 m/min and wound up at 500 m/min. This undrawn yarn was drawn 2.5 times in 70 t' of hot water.

この繊維の物性は、平均単糸繊度dde、強度2゜1g
/de、伸度50%であった。
The physical properties of this fiber are: average single yarn fineness dde, strength 2゜1g
/de, the elongation was 50%.

更に、この繊維に、ギヤ捲縮装置で12ケ/25mの捲
縮を付与した後、51鶴の長さにカットしてカット綿を
得た。
Further, this fiber was crimped at 12 crimps/25 m using a gear crimping device, and then cut to a length of 51 tsuru to obtain cut cotton.

このカット綿と、繊度2 des繊維長51fl、捲縮
数10ケ/25鶴のレーヨンステーブルファイバーとを
、銅粉末含有量が第4表に示す如(なるように種々の割
合で混打綿工程で混合し、20番手の紡績糸を得た。こ
れらの紡績糸の消臭率及び細菌数の経時的測定試験(生
理食塩水を使用して常温で測定)結果は、第4表に示す
通りであった。
This cut cotton and rayon stable fiber with a fineness of 2 des, a fiber length of 51 fl, and a number of crimps of 10/25 were mixed into mixed cotton in various proportions such that the copper powder content was as shown in Table 4. They were mixed in the process to obtain a 20-count spun yarn.The results of a test to measure the deodorization rate and bacterial count of these spun yarns over time (measured at room temperature using physiological saline) are shown in Table 4. It was on the street.

第  4  表 実施例8〜10、比較例3 実施例1と同様の方法により得られた複合フィラメント
繊維を、目付200g/m”のポリエチレンテレフタレ
ートフィラメント仮撚加工糸からなるメリヤス鳩に、銅
粉末としての含有量が第5表に示す如くなるように種々
の割合で交編し、得られた編物について消臭率を測定し
、細菌数の経時的測定試験(生理食塩水を使用して常温
で測定)を行った。測定結果は、第5表に示す通りであ
った。
Table 4 Examples 8 to 10, Comparative Example 3 Composite filament fibers obtained in the same manner as in Example 1 were applied as copper powder to a knitted fabric made of false twisted polyethylene terephthalate filament yarn with a basis weight of 200 g/m. The knitted fabrics were inter-knitted at various ratios so that the content of The measurement results were as shown in Table 5.

第5表 実施例11〜13、比較例4 実施例5と同様の方法によって得られたカット綿を、繊
度2de、繊維長51m、捲縮数10ケ/25fiのレ
ーヨンステープルファイバーに混打綿工程で50重量%
混合し、30番手の紡績糸を得た。これら紡績糸を、ポ
リエチレンテレフタレート紡績糸と、銅粉末としての含
有量が第6表に示す如くなるように種々の割合で交織し
て目付100g/m”の綾織物とし、得られた織物につ
いて消臭率を測定し、細菌数の経時的測定試験(生理食
塩水を使用して常温で測定)を行った。測定結果は、第
6表に示す通りであった。
Table 5 Examples 11 to 13, Comparative Example 4 Cut cotton obtained by the same method as Example 5 is blended into rayon staple fiber with a fineness of 2 de, a fiber length of 51 m, and a number of crimps of 10/25 fi. 50% by weight
They were mixed to obtain a 30 count spun yarn. These spun yarns are interwoven with polyethylene terephthalate spun yarn in various ratios such that the content of copper powder is as shown in Table 6 to make a twill fabric with a basis weight of 100 g/m. The odor rate was measured, and a test to measure the number of bacteria over time (measured using physiological saline at room temperature) was conducted.The measurement results were as shown in Table 6.

(本頁、以下余白) 第6表 実施例14〜16 銅の含有量を第7表に示すように変更した以外は、実施
例1と同様の方法により複合繊維を成形した。繊維物性
は第7表に示す通りであった。
(This page, hereafter blank) Table 6 Examples 14 to 16 Composite fibers were molded in the same manner as in Example 1, except that the copper content was changed as shown in Table 7. The fiber physical properties were as shown in Table 7.

この複合繊維を、64鰭の長さにカットし、110℃で
3分間熱風処理して立体捲縮を発現させた。
This composite fiber was cut into a length of 64 fins and treated with hot air at 110° C. for 3 minutes to develop three-dimensional crimp.

これをカード機によってウェブ状に開繊し、150℃の
熱風で熱処理を施し、250g/m”の樹脂綿状の不織
布として消臭率を測定し、細菌数の経時的測定試験(生
理食塩水を使用して常温で測定)を行った。測定結果は
、第7表に示す通りであった。
This was opened into a web shape using a card machine, heat treated with hot air at 150°C, and the deodorization rate was measured as a 250 g/m'' resin cotton-like nonwoven fabric. The measurement results were as shown in Table 7.

第7表 実施例17〜18、比較例5 実施例14で使用したカット綿と、繊度4de、繊維長
76MM、 Pa縮数18ケ/25mmのポリエチレン
テレフタレートステーブルファイバーとを銅粉末として
の含有量が第8表に示す如くなるように種々の割合で混
合し、カード機でウェブを作成し、アクリル酸エステル
エマルジョンをバインダーとして付与し150℃の熱風
で熱処理を行い、200g/m2の樹脂綿状の不織布と
した。消臭率の測定結果は第8表に示す通りであった。
Table 7 Examples 17 to 18, Comparative Example 5 The content of the cut cotton used in Example 14 and the polyethylene terephthalate stable fiber with a fineness of 4 de, a fiber length of 76 MM, and a Pa shrinkage number of 18/25 mm as copper powder. were mixed in various proportions as shown in Table 8, a web was created using a carding machine, an acrylic acid ester emulsion was applied as a binder, and heat treatment was performed with hot air at 150°C to form a resin floc of 200 g/m2. It was made into a non-woven fabric. The measurement results of the deodorization rate were as shown in Table 8.

第8表 実施例19〜21、比較例6 実施例14で使用した電解銅粉末含有ポリプロピレンを
鞘成分、ポリエチレンテレフタレートを芯成分とする重
量比50 : 50の同心円型芯鞘複合となるように、
エクストルーダー型溶融複合紡糸機を用い、紡糸孔数1
5孔(孔径0.3m)の紡出孔から吐出させ、500 
m /分で巻取った。
Table 8 Examples 19 to 21, Comparative Example 6 A concentric core-sheath composite with the electrolytic copper powder-containing polypropylene used in Example 14 as a sheath component and polyethylene terephthalate as a core component at a weight ratio of 50:50.
Using an extruder-type melt composite spinning machine, the number of spinning holes is 1.
Discharged from a spinning hole with 5 holes (pore diameter 0.3 m), 500
It was wound up at m/min.

この未延伸糸を70℃の温水中で2.5倍に延伸した。This undrawn yarn was drawn 2.5 times in hot water at 70°C.

この繊維の物性は、平均単糸繊度6de、強度2゜5g
/de、伸度40%であった。
The physical properties of this fiber include an average single yarn fineness of 6 de and strength of 2.5 g.
/de, and the elongation was 40%.

更に、この繊維に、ギヤ捲縮装置で12ケ/251mの
捲縮を付与した後、51mの長さにカットしてカット綿
を得た。
Furthermore, this fiber was given 12 crimps/251 m using a gear crimping device, and then cut into a length of 51 m to obtain cut cotton.

このカット綿と、繊度4de、繊維長76m、捲縮数1
8ケ/25龍のポリエチレンテレフタレートステーブル
ファイバーと、銅粉末としての含有量が第9表に示す如
くなるように種々の割合で混合し、カード機でウェブを
作成し、アクリル酸エステルのエマルジョンをバインダ
ーとして付与し、150℃の熱風で熱処理を行い、20
0g/m”の樹脂綿状の不織布とした。消臭率及び細菌
数の経時的測定試験(生理食塩水を使用して常温で測定
)の測定結果は、第9表に示す通りであった。
This cut cotton has a fineness of 4de, a fiber length of 76m, and a crimp count of 1.
8 pieces/25 pieces of polyethylene terephthalate stable fiber were mixed in various proportions so that the content as copper powder was as shown in Table 9, a web was created using a card machine, and an emulsion of acrylic ester was mixed. It is applied as a binder, heat-treated with hot air at 150°C, and
0g/m'' resin cotton-like nonwoven fabric.The measurement results of the deodorization rate and bacteria count over time (measured at room temperature using physiological saline) were as shown in Table 9. .

(本頁、以下余白) 第9!! 以上の各実施例、比較例の結果からも明らかなように、
銅粉末を1重量%以上含有する本発明の繊維構造物は、
優れた消臭性能を有し一1更に、機械的特性、耐久性、
加工性も改良されていた。また、殺菌効果も認められた
(This page, the following margins) No. 9! ! As is clear from the results of the above examples and comparative examples,
The fiber structure of the present invention containing 1% by weight or more of copper powder is
It has excellent deodorizing performance, and also has mechanical properties, durability,
Processability was also improved. A bactericidal effect was also observed.

(発明の効果) 本発明の繊維構造物は、悪臭に対し優れた消臭性能を示
し、更には機械的特性、加工性、耐久性にも優れている
うえ、殺菌効果も有しており、生理用ナプキン、紙おむ
つ関連等の衛生材料、各種衣料、各種フィルター類、ふ
とん側地、ふとん綿や中入綿、各種フェルト類、毛布、
カーペット基材、建物や自動車の内装材、靴の中敷、内
張、ベントマット、冷蔵庫の消臭材、ブラジャー、ガー
ドル、ボディスーツ、バストパッド、ヒップパッド、サ
イドパッド等の各種パッド、スリーピングウェア等の素
材として有効に利用することができる。
(Effects of the Invention) The fiber structure of the present invention exhibits excellent deodorizing performance against bad odors, and also has excellent mechanical properties, processability, and durability, and also has a bactericidal effect. Sanitary napkins, disposable diapers and other sanitary materials, various clothing, various filters, futon side fabrics, futon cotton and padded cotton, various felts, blankets,
Carpet base materials, interior materials for buildings and automobiles, shoe insoles, linings, vent mats, refrigerator deodorizers, bras, girdles, body suits, various pads such as bust pads, hip pads, side pads, and sleeping wear. It can be effectively used as a material for etc.

更に、本発明の繊維構造物は、洗濯を繰り返しても消臭
性能は低下せず、繰り返して使用することが可能である
Furthermore, the fiber structure of the present invention does not lose its deodorizing performance even after repeated washing, and can be used repeatedly.

また、銅線を使用した場合のように、使用中に折損して
皮膚を傷つけるようなことがなく、細緻痩化が容易であ
り、コスト高になることもない。
In addition, unlike the case where copper wire is used, it does not break during use and injure the skin, and it is easy to thin the wire and the cost does not increase.

Claims (9)

【特許請求の範囲】[Claims] 1.50メッシュの篩を通過する銅粉末を含む繊維状物
を、該銅粉末として1重量%以上含有することを特徴と
する消臭性繊維構造物。
1. A deodorizing fibrous structure containing 1% by weight or more of a fibrous material containing copper powder that passes through a 1.50 mesh sieve.
2.繊維状物が、50メッシュの篩を通過する銅粉末を
3.5〜60重量%含有する熱可塑性重合体相(A)と
、繊維形成性を有する熱可塑性重合体相(B)とからな
り、重合体相(A)と(B)との重量比を95:5〜3
0:70とする複合繊維である特許請求の範囲第1項記
載の消臭性繊維構造物。
2. The fibrous material consists of a thermoplastic polymer phase (A) containing 3.5 to 60% by weight of copper powder that passes through a 50 mesh sieve, and a thermoplastic polymer phase (B) having fiber-forming properties. , the weight ratio of polymer phases (A) and (B) is 95:5 to 3
The deodorizing fiber structure according to claim 1, which is a composite fiber with a ratio of 0:70.
3.重合体相(A)と重合体相(B)とが、繊維の横断
面において少なくとも2つのブロックを形成し、該重合
体相(A)は、少なくとも横断面の周囲に露出している
特許請求の範囲第2項記載の消臭性繊維構造物。
3. A patent claim in which the polymer phase (A) and the polymer phase (B) form at least two blocks in the cross section of the fiber, and the polymer phase (A) is exposed at least around the periphery of the cross section. The deodorizing fiber structure according to item 2.
4.重合体相(A)と重合体相(B)とがサイドバイサ
イドに配置されている特許請求の範囲第2項又は第3項
記載の消臭性繊維構造物。
4. The deodorizing fiber structure according to claim 2 or 3, wherein the polymer phase (A) and the polymer phase (B) are arranged side by side.
5.重合体相(A)が鞘部に、重合体相(B)が芯部に
配置されている特許請求の範囲第2項又は第3項記載の
消臭性繊維構造物。
5. The deodorizing fiber structure according to claim 2 or 3, wherein the polymer phase (A) is arranged in the sheath part and the polymer phase (B) is arranged in the core part.
6.繊維の横断面が非円形であって、その異形係数(D
/d)が少なくとも1.1であり、且つ該異形係数が繊
維軸方向に沿って不規則に変化しており、また、その横
断面積が繊維軸方向に沿って不規則に変化している特許
請求の範囲第1項〜第5項のうちのいずれか1項記載の
消臭性繊維構造物。
6. The cross section of the fiber is non-circular, and its irregularity coefficient (D
/d) is at least 1.1, and the deformation coefficient varies irregularly along the fiber axial direction, and the cross-sectional area thereof varies irregularly along the fiber axial direction. A deodorizing fiber structure according to any one of claims 1 to 5.
7.繊維構造物が、紡績糸である特許請求の範囲第1項
〜第6項のうちのいずれか1項記載の消臭性繊維構造物
7. The deodorizing fiber structure according to any one of claims 1 to 6, wherein the fiber structure is a spun yarn.
8.繊維構造物が、織編物である特許請求の範囲第1項
〜第6項のうちのいずれか1項記載の消臭性繊維構造物
8. The deodorizing fiber structure according to any one of claims 1 to 6, wherein the fiber structure is a woven or knitted fabric.
9.繊維構造物が、不織布である特許請求の範囲第1項
〜第6項のうちのいずれか1項記載の消臭性繊維構造物
9. The deodorizing fiber structure according to any one of claims 1 to 6, wherein the fiber structure is a nonwoven fabric.
JP62225873A 1986-09-25 1987-09-08 Deodorant fiber structure Pending JPS63190018A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP61-227067 1986-09-25
JP22706786 1986-09-25
JP61-227068 1986-09-25
JP61-231954 1986-09-30
JP61-231953 1986-09-30

Publications (1)

Publication Number Publication Date
JPS63190018A true JPS63190018A (en) 1988-08-05

Family

ID=16855013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62225873A Pending JPS63190018A (en) 1986-09-25 1987-09-08 Deodorant fiber structure

Country Status (1)

Country Link
JP (1) JPS63190018A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291215A (en) * 1988-09-28 1990-03-30 Kuraray Co Ltd Conjugate fiber having deodorizing performance
JPH03188939A (en) * 1988-10-31 1991-08-16 Nippon Steel Corp Composition having air purifying power and production thereof
JPH03206147A (en) * 1989-08-21 1991-09-09 Kanebo Ltd Raw material for antibacterial fiber structure
JPH03213516A (en) * 1990-01-16 1991-09-18 Kanebo Ltd Production of antimicrobial conjugate fiber
JPH03213107A (en) * 1990-01-19 1991-09-18 Nippon Steel Corp Air cleaning composite filter
JPH0411910A (en) * 1990-04-27 1992-01-16 Sanyo Electric Co Ltd Filter unit
JPH0598536A (en) * 1991-02-28 1993-04-20 Kanebo Ltd Method for producing high-density woven fabric
EP0587022A2 (en) 1992-09-05 1994-03-16 Hoechst Aktiengesellschaft Fully oriented polyester yarn and process for its production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117775A (en) * 1975-04-09 1976-10-16 Misao Eguchi Synthetic fiber for preventing duckweeds
JPS5860014A (en) * 1981-10-06 1983-04-09 Teisan Seiyaku Kk Composite fiber
JPS60185811A (en) * 1984-03-06 1985-09-21 Hiraga Nenmou Kk Copper-containing monofilaments, their production and fishery material thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117775A (en) * 1975-04-09 1976-10-16 Misao Eguchi Synthetic fiber for preventing duckweeds
JPS5860014A (en) * 1981-10-06 1983-04-09 Teisan Seiyaku Kk Composite fiber
JPS60185811A (en) * 1984-03-06 1985-09-21 Hiraga Nenmou Kk Copper-containing monofilaments, their production and fishery material thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291215A (en) * 1988-09-28 1990-03-30 Kuraray Co Ltd Conjugate fiber having deodorizing performance
JPH03188939A (en) * 1988-10-31 1991-08-16 Nippon Steel Corp Composition having air purifying power and production thereof
JPH0710340B2 (en) * 1988-10-31 1995-02-08 新日本製鐵株式会社 Composition having air cleaning power and method for producing the same
JPH03206147A (en) * 1989-08-21 1991-09-09 Kanebo Ltd Raw material for antibacterial fiber structure
JPH03213516A (en) * 1990-01-16 1991-09-18 Kanebo Ltd Production of antimicrobial conjugate fiber
JPH03213107A (en) * 1990-01-19 1991-09-18 Nippon Steel Corp Air cleaning composite filter
JPH0411910A (en) * 1990-04-27 1992-01-16 Sanyo Electric Co Ltd Filter unit
JPH0598536A (en) * 1991-02-28 1993-04-20 Kanebo Ltd Method for producing high-density woven fabric
EP0587022A2 (en) 1992-09-05 1994-03-16 Hoechst Aktiengesellschaft Fully oriented polyester yarn and process for its production

Similar Documents

Publication Publication Date Title
US8460790B2 (en) Nanofiber aggregate, polymer alloy fiber, hybrid fiber, fibrous structures, and processes for production of them
KR101029515B1 (en) Porous fiber
US4784909A (en) Anti-fungus, deodorant fiber material
KR101232496B1 (en) Method for Manufacturing Controlled-Release Skin-core Type Composite Fiber and Composite Fiber Made Thereof
CN100363541C (en) Nanofiber aggregate, polymer alloy fiber, hybrid fiber, fibrous structures, and processes for production of them
JP2011001681A (en) Bacteriostatic textile based on polyamide 11
JPS63190018A (en) Deodorant fiber structure
JP2004244758A (en) Nanofiber-containing fibrous structure
JP2004190197A (en) Antibacterial fiber and antibacterial fiber product
JP5385085B2 (en) Deodorant functional agent-containing ultrafine fiber and method for producing the same
JP2741123B2 (en) Stretchable long-fiber nonwoven fabric and method for producing the same
JPH0913225A (en) Sheath-core type deodorant and antimicrobial conjugate fiber
JPS63190013A (en) Deodorant fiberus structure
JPH08170217A (en) Antimicrobial fibrous material
JP4325616B2 (en) Nanoporous fiber
JP2741122B2 (en) Stretchable bulky long-fiber nonwoven fabric and method for producing the same
JPS63190011A (en) Deodorant fiber structure
JP2004332186A (en) Nanoporous fiber
JP5341673B2 (en) Deodorant fiber and method for producing the same
JP4343561B2 (en) High elongation polyolefin fiber
JP2004316053A (en) Functional fiber structure using nanoporous fiber
KR20140055831A (en) Method for preparing controlled-release core skin type composite fiber and composite fiber made thereof
JP2011042908A (en) Deodorant sheath-core conjugated fiber and method for producing the same
JPH05163681A (en) Deodorant fabric
JP4100180B2 (en) Polymer alloy fiber