JPS63188940A - System for heating by light - Google Patents

System for heating by light

Info

Publication number
JPS63188940A
JPS63188940A JP62021383A JP2138387A JPS63188940A JP S63188940 A JPS63188940 A JP S63188940A JP 62021383 A JP62021383 A JP 62021383A JP 2138387 A JP2138387 A JP 2138387A JP S63188940 A JPS63188940 A JP S63188940A
Authority
JP
Japan
Prior art keywords
temperature
semiconductor substrate
substrate
control
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62021383A
Other languages
Japanese (ja)
Inventor
Masahiko Yomoto
与本 雅彦
Makoto Uehara
誠 上原
Hajime Ichikawa
元 市川
Shigeru Kato
茂 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP62021383A priority Critical patent/JPS63188940A/en
Priority to US07/092,125 priority patent/US4859832A/en
Publication of JPS63188940A publication Critical patent/JPS63188940A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • H01L21/2686Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation using incoherent radiation

Abstract

PURPOSE:To execute a heating operation at a desired temperature in such a way that the temperature distribution over the whole area of a semiconductor substrate is made always uniform by a method wherein a temperature-measuring means is scanned optically on the semiconductor substrate and the temperature is measured at least at two points on the substrate. CONSTITUTION:A microcomputer 21, to which an output from a detector 13 as a radiation thermometer is input, is connected to three lamp-control units 22a-22c composed of thyristors or the like; these units transmit each control signal to lamp power supplies 23a-23c. Each lamp power supply feeds the electric power corresponding to each control signal to infrared lamps 4a-4c, 5a-5c. A pair of upper and lower infrared lamps which are situated face to face with each other on an identical radius are turned on or off under the control of an identical control signal. The infrared lamps constitute a heating means; an optical system for temperature-measuring use and the detector 13 constitute a temperature-measuring means; the microcomputer 21 and the detector 13 constitute a temperature-control means. By this setup, it is possible to control the temperature distribution of a semiconductor substrate in real time by using a single temperature-measuring means as desired.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、半導体製造工程に用いられるランプアニール
装置等の光加熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an optical heating device such as a lamp annealing device used in a semiconductor manufacturing process.

B、従来の技術 この種の光加熱装置として、上述のランプアニール装置
の他、スパッタリング装置、エピタキシャル装置、アッ
シング装置の補助加熱装置が知られており、いずれの装
置においても、加熱温度の制御とともに、基板内の反応
を一様にするため基板内の加熱温度分布を均一化する必
要がある。
B. Prior Art As this type of optical heating device, in addition to the above-mentioned lamp annealing device, auxiliary heating devices for sputtering devices, epitaxial devices, and ashing devices are known. In order to uniformize the reaction within the substrate, it is necessary to equalize the heating temperature distribution within the substrate.

特にランプアニール装置では、基板周辺部での熱の逃げ
に起因して温度分布が不均一となり、その結果、スリッ
プラインが発生したり、また不純物の活性化が不均一と
なって基板内の半導体の特性が相違するといった問題が
ある。
Particularly in lamp annealing equipment, heat escapes around the substrate, resulting in uneven temperature distribution, which can result in slip lines, and uneven activation of impurities, which can cause the semiconductor inside the substrate to become uneven. There is a problem that the characteristics of the two are different.

そこで、特開昭58−194332号公報や特開昭60
−247934号公報(以下で第1の公報と呼ぶ)に開
示されている如く、基板周辺部に補助加熱機構を設けた
り、基板周辺部のランプ配置密度を中央部よりも高くし
て、基板周辺部の温度の不均一さを是正するようにした
装置が提案されている。また、後者の公報には、予め測
定した基板中央部と周辺部の温度差に基づき補助加熱機
構へ電力を供給する手法が開示されている。
Therefore, JP-A-58-194332 and JP-A-60
As disclosed in Publication No. 247934 (hereinafter referred to as the first publication), an auxiliary heating mechanism is provided at the periphery of the substrate, and the lamp arrangement density at the periphery of the substrate is higher than that at the center. A device has been proposed to correct the non-uniformity of temperature in the area. Further, the latter publication discloses a method of supplying power to an auxiliary heating mechanism based on a pre-measured temperature difference between the center portion and the peripheral portion of the substrate.

また、特開昭61−198735号公報(以下で第2の
公報と呼ぶ)には、複数のフラッシュランプをウェハに
相対的に同心円上に配置し、ウェハの中心、周縁部およ
び中心と周縁部との間に複数の温度センサを配置し、こ
れら温度センサからの信号により各フラッシュランプへ
供給される電力を個別的に制御するアニール装置が開示
されている。
Furthermore, in Japanese Patent Application Laid-Open No. 198735 (hereinafter referred to as the second publication), a plurality of flash lamps are arranged concentrically relative to the wafer, and An annealing apparatus is disclosed in which a plurality of temperature sensors are arranged between the flash lamps and the flash lamps, and the power supplied to each flash lamp is individually controlled based on signals from the temperature sensors.

C0発明が解決しようとする問題点 筒1の公報の装置では、予め測定した基板中央部と周辺
部の温度差に基づいて補助加熱機構への電力を制御する
ため、実際の温度分布に対して必ずしも適切に加熱制御
が行われていないおそれがある。
Problems to be Solved by the C0 Invention In the device disclosed in the publication No. 1, the power to the auxiliary heating mechanism is controlled based on the pre-measured temperature difference between the center and periphery of the substrate, so There is a possibility that heating control is not necessarily performed appropriately.

また第2の公報の装置では、複数のセンサが必要となる
上、測温箇所が固定されていて大きさのことなる基板毎
にセンサの位置を変更しなくてはならず、作業効率が悪
い。しかも、基板上の測温箇所が温度センサの位置2個
数によって制限され、任意の基板に対してランプのパワ
ーを制御するには情報量が不足するおそれがある。
Furthermore, the device disclosed in the second publication requires multiple sensors, and since the temperature measurement location is fixed, the sensor position must be changed for each board of different size, resulting in poor work efficiency. . Moreover, the number of temperature measurement locations on the board is limited by the number of two temperature sensors, and there is a risk that the amount of information may be insufficient to control the lamp power for any board.

本発明の目的は、走査型放射温度計により基板における
任意の複数点の温度を測定しその結果に基づいて基板の
加熱温度を制御することにより上述した問題点を解決し
た光加熱装置を提供することにある6 D0問題点を解決するための手段 第1図のクレーム対応図に示すとおり1本発明に係る光
加熱装置は、半導体基板101に光を照射して加熱する
加熱手段102と、半導体基板101上を光学的に走査
して当該基板上の少なくとも2点以上の温度を測定する
測温手段103と。
An object of the present invention is to provide an optical heating device that solves the above-mentioned problems by measuring the temperature at arbitrary points on a substrate using a scanning radiation thermometer and controlling the heating temperature of the substrate based on the results. Means for Solving the 6 D0 Problems As shown in the claim correspondence diagram in FIG. and a temperature measuring means 103 that optically scans the substrate 101 and measures the temperature at at least two points on the substrate.

この測温手段103での測定結果に基づき加熱手段10
2を実時間で制御する温度制御手段104とを具備する
Based on the measurement result of the temperature measuring means 103, the heating means 10
2 in real time.

E0作用 加熱手段102により半導体基板101を加熱する。測
温手段103を半導体基板上で光学的に走査して基板上
の少なくとも2点の温度を測定する。この測温結果に基
づき、温度制御手段104は実時間で加熱手段102を
制御して半導体基板101を所望の温度でかつ半導体基
板101の全領域の温度分布が常時均一になるように加
熱する。
The semiconductor substrate 101 is heated by the E0 effect heating means 102. The temperature measurement means 103 optically scans the semiconductor substrate to measure the temperature at at least two points on the substrate. Based on this temperature measurement result, the temperature control means 104 controls the heating means 102 in real time to heat the semiconductor substrate 101 to a desired temperature so that the temperature distribution over the entire area of the semiconductor substrate 101 is always uniform.

F、実施例 第2図〜第5図に基づいて、本発明をランプアニール装
置に適用した場合の一実施例について説明する。
F. Embodiment An embodiment in which the present invention is applied to a lamp annealing apparatus will be described based on FIGS. 2 to 5.

第2図において、加熱用照射光を透過する石英等で作ら
れたチャンバ1内の基台2上に半導体基板3が載置され
る。この半導体基板3は基板取り出し口1cから出し入
れされる。チャンバ1の上壁la、下壁1bに近接して
、第3図に示すように、半径が異なり半導体基板3の中
心に対して同心円状に配置されたそれぞれ3本の加熱用
赤外ランプ4a〜4c、5a〜5cが設置され、半導体
基板3を加熱する。上壁1a、下壁1bの中心には、そ
れぞれ対向してガス吸気口6とガス排気ロアおよび測温
用通路8とが設けられている。測温用通路8には、測温
用光学系を構成する対物レンズ9、リレーレンズ10が
設けられ、リレーレンズ10には走査ミラー11.集光
レンズ12およびディテクタ13が後続配置され、これ
らにより測温用光学系51が構成される。走査ミラー1
1は、図示しない駆動機構により図示の方向に2次元的
にその傾角が変化するよう構成されている。
In FIG. 2, a semiconductor substrate 3 is placed on a base 2 in a chamber 1 made of quartz or the like that transmits heating irradiation light. This semiconductor substrate 3 is taken in and out from the substrate take-out port 1c. As shown in FIG. 3, three heating infrared lamps 4a are arranged in proximity to the upper wall la and lower wall 1b of the chamber 1, respectively, and are arranged concentrically with respect to the center of the semiconductor substrate 3 with different radii. 4c and 5a to 5c are installed to heat the semiconductor substrate 3. At the centers of the upper wall 1a and the lower wall 1b, a gas inlet 6, a gas exhaust lower, and a temperature measurement passage 8 are provided to face each other. The temperature measurement passage 8 is provided with an objective lens 9 and a relay lens 10 that constitute a temperature measurement optical system, and the relay lens 10 is provided with a scanning mirror 11 . A condensing lens 12 and a detector 13 are arranged subsequently, and these constitute a temperature measurement optical system 51. scanning mirror 1
1 is configured such that its inclination angle changes two-dimensionally in the direction shown by a drive mechanism (not shown).

加熱された半導体基板3からの放射光束は、対物レンズ
9の近傍に設けられた図示しない絞りで制限されて中間
結像点に集光され、そこに半導体基板3の像が形成され
る。更に、放射光束はリレーレンズ10により平行光束
とされて走査ミラー11の光軸中心で反射し、集光レン
ズ12によりディテクタ13上に集光される。このよう
な測温用光学系によりディテクタ13との共役面である
基板全面にわたる温度計測が可能となる。
The emitted light flux from the heated semiconductor substrate 3 is restricted by an aperture (not shown) provided near the objective lens 9 and focused on an intermediate imaging point, where an image of the semiconductor substrate 3 is formed. Further, the emitted light beam is made into a parallel light beam by a relay lens 10, reflected at the center of the optical axis of a scanning mirror 11, and condensed onto a detector 13 by a condensing lens 12. Such a temperature measuring optical system makes it possible to measure the temperature over the entire surface of the substrate, which is a conjugate surface with the detector 13.

半導体基板の温度を100℃〜14oO℃と想定すると
、W i e nの変位側による最大放射光束の波長は
2μm〜8μmであるので、この帯域の波長に感度を持
つディテクタを使うことが望ましい。赤外ランプとして
、ハロゲンランプやキセノン閃光放電灯が使われるため
、光源スペクトルは波長2μm以上で非常に微弱になる
が、半導体基板の温度測定のための光学系への混入を防
ぐ必要がある。このため、チャンバを透過する照射光(
波長4μm以下)を反射し、測温用波長(上記理由によ
り波長4〜8μmの範囲内で選ぶことが望ましい)を透
過する薄膜処理をレンズ表面に施したり、同様の働きを
するダイクロイックミラーを測温用光学系中に挿入した
り、光源側に測温用波長を吸収するフィルタを付加する
ことが望ましい。また測温用光学系のレンズ、鏡筒、絞
りなどからの熱輻射がディテクタに至ると測温誤差を生
じるため、空冷、水冷などにより測温部は測定温度域か
ら大幅にずらした温度環境下に置く必要がある。
Assuming that the temperature of the semiconductor substrate is 100° C. to 140° C., the wavelength of the maximum emitted light flux by the displacement side of Wien is 2 μm to 8 μm, so it is desirable to use a detector sensitive to wavelengths in this band. Since a halogen lamp or a xenon flash discharge lamp is used as an infrared lamp, the light source spectrum becomes extremely weak at wavelengths of 2 μm or more, but it is necessary to prevent this from entering the optical system for measuring the temperature of the semiconductor substrate. For this reason, the illumination light (
The lens surface may be treated with a thin film that reflects wavelengths of 4 μm or less and transmits temperature measurement wavelengths (preferably selected within the wavelength range of 4 to 8 μm for the reasons mentioned above), or dichroic mirrors that function similarly. It is desirable to insert it into the temperature measurement optical system or add a filter that absorbs the temperature measurement wavelength to the light source side. Furthermore, if thermal radiation from the lenses, lens barrel, diaphragm, etc. of the temperature measurement optical system reaches the detector, temperature measurement errors will occur. It is necessary to place it in

次に、第4図に基づきこの実施例の制御系について説明
する。
Next, the control system of this embodiment will be explained based on FIG.

放射温度計であるディテクタ13の出力はマイクロコン
ピュータ21に入力されている。マイクロコンピュータ
21には、サイリスタ等から成る3つのランプコントロ
ールユニット22a。
The output of the detector 13, which is a radiation thermometer, is input to the microcomputer 21. The microcomputer 21 includes three lamp control units 22a including thyristors and the like.

22b、22cが後続し、それぞれのユニットがらラン
プ電源23a、23b、23cに制御信号を供給する。
22b, 22c follow, and each unit supplies a control signal to lamp power supplies 23a, 23b, 23c.

各ランプ電源は制御信号に応じた電力を赤外ランプ4a
と5a、4bと5b、4Cと50にそれぞれ供給する。
Each lamp power source supplies power to the infrared lamp 4a according to the control signal.
and 5a, 4b and 5b, and 4C and 50, respectively.

なお、同一の半径上で対向する上下一対の赤外ランプは
同一の制御信号により点灯制御される。
Incidentally, a pair of upper and lower infrared lamps facing each other on the same radius are controlled to be turned on by the same control signal.

以上の実施例の構成において、赤外ランプ4a〜4c、
5a〜5cが加熱手段を、走査ミラー11等を含む測温
用光学系およびディテクタ13により測温手段を、マイ
クロコンピュータ21゜ランプコントロールユニット2
2a〜22cが温度制御手段をそれぞれ構成する。
In the configuration of the above embodiment, infrared lamps 4a to 4c,
5a to 5c are heating means, a temperature measuring optical system including a scanning mirror 11 and the like and a detector 13 are temperature measuring means, a microcomputer 21 and a lamp control unit 2.
2a to 22c constitute temperature control means, respectively.

次に、この実施例の動作を第5図のフローチャートに基
づいて説明する。
Next, the operation of this embodiment will be explained based on the flowchart shown in FIG.

ステップS1において、マイクロコンピュータ21から
ランプコントロールユニット22a〜22cに信号を送
り、ランプ電源23a〜23Cを介して赤外ランプ4a
〜4c、5a〜5cを点灯してステップS2に進む。ス
テップS2では、走査ミラー11を駆動して基板3の全
領域を走査し、複数の位置の温度を測定して基板の温度
分布を演算する。測温位置は処理する半導体基板の径に
応じて予め設定する。そして、測定位置における種々の
温度分布に対して赤外ランプをどのように制御すれば基
板の温度分布が所定の温度で均一化されるかをあらかじ
め計算又は実験的に求めておき、温度分布−赤外ランプ
点灯制御のマツプとしてROMにプログラムしておく。
In step S1, a signal is sent from the microcomputer 21 to the lamp control units 22a to 22c, and the signal is sent to the infrared lamp 4a via the lamp power supplies 23a to 23C.
4c and 5a to 5c are turned on, and the process proceeds to step S2. In step S2, the scanning mirror 11 is driven to scan the entire area of the substrate 3, and the temperature at a plurality of positions is measured to calculate the temperature distribution of the substrate. The temperature measurement position is set in advance according to the diameter of the semiconductor substrate to be processed. Then, calculate or experiment in advance how to control the infrared lamp for various temperature distributions at the measurement position to make the temperature distribution of the substrate uniform at a predetermined temperature. It is programmed into the ROM as a map for infrared lamp lighting control.

次いでステップS3において、アニールが完了か否かを
判定し、肯定されるとステップS4において、赤外ラン
プ4a〜4c、5a〜5cを消灯してこの手順を終了す
る。否定されるとステップS5において、上述したマツ
プに基づき各赤外ランプへの供給電力を制御し、ステッ
プS2に戻り、上述した動作を繰り返す。なお、放射温
度計による温度測定は周知のP 1anckの式に基づ
き行う。
Next, in step S3, it is determined whether or not the annealing has been completed, and if the answer is yes, in step S4, the infrared lamps 4a to 4c, 5a to 5c are turned off, and this procedure ends. If the answer is NO, in step S5, the power supplied to each infrared lamp is controlled based on the map described above, and the process returns to step S2 to repeat the above-described operations. Note that temperature measurement using a radiation thermometer is performed based on the well-known P 1anck equation.

この実施例では赤外ランプを環状光源としているため、
円形の半導体基板の温度分布は回転対称となり、曲率半
径の異なる各赤外ランプへの供給電力をそれぞれ独立し
て上述の如く制御すれば、半導体基板に対する照度むら
を任意に制御でき、以って所望の温度分布を比較的容易
に得ることができる。
In this example, an infrared lamp is used as an annular light source, so
The temperature distribution of a circular semiconductor substrate is rotationally symmetrical, and if the power supplied to each infrared lamp with a different radius of curvature is controlled independently as described above, the unevenness of illuminance on the semiconductor substrate can be arbitrarily controlled. A desired temperature distribution can be obtained relatively easily.

以上の制御は、所定温度で保持する時に限らず、昇温時
および降温時にも行うのが望ましい。また、放射温度計
による走査速度は、基板温度測定の時間分解能と温度分
解能とに関係しており、走査速度が速いと複数測温位置
全ての測温時間は短くなるが、温度分解能が低下する。
It is desirable to perform the above control not only when maintaining a predetermined temperature, but also when increasing and decreasing the temperature. In addition, the scanning speed of the radiation thermometer is related to the time resolution and temperature resolution of substrate temperature measurement; if the scanning speed is fast, the temperature measurement time at all multiple temperature measurement positions will be shortened, but the temperature resolution will decrease. .

ランプアニール装置では加熱時間が数十秒なので、時間
分解能、すなわち走査速度を0.1秒程度にするのが好
ましい。
Since the heating time in a lamp annealing device is several tens of seconds, it is preferable to set the time resolution, that is, the scanning speed, to about 0.1 seconds.

尚、上記実施例では、上下両面に配置した赤外ランプで
基板を加熱する場合を示したが、赤外ランプを片面だけ
に配置した場合も同様である。また、本発明に係る光加
熱装置は、ランプアニール装置以外、スパッタリング装
置、エピタキシャル装置、アッシング装置などその他の
半導体製造工程の補助加熱装置にも適用できる。
In the above embodiment, the case where the substrate is heated by infrared lamps arranged on both the upper and lower surfaces is shown, but the same applies to the case where the infrared lamps are arranged only on one side. Furthermore, the optical heating device according to the present invention can be applied to auxiliary heating devices for other semiconductor manufacturing processes, such as sputtering devices, epitaxial devices, and ashing devices, in addition to lamp annealing devices.

G0発明の効果 本発明によれば、測温手段を光学的に走査することによ
り半導体基板上の複数の位置の温度を測定し、その測定
結果に基づいて赤外ランプ等の加熱手段による加熱パワ
ーを制御するようにしたので、ひとつの測温手段により
実時間にて半導体基板の温度分布を所望通りに制御でき
る。また種々の大きさの半導体基板に対しても従来のよ
うに温度センサの位置を変更する等の煩雑な作業なしに
処理でき、作業性が向上すると共に、半導体基板上の任
意の多数点についての情報をリアルタイムで得ることが
可能である。
G0 Effects of the Invention According to the present invention, the temperatures at multiple positions on the semiconductor substrate are measured by optically scanning the temperature measurement means, and the heating power of the heating means such as an infrared lamp is adjusted based on the measurement results. Therefore, the temperature distribution of the semiconductor substrate can be controlled as desired in real time using one temperature measuring means. In addition, it is possible to process semiconductor substrates of various sizes without the need for complicated operations such as changing the position of the temperature sensor as in the past, improving work efficiency and processing at any number of points on the semiconductor substrate. It is possible to obtain information in real time.

従って、実施例のようにランプアニール装置として用い
て半導体基板の温度分布を均一に制御すれば、スリップ
ラインが防止でき、かつ不純物の活性化が一様に行え半
導体としての特性を均一化できる。更に、活性化以外の
用途として、酸化。
Therefore, if the temperature distribution of the semiconductor substrate is uniformly controlled by using it as a lamp annealing device as in the embodiment, slip lines can be prevented, impurities can be uniformly activated, and the characteristics as a semiconductor can be made uniform. Furthermore, as a use other than activation, oxidation.

窒化、シリサイド化ガラスリフローなどに用いても、基
板の全領域にわたって均一な反応が得られる。
Even when used for nitriding, silicidation glass reflow, etc., a uniform reaction can be obtained over the entire area of the substrate.

更にまた、光加熱装置をスパッタリング装置等。Furthermore, optical heating equipment, sputtering equipment, etc.

他の半導体製造工程の補助加熱装置として用いる場合に
も、基板全領域にわたり均一な反応が得られる。
Even when used as an auxiliary heating device in other semiconductor manufacturing processes, a uniform reaction can be obtained over the entire substrate area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はクレーム対応図である。 第2図〜第5図は本発明の一実施例を示すもので、第2
図はランプアニール装置の概略構成図、第3図は第2図
の平面図、第4図は制御系を示すブロック図、第5図は
処理手順例を示すフローチャートである。 1:チャンバ 3:半導体基板 4a〜4c、5a〜5c:赤外ランプ 13:ディテクタ 21:マイクロコンピュータ 22a〜22c:ランプコントロールユニット23a〜
23c:ランプ電源 51 : 81q温用光学系 101:半導体基板 1o2:加熱手段 103:測温手段 104:温度制御手段 特許出願人  日本光学工業株式会社 代理人弁理士   永 井 冬 紀 第1図 第2図 第3図
FIG. 1 is a complaint correspondence diagram. Figures 2 to 5 show one embodiment of the present invention.
3 is a plan view of FIG. 2, FIG. 4 is a block diagram showing a control system, and FIG. 5 is a flowchart showing an example of a processing procedure. 1: Chamber 3: Semiconductor substrates 4a-4c, 5a-5c: Infrared lamp 13: Detector 21: Microcomputer 22a-22c: Lamp control unit 23a-
23c: Lamp power source 51: 81q Warm optical system 101: Semiconductor substrate 1o2: Heating means 103: Temperature measuring means 104: Temperature control means Patent applicant Nippon Kogaku Kogyo Co., Ltd. Representative patent attorney Norihiro Nagai, Figure 1, Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 半導体基板に光を照射して加熱する加熱手段と、前記半
導体基板上を光学的に走査して当該基板上の少なくとも
2点以上の温度を測定する測温手段と、 この測温手段での測定結果に基づき前記加熱手段を実時
間で制御する温度制御手段とを具備することを特徴とす
る光加熱装置。
[Scope of Claims] A heating means for heating a semiconductor substrate by irradiating it with light; a temperature measuring means for optically scanning the semiconductor substrate to measure the temperature at at least two points on the substrate; An optical heating device characterized by comprising: a temperature control means for controlling the heating means in real time based on the measurement result of the temperature measurement means.
JP62021383A 1986-09-08 1987-01-30 System for heating by light Pending JPS63188940A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62021383A JPS63188940A (en) 1987-01-30 1987-01-30 System for heating by light
US07/092,125 US4859832A (en) 1986-09-08 1987-09-02 Light radiation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62021383A JPS63188940A (en) 1987-01-30 1987-01-30 System for heating by light

Publications (1)

Publication Number Publication Date
JPS63188940A true JPS63188940A (en) 1988-08-04

Family

ID=12053566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62021383A Pending JPS63188940A (en) 1986-09-08 1987-01-30 System for heating by light

Country Status (1)

Country Link
JP (1) JPS63188940A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092676A (en) * 2001-12-26 2009-04-30 Mattson Technology Canada Inc Temperature measurement and heat-treatment method and system
JP2010225613A (en) * 2009-03-19 2010-10-07 Dainippon Screen Mfg Co Ltd Heat treatment apparatus
JP2012074430A (en) * 2010-09-28 2012-04-12 Dainippon Screen Mfg Co Ltd Heat treatment device and heat treatment method
US8693857B2 (en) 2007-05-01 2014-04-08 Mattson Technology, Inc. Irradiance pulse heat-treating methods and apparatus
JP2014143298A (en) * 2013-01-24 2014-08-07 Dainippon Screen Mfg Co Ltd Thermal treatment apparatus and thermal treatment method
US9279727B2 (en) 2010-10-15 2016-03-08 Mattson Technology, Inc. Methods, apparatus and media for determining a shape of an irradiance pulse to which a workpiece is to be exposed
US9482468B2 (en) 2005-09-14 2016-11-01 Mattson Technology, Inc. Repeatable heat-treating methods and apparatus
JP2017208543A (en) * 2016-05-13 2017-11-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Semiconductor chip manufacturing method and semiconductor chip
US10388823B2 (en) 2016-05-13 2019-08-20 Osram Opto Semiconductors Gmbh Semiconductor chip and method for producing a semiconductor chip
US10637211B2 (en) 2016-05-13 2020-04-28 Osram Oled Gmbh Light-emitting semiconductor chip and method for producing a semiconductor light-emitting chip
WO2022224342A1 (en) * 2021-04-20 2022-10-27 株式会社九州日昌 Heating device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117979A (en) * 2001-12-26 2011-06-16 Mattson Technology Canada Inc Temperature measurement, heat treatment method, and system
JP2009092676A (en) * 2001-12-26 2009-04-30 Mattson Technology Canada Inc Temperature measurement and heat-treatment method and system
US9482468B2 (en) 2005-09-14 2016-11-01 Mattson Technology, Inc. Repeatable heat-treating methods and apparatus
US8693857B2 (en) 2007-05-01 2014-04-08 Mattson Technology, Inc. Irradiance pulse heat-treating methods and apparatus
JP2010225613A (en) * 2009-03-19 2010-10-07 Dainippon Screen Mfg Co Ltd Heat treatment apparatus
JP2012074430A (en) * 2010-09-28 2012-04-12 Dainippon Screen Mfg Co Ltd Heat treatment device and heat treatment method
US9025943B2 (en) 2010-09-28 2015-05-05 SCREEN Holdings Co., Ltd. Heat treatment apparatus and heat treatment method for heating substrate by irradiating substrate with flashes of light
US9279727B2 (en) 2010-10-15 2016-03-08 Mattson Technology, Inc. Methods, apparatus and media for determining a shape of an irradiance pulse to which a workpiece is to be exposed
US9875919B2 (en) 2013-01-24 2018-01-23 SCREEN Holdings, Co. Ltd. Heat treatment method for heating substrate by irradiating substrate with flash of light
JP2014143298A (en) * 2013-01-24 2014-08-07 Dainippon Screen Mfg Co Ltd Thermal treatment apparatus and thermal treatment method
US9607870B2 (en) 2013-01-24 2017-03-28 SCREEN Holdings Co., Ltd. Heat treatment apparatus and heat treatment method for heating substrate by irradiating substrate with flash of light
JP2017208543A (en) * 2016-05-13 2017-11-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Semiconductor chip manufacturing method and semiconductor chip
US10388823B2 (en) 2016-05-13 2019-08-20 Osram Opto Semiconductors Gmbh Semiconductor chip and method for producing a semiconductor chip
US10396106B2 (en) 2016-05-13 2019-08-27 Osram Opto Semiconductors Gmbh Method for producing a semiconductor chip and semiconductor chip
US10637211B2 (en) 2016-05-13 2020-04-28 Osram Oled Gmbh Light-emitting semiconductor chip and method for producing a semiconductor light-emitting chip
US10693033B2 (en) 2016-05-13 2020-06-23 Osram Oled Gmbh Semiconductor chip and method for producing a semiconductor chip
US11004876B2 (en) 2016-05-13 2021-05-11 Osram Oled Gmbh Method for producing a semiconductor chip and semiconductor chip
WO2022224342A1 (en) * 2021-04-20 2022-10-27 株式会社九州日昌 Heating device
JP7236174B1 (en) * 2021-04-20 2023-03-09 株式会社九州日昌 heating device
US11646647B2 (en) 2021-04-20 2023-05-09 Kyushu Nissho Co., Ltd. Heating apparatus

Similar Documents

Publication Publication Date Title
KR100722724B1 (en) Apparatus having line source of radiant energy for exposing a substrate
US7371997B2 (en) Thermal processing apparatus and thermal processing method
US7608802B2 (en) Heating device for heating semiconductor wafers in thermal processing chambers
US5577157A (en) Optical processing furnace with quartz muffle and diffuser plate
US6479801B1 (en) Temperature measuring method, temperature control method and processing apparatus
US8432613B2 (en) Multi-stage optical homogenization
JPS63188940A (en) System for heating by light
US11177144B2 (en) Wafer spot heating with beam width modulation
JPS6220308A (en) Method and apparatus for heat treatment
JP2008141086A (en) Apparatus for treating substrate
JP3795788B2 (en) Substrate heat treatment method
US6142663A (en) Temperature measuring method for semiconductor wafers and processing apparatus
JPH11145073A (en) Device and method for heat treatment
JP3075254B2 (en) Lamp annealing equipment
JPH11135449A (en) Heat-treatment device and light-irradiating device therefor
JP3195678B2 (en) Energy beam heating device
JPS6252926A (en) Heat treatment device
JPS6366930A (en) Optical irradiator
JPH05190409A (en) Method and apparatus for control of temperature of member to be irradiated
JPS63217238A (en) Temperature measuring instrument
JPS63260018A (en) Lamp annealer
JPS63271127A (en) Measuring instrument for temperature of semiconductor substrate
JPS63243826A (en) Optical device for temperature measurement
JP2022184302A (en) Optical heating device
JPH04354121A (en) Quick heating equipment