JPS6318661B2 - - Google Patents

Info

Publication number
JPS6318661B2
JPS6318661B2 JP55128138A JP12813880A JPS6318661B2 JP S6318661 B2 JPS6318661 B2 JP S6318661B2 JP 55128138 A JP55128138 A JP 55128138A JP 12813880 A JP12813880 A JP 12813880A JP S6318661 B2 JPS6318661 B2 JP S6318661B2
Authority
JP
Japan
Prior art keywords
alloy
corrosion
heat exchanger
fin material
pitting corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55128138A
Other languages
Japanese (ja)
Other versions
JPS5754243A (en
Inventor
Ken Toma
Masanao Iida
Hiroshi Ooba
Isao Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP12813880A priority Critical patent/JPS5754243A/en
Publication of JPS5754243A publication Critical patent/JPS5754243A/en
Publication of JPS6318661B2 publication Critical patent/JPS6318661B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、すぐれた耐孔食性、成形加工性、
塑性(圧延)加工性、および犠牲陽極効果を有
し、特に熱交換器のフイン材として使用するのに
適したAl合金に関するものである。 一般に、Al合金は熱伝導性、塑性(圧延)加
工性、成形加工性、および耐食性などにすぐれて
いることから、これらの特性が要求される熱交換
器フイン材の製造に広く用いられている。 また、従来熱交換器フイン材の製造に比較的多
く用いられている代表的Al合金としては、Zr:
0.01〜0.15%を含有し、さらに必要に応じて
Mn:0.5%以下を含有し、残りがAlと不可避不純
物からなる組成(以下重量%、以下%の表示はす
べて重量%を意味する)を有するAl合金がある。 一方、上記従来Al―Zr―(Mn)合金薄板から
熱交換器フイン材を成形するに際しては、熱交換
器組立て前に、管材との接合部を得るためにフイ
ン材に成形加工が施されるが、この場合前記フイ
ン材が強圧延加工されたものであると、延性が不
十分なために成形加工性に劣り、逆に完全焼鈍さ
れたものであると、延性は十分であるが、強度が
著しく劣るために、製造時および使用時に容易に
塑性変形を起すようになるなどの理由から、通常
は強圧延加工および焼鈍の両状態のもつ長所をい
かし、半硬質状態で成形加工されている。 しかしながら、上記従来Al―Zr―(Mn)合金
製フイン材においては、これを実用に供した場
合、比較的早期に孔食を発生することが多く、特
に管材にCuおよびCu合金を用いた場合には、い
わゆる接触腐食が促進されるようになることか
ら、この孔食発生傾向は顕著なものとなるもので
あつた。 このようにフイン材に孔食が発生すると、孔食
内部では溶液環境が著しく酸性になつているため
にフイン材本体から溶出したAlイオンは溶解し
た状態になつているが、このAlイオンが孔食外
方に出ると、孔食外側は通常、中性環境であるた
めに溶解度が著しく低減する結果、孔食周辺部に
は腐食生成物、すなわちAl(OH)3からなる沈澱
物が多量に析出するようになる。この腐食生成物
は、乾燥状態となつた場合、いわゆる「白粉」と
なつて、送風と共に熱交換器外部へ飛散し、例え
ば前記熱交換器がクーラーであれば、室内汚染の
原因となるなど問題となつている。 また、熱交換器の管材がZnを含有しないAl合
金で製造されている場合にも、この管材は孔食を
発生しやすく、貫通孔形成にもとづく事故が多発
しているのが現状である。 そこで、本発明者等は、上述のような観点か
ら、熱交換器のフイン材として使用されている上
記従来Al―Zr―(Mn)合金に着目し、この合金
のもつすぐれた熱伝導性、塑性(圧延)加工性、
および成形加工性をそこなうことなく、これにす
ぐれた耐孔食性を付与すべく研究を行なつた結
果、前記Al―Zr―(Mn)合金にZnを含有させる
と、酸化皮膜の耐食性が全体的に弱まつて、腐食
形態が全面腐食型となり、この結果孔食の発生が
抑制されるようになると共に、材料表面に付着す
る溶液の局部的酸性化が防止されるようになるこ
とから、腐食生成物が局部的に集積することがな
く、溶液全体に亘つて比較的低濃度で分散するよ
うになるので、前記腐食生成物は熱交換器使用中
の結露水の滴下によつて容易に流出し、前記腐食
生成物に原因する「白粉」の飛散に伴なう弊害が
なくなり、さらに上記のようにZn含有によつて、
Znを含有しないAl合金製管材に比して、電気化
学的に卑となるので、すぐれた犠牲陽極効果をも
つようになることから、良く管材を防食するとい
う知見を得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、Zr:0.02〜0.15%、Zn:0.1〜0.4%
未満を含有し、さらに必要に応じてMn:0.05〜
0.5%を含有し、残りがAlと不可避不純物からな
る組成を有し、かつすぐれた耐孔食性、成形加工
性、塑性加工性、および犠牲陽極効果を兼ね備
え、特に熱交換器のフイン材として使用するのに
適したAl合金に特徴を有するものである。 つぎに、この発明のAl合金において、成分組
成範囲を上記の通りに限定した理由を説明する。 (a) Zr 一般のAl合金においては、例えば等時焼鈍
によつて軟化させる場合、軟化開始温度と同終
了温度の差が著しく小さいために、半硬質材を
このような方法によつて安定して得ることはき
わめて困難である。ところが、Al合金にZrを
含有させると、前記Zr成分は回復および再結
晶抑制作用をもつことから、軟化が緩慢になつ
て前記の温度差が大きくなるので、比較的容易
に半硬質材を得ることができるようになる。
Zr成分には、このような作用があるが、その
含有量が0.02%未満では上記の作用に所望の効
果が確保できず、一方0.15%を越えて含有させ
ると、溶解鋳造時に晶出物を形成し易くなり、
この結果成形加工性が劣化するようになると共
に、Zr成分のもつ作用を十分発揮することが
むづかしくなることから、その含有量を0.02〜
0.15%と定めた。 (b) Zn Zn成分は、腐食量の増加および熱伝導性の
低下を最小限に抑え、かつ成形加工性に何ら悪
影響を及ぼすことなく耐孔食性を著しく向上さ
せ、しかも電気化学的に卑にすることによつ
て、すぐれた犠牲陽極効果を発揮させる作用を
もつが、その含有量が0.1%未満では前記作用
に所望の効果が得られず、一方その含有量が
0.4%以上になると、腐食量が増大するように
なるばかりでなく、再び局部腐食が発生し易く
なることから、その含有量を0.1〜0.4%未満と
限定した。 (c) Mn Mn成分には、成形加工性を著しく改善し、
かつ耐食性および耐孔食性をも同時に向上させ
る作用があるので、これらの特性が要求される
場合に必要に応じて含有されるが、その含有量
が0.05%未満では前記作用に所望の改善効果が
得られず、一方0.5%を越えて含有させると、
熱伝導度の低下が著しくなつてフイン材本来の
機能が著しくそこなわれるようになるばかりで
なく、犠牲陽極効果も低下するようになること
から、その含有量を0.05〜0.5%と定めた。 つぎに、この発明のAl合金を実施例により比
較例と対比しながら説明する。 実施例 通常の溶解法により第1表に示される最終成分
組成をもつた本発明合金1〜8および比較合金1
〜4をそれぞれ溶解し、鋳造して鋳塊とした後、
均質化熱処理を施した。なお、これらの合金は、
すべて不可避不純物として、Si:0.07〜0.11%、
Fe:0.15〜0.20%、Cu:0.05%以下、Mg:0.01
%以下、およびCr:0.01%以下の成分範囲内の量
含有するものであつた。 ついで、この結果得られた本発明合金1〜8お
よび比較合金1〜4に対して、通常の条件にて熱
間圧延、中間焼鈍、および冷間圧延を施して板
厚:1mmおよび0.12mmの2種の板材とし、最終的
に前記板材に、温度:300℃に1時間保持の焼鈍
を施して半硬質材とした。 引続いて、上記板厚:1mmの板材から75mm×
150mmの寸法をもつた試験片を切出し、この試験
片を用いて、塩水噴霧試験と、Cuイオン:1p.p.
m.を含有する水道水中に浸漬の水道水浸漬試験
を、それぞれ30日間行なつた。また、上記板厚:
0.12mmの板材を用いて、熱伝導度評価のための電
気伝導度と機械的性質を測定した。これらの試験
結果および測定結果を第1表に合せて示し
This invention has excellent pitting corrosion resistance, moldability,
The present invention relates to an Al alloy that has plastic (rolling) workability and a sacrificial anode effect, and is particularly suitable for use as a fin material in a heat exchanger. In general, Al alloys have excellent thermal conductivity, plastic (rolling) workability, moldability, and corrosion resistance, so they are widely used in the production of heat exchanger fin materials that require these properties. . In addition, Zr:
Contains 0.01-0.15%, and if necessary
There is an Al alloy having a composition containing 0.5% or less of Mn, and the remainder consisting of Al and unavoidable impurities (hereinafter referred to as % by weight, all % indications hereinafter mean % by weight). On the other hand, when forming the heat exchanger fin material from the conventional Al-Zr-(Mn) alloy thin plate mentioned above, the fin material is subjected to forming processing to obtain a joint with the pipe material before assembling the heat exchanger. However, in this case, if the fin material is hard-rolled, its ductility is insufficient, resulting in poor formability; on the other hand, if it is completely annealed, the fin material has sufficient ductility but poor strength. Because of this, plastic deformation easily occurs during manufacturing and use, and therefore, it is usually formed in a semi-hard state by taking advantage of the advantages of both hard rolling and annealing states. . However, when the above-mentioned conventional Al-Zr-(Mn) alloy fin material is put into practical use, pitting corrosion often occurs relatively early, especially when Cu and Cu alloys are used for the pipe material. In this case, so-called contact corrosion was promoted, and this tendency to cause pitting corrosion became remarkable. When pitting corrosion occurs in the fin material in this way, the solution environment inside the pitting corrosion becomes extremely acidic, so the Al ions eluted from the fin material body remain in a dissolved state. As the outside of the pitting corrosion is usually in a neutral environment, solubility is significantly reduced, resulting in a large amount of corrosion products, namely precipitates consisting of Al(OH) 3 , around the pitting corrosion area. It begins to precipitate. When this corrosion product becomes dry, it becomes so-called "white powder" and scatters to the outside of the heat exchanger with the air flow. For example, if the heat exchanger is a cooler, it can cause problems such as indoor contamination. It is becoming. Furthermore, even when the tube material of the heat exchanger is made of an Al alloy that does not contain Zn, this tube material is susceptible to pitting corrosion, and accidents due to the formation of through holes are occurring frequently. Therefore, from the above-mentioned viewpoint, the present inventors focused on the above-mentioned conventional Al-Zr-(Mn) alloy, which is used as a fin material for heat exchangers, and discovered that this alloy has excellent thermal conductivity, Plastic (rolling) workability,
As a result of conducting research to impart excellent pitting corrosion resistance to this alloy without impairing its formability, it was found that when Zn is added to the Al-Zr-(Mn) alloy, the overall corrosion resistance of the oxide film is improved. As a result, the corrosion mode becomes a general corrosion type, and as a result, the occurrence of pitting corrosion is suppressed, and local acidification of the solution attached to the material surface is prevented, so corrosion is reduced. Since the products do not accumulate locally and become dispersed throughout the solution in relatively low concentrations, the corrosion products are easily washed away by dripping condensed water during use of the heat exchanger. However, the harmful effects associated with the scattering of "white powder" caused by the above-mentioned corrosion products are eliminated, and as mentioned above, by containing Zn,
Since it is electrochemically less base than Al alloy tube material that does not contain Zn, it has an excellent sacrificial anode effect, and we have found that it effectively protects the tube material from corrosion. This invention was made based on the above knowledge, and includes Zr: 0.02 to 0.15%, Zn: 0.1 to 0.4%
If necessary, Mn: 0.05~
It has a composition of 0.5% and the rest is Al and unavoidable impurities, and has excellent pitting corrosion resistance, moldability, plastic workability, and sacrificial anode effect, and is especially used as a fin material for heat exchangers. It has the characteristics of an Al alloy suitable for Next, the reason why the composition range of the Al alloy of the present invention is limited as described above will be explained. (a) Zr When softening general Al alloys, for example by isochronous annealing, the difference between the softening start temperature and the softening end temperature is extremely small, so semi-hard materials cannot be stabilized by this method. It is extremely difficult to obtain a However, when Zr is added to an Al alloy, the Zr component has a recovery and recrystallization inhibiting effect, which slows down the softening and increases the temperature difference, making it relatively easy to obtain a semi-hard material. You will be able to do this.
The Zr component has such an effect, but if its content is less than 0.02%, the desired effect cannot be secured for the above effect, while if it is contained in excess of 0.15%, crystallized substances may be generated during melting and casting. easier to form,
As a result, moldability deteriorates and it becomes difficult to fully exert the effect of the Zr component, so the content should be reduced from 0.02 to
It was set at 0.15%. (b) Zn The Zn component minimizes the increase in corrosion amount and the decrease in thermal conductivity, significantly improves pitting corrosion resistance without any adverse effect on moldability, and is electrochemically However, if the content is less than 0.1%, the desired effect cannot be obtained;
If it exceeds 0.4%, not only will the amount of corrosion increase, but local corrosion will likely occur again, so the content was limited to less than 0.1 to 0.4%. (c) Mn The Mn component significantly improves moldability,
It also has the effect of simultaneously improving corrosion resistance and pitting corrosion resistance, so it is included as necessary when these properties are required, but if the content is less than 0.05%, the desired improvement effect on the above effects may not be achieved. On the other hand, if it is contained in excess of 0.5%,
The content was set at 0.05 to 0.5% because not only would the thermal conductivity drop significantly and the original function of the fin material would be significantly impaired, but also the sacrificial anode effect would decrease. Next, the Al alloy of the present invention will be explained using examples and comparing with comparative examples. Examples Alloys 1 to 8 of the present invention and Comparative Alloy 1 having the final composition shown in Table 1 by ordinary melting method
After each of ~4 was melted and cast into an ingot,
Homogenization heat treatment was performed. Furthermore, these alloys are
All unavoidable impurities: Si: 0.07-0.11%,
Fe: 0.15-0.20%, Cu: 0.05% or less, Mg: 0.01
% or less, and Cr: 0.01% or less. Next, the resulting invention alloys 1 to 8 and comparative alloys 1 to 4 were subjected to hot rolling, intermediate annealing, and cold rolling under normal conditions to obtain plate thicknesses of 1 mm and 0.12 mm. Two types of plate materials were prepared, and finally the plate materials were annealed at a temperature of 300° C. for 1 hour to obtain a semi-hard material. Subsequently, the above board thickness: 75mm x 1mm board material
A test piece with a size of 150 mm was cut out, and using this test piece, a salt spray test was conducted, and Cu ion: 1 p.p.
A tap water immersion test was conducted for 30 days each in tap water containing M. In addition, the above board thickness:
Electrical conductivity and mechanical properties for thermal conductivity evaluation were measured using a 0.12mm plate. These test results and measurement results are shown in Table 1.

【表】 た。 第1表に示されるように、本発明合金1〜8
は、Znを含有しない比較合金1、3およびZnの
含有量がこの発明の範囲から外れて高い組成を有
する比較合金2、4に比して、腐食量がほとんど
同じ状態で耐孔食性の著しく改善されたものにな
つており、またZnの含有によつて機械的性質お
よび電気伝導度がほとんど影響されないことが明
らかである。 上述のように、この発明のAl合金は、従来Al
―Zr―(Mn)合金と同等のすぐれた熱伝導性、
成形加工性、および塑性加工性を有し、かつこれ
より一段とすぐれた耐孔食性および犠牲陽極効果
をもつので、熱交換器のフイン材として使用した
場合、前記フイン材の孔食発生が著しく抑制され
るようになると共に、Znを含有しないAl合金製
管材を犠牲陽極効果の十分な発揮によつて、良く
防食するようになることから、熱交換器の使用寿
命の著しい延命化が可能となるなど工業上有用な
特性を有するのである。
[Table] As shown in Table 1, the invention alloys 1 to 8
Compared to Comparative Alloys 1 and 3, which do not contain Zn, and Comparative Alloys 2 and 4, which have a high Zn content outside the scope of the present invention, these have significantly better pitting corrosion resistance with almost the same amount of corrosion. It is clear that the mechanical properties and electrical conductivity are hardly affected by the inclusion of Zn. As mentioned above, the Al alloy of the present invention is
- Excellent thermal conductivity equivalent to Zr-(Mn) alloy,
It has moldability and plastic workability, as well as superior pitting corrosion resistance and sacrificial anode effect, so when used as a fin material for a heat exchanger, pitting corrosion of the fin material is significantly suppressed. At the same time, the sacrificial anode effect of the aluminum alloy tube material, which does not contain Zn, becomes well protected against corrosion, making it possible to significantly extend the service life of the heat exchanger. It has industrially useful properties such as:

Claims (1)

【特許請求の範囲】 1 Zr:0.02〜0.15%、 Zn:0.1〜0.4%未満、 を含有し、残りがAlと不可避不純物からなる組
成(以上重量%)を有することを特徴とする熱交
換器フイン材用Al合金。 2 Zr:0.02〜0.15%、 Zn:0.1〜0.4%未満、 を含有し、さらに、 Mn:0.05〜0.5%、 を含有し、残りがAlと不可避不純物からなる組
成(以上重量%)を有することを特徴とする熱交
換器フイン材用Al合金。
[Claims] 1. A heat exchanger characterized by having a composition (weight %) containing 1 Zr: 0.02 to 0.15%, Zn: 0.1 to less than 0.4%, and the remainder consisting of Al and inevitable impurities. Al alloy for fin material. 2 Contains Zr: 0.02 to 0.15%, Zn: 0.1 to less than 0.4%, and further contains Mn: 0.05 to 0.5%, with the remainder consisting of Al and unavoidable impurities (wt%). Al alloy for heat exchanger fin material featuring:
JP12813880A 1980-09-16 1980-09-16 Aluminum alloy used for fin of heat exchanger Granted JPS5754243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12813880A JPS5754243A (en) 1980-09-16 1980-09-16 Aluminum alloy used for fin of heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12813880A JPS5754243A (en) 1980-09-16 1980-09-16 Aluminum alloy used for fin of heat exchanger

Publications (2)

Publication Number Publication Date
JPS5754243A JPS5754243A (en) 1982-03-31
JPS6318661B2 true JPS6318661B2 (en) 1988-04-19

Family

ID=14977332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12813880A Granted JPS5754243A (en) 1980-09-16 1980-09-16 Aluminum alloy used for fin of heat exchanger

Country Status (1)

Country Link
JP (1) JPS5754243A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190347A (en) * 1983-04-11 1984-10-29 Mitsubishi Alum Co Ltd Fin material for aluminum heat exchanger manufactured by vacuum brazing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507709A (en) * 1973-05-24 1975-01-27
JPS525608A (en) * 1975-07-02 1977-01-17 Kobe Steel Ltd Aluminium alloy having excellent moldability and production process of its thin sheet
JPS5456011A (en) * 1977-10-12 1979-05-04 Sumitomo Light Metal Ind Aluminium alloy for consumable anode
JPS54126614A (en) * 1978-03-27 1979-10-02 Mitsubishi Aluminium Aluminum alloy clad material for use in brazing
JPS55119146A (en) * 1979-03-09 1980-09-12 Furukawa Alum Co Ltd Aluminum fin material for heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507709A (en) * 1973-05-24 1975-01-27
JPS525608A (en) * 1975-07-02 1977-01-17 Kobe Steel Ltd Aluminium alloy having excellent moldability and production process of its thin sheet
JPS5456011A (en) * 1977-10-12 1979-05-04 Sumitomo Light Metal Ind Aluminium alloy for consumable anode
JPS54126614A (en) * 1978-03-27 1979-10-02 Mitsubishi Aluminium Aluminum alloy clad material for use in brazing
JPS55119146A (en) * 1979-03-09 1980-09-12 Furukawa Alum Co Ltd Aluminum fin material for heat exchanger

Also Published As

Publication number Publication date
JPS5754243A (en) 1982-03-31

Similar Documents

Publication Publication Date Title
JPH0674466B2 (en) Copper alloy for heat exchanger tanks, plates or tubes
JPS6318661B2 (en)
JPH0459379B2 (en)
JPS5935977B2 (en) Copper-based alloy for radiator tubes
JPH0380858B2 (en)
JP3274177B2 (en) Copper base alloy for heat exchanger and method for producing the same
JPS6261103B2 (en)
JPS60215729A (en) Fin material for aluminum alloy heat exchanger and its production
JPH0570870A (en) Production of copper alloy for heat transfer pipe and heat transfer pipe for heat exchanger
CA1057535A (en) Copper base materials having an improved erosion-corrosion resistance
JPH05311295A (en) Copper base alloy for heat exchanger and its manufacture
JPS6254183B2 (en)
JPH07166270A (en) Copper alloy excellent in resistance to ant-lair-like corrosion
JPH04236734A (en) Brass added with sn, mg and p and having excellent corrosion resistance
JPS6250538B2 (en)
JP3274176B2 (en) Copper base alloy for heat exchanger and method for producing the same
JPS58164749A (en) Composite al alloy material with superior pitting corrosion resistance
JPS6256223B2 (en)
KR100189089B1 (en) Cu-mn-si alloy with etching resistance
JPH025569B2 (en)
JPH04236735A (en) Brass added with in, mg and p and having excellent corrosion resistance
KR20230124698A (en) High-strength, sag-resistant aluminum alloy for use as fin stock, and method of making the same
JPS6311598B2 (en)
JPS59222541A (en) Fin material for radiator for car
JPH01148489A (en) Al alloy brazing sheet for heat exchanger having excellent corrosion resistance at fillet forming part