JPS63185063A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63185063A
JPS63185063A JP1758787A JP1758787A JPS63185063A JP S63185063 A JPS63185063 A JP S63185063A JP 1758787 A JP1758787 A JP 1758787A JP 1758787 A JP1758787 A JP 1758787A JP S63185063 A JPS63185063 A JP S63185063A
Authority
JP
Japan
Prior art keywords
layer
type
oxide film
emitter
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1758787A
Other languages
Japanese (ja)
Inventor
Masakatsu Sato
正勝 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1758787A priority Critical patent/JPS63185063A/en
Publication of JPS63185063A publication Critical patent/JPS63185063A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To manufacture a lateral transistor having a high current amplification factor and a high cutoff frequency readily, by forming an emitter in a base layer so as to provide self-alignment. CONSTITUTION:An oxide film 10 is formed on the surface of an N-type epitaxial layer of a P-type silicon substrate 1 having an N<+> type embedded layer 2. Selective etching is performed, and a P<-> collector layer 5 is formed on the epitaxial layer. Then, the oxide film 10 is formed. Selective etching is performed, and an N-type base layer 6 is formed. An oxide film 11 is formed. After the oxide film 11 is etched, a P<+> type emitter layer 7 is formed. The base layer 6 and the emitter layer 7 have a self-alignment pattern by diffusing impuritied through the same opening part. Therefore, the base width can be made small, and a current amplification factor and a cutoff frequency can be made large.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明に半導体装置の製造方法に関し、特に横型トラン
ジスタを備えた半導体集積回路の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor integrated circuit including a lateral transistor.

、〔従来の技術〕 従来の横型トランジスタに、マ撤埋込層を有するP型基
板上にN型エピタキシャル層を形成する。
, [Prior Art] In a conventional lateral transistor, an N-type epitaxial layer is formed on a P-type substrate having a buried layer.

次に、N型エピタキシャル層上に形成された絶縁膜の所
定部を開口し、P型不純物を導入し、エミッタ、コレク
タを形成する。次に、絶縁膜の所定部を開口し、を型不
純物を導入し、ベースコンタクト用を層を形成し、横型
)’NPトランジスタを得ている。
Next, a predetermined portion of the insulating film formed on the N-type epitaxial layer is opened and a P-type impurity is introduced to form an emitter and a collector. Next, a predetermined portion of the insulating film is opened, a type impurity is introduced, and a base contact layer is formed to obtain a lateral NP transistor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の製造方法は、工程が短いといり長所はめ
るが、この方法で形成された横型トランジスタは次の様
な欠点がある。従来の横型トランジスタの不純物プロフ
ァイルを半河数目盛でめられした特性図を第5図に示す
。この濃度プロファイルはベース層の不純物濃度は均一
でコレクタ層の不純物濃度にベースに比べて十分高くな
っている。したがって、ベース・コレクタ間を逆バイア
スしたときの空乏層のほとんどに低濃度側のベース層に
のびる為、エミッタ・コレクタがパンチスルにより耐圧
が低下しない様にベース幅を十分大きくとる構造となっ
ている。この結果、電流増幅率hFBが小さく遮断周波
数frも小さいという欠点がおる。
Although the conventional manufacturing method described above has the advantage of short process steps, the lateral transistor formed by this method has the following drawbacks. FIG. 5 shows a characteristic diagram showing the impurity profile of a conventional lateral transistor on a half-height scale. In this concentration profile, the impurity concentration in the base layer is uniform and the impurity concentration in the collector layer is sufficiently higher than that in the base. Therefore, when reverse bias is applied between the base and collector, most of the depletion layer extends to the base layer on the low concentration side, so the base width is designed to be sufficiently large so that the withstand voltage does not drop due to emitter-collector punch-slip. . As a result, there is a drawback that the current amplification factor hFB is small and the cutoff frequency fr is also small.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、高濃度の第2導電型
埋込層をもつ第1導電型半導体基板の上に形成された第
2導電型エピタキシャル層に、不純物濃度が、前記エピ
タキシャル層の不純物濃度と同程度の第2導型のコレク
タ層を選択的に形成する工程と、前記コレクタ層に不純
物濃度が前記コレクタ層の不純物濃度より高い@14電
型のベース層を形成する工程と、前記ベース層に第1導
を型のエミツタ層を自己整合を有して選択的に形成する
工程とを含んで構成される。
In the method for manufacturing a semiconductor device of the present invention, a second conductivity type epitaxial layer formed on a first conductivity type semiconductor substrate having a second conductivity type buried layer with a high concentration has an impurity concentration of the epitaxial layer. selectively forming a second conductivity type collector layer having an impurity concentration comparable to that of the collector layer; forming a @14 conductivity type base layer having an impurity concentration higher than the impurity concentration of the collector layer in the collector layer; selectively forming a first conductive type emitter layer on the base layer in a self-aligned manner.

〔実施例〕〔Example〕

矢に、本発明の実施例について図面を参照して説明する
。第1図に示すように、へ1型埋込層2を有fるP型シ
リコン基板1のN型エピタキシャル層の表面に厚さ0.
6μmのフィールド酸化層を形成し、その後前記エピタ
キシャル層の表面から内部に向けて選択的に深さ2μm
で不純物濃度が10 cIIL  のP型コレクタ層を
形成する。
Embodiments of the present invention will now be described with reference to the drawings. As shown in FIG. 1, the surface of an N-type epitaxial layer of a P-type silicon substrate 1 having a F1-type buried layer 2 has a thickness of 0.
Form a field oxide layer of 6 μm, then selectively inward from the surface of the epitaxial layer to a depth of 2 μm.
A P-type collector layer with an impurity concentration of 10 cIIL is formed.

次に、第2図に示すように、酸化膜よりなる絶縁膜」0
を形成し、選択的にエツチングし、表面から内部に向け
て、深さ2.5μmで不純物濃度が107m  のへ型
ベース層を形成し、微小酸素を含む窒素雰囲気中またに
酸素雰囲気にひきつづき窒素雰囲気中で0.1μmの酸
化膜11を形成する。
Next, as shown in FIG.
A hemi-shaped base layer with an impurity concentration of 107 m is formed from the surface to the inside with a depth of 2.5 μm. An oxide film 11 of 0.1 μm is formed in an atmosphere.

次に、第3図に示すよりに、フォトレジストを用いず、
全面にわたり酸化膜を0.1μmエツチングしたのち、
表面から内部に向けて深さ2μmで不純物濃度が102
0ロー26エミツタ層を形成する。
Next, as shown in FIG. 3, without using photoresist,
After etching the oxide film by 0.1 μm over the entire surface,
The impurity concentration is 102 at a depth of 2 μm from the surface to the inside.
0 row 26 emitter layer is formed.

第5図に、実施例の不純物プロファイルを半対数目盛で
表わした特性図である。
FIG. 5 is a characteristic diagram showing the impurity profile of the example on a semi-logarithmic scale.

へ型ベース層6.エミッタ層であるv遅l拡散層7が同
一の開口部よりネ細物を拡散することにょ)自己整合的
に設けられていること、コレクタがN型ベース層6より
低濃度のf型コレクタ層5から構成されていて、ペース
・コレクタ間ヲ逆バイアスしたときの空乏層はコレクタ
側に十分のみびことから、ベース幅を小さくすることが
でき、ベース幅のコントロールも容易である。従って電
流増@率及び遮断周波数を大きくできる。以上PNPト
ランジスタを例に説明したが、導電型を逆にすればその
1まNPNトランジスタにあてにまることはいうまでも
ない。
Hem-shaped base layer 6. The v-slow l diffusion layer 7, which is an emitter layer, is provided in a self-aligned manner (by diffusing thin particles from the same opening), and the collector is an f-type collector layer with a lower concentration than the N-type base layer 6. When reverse bias is applied between the pace and the collector, the depletion layer is sufficiently extended toward the collector side, so the base width can be made small and the base width can be easily controlled. Therefore, the current increase rate and cutoff frequency can be increased. Although the above description has been made using a PNP transistor as an example, it goes without saying that the above description also applies to an NPN transistor if the conductivity type is reversed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に、低濃度のコレクタ層t−
選択的に形成したのち、ペースの不純物導入後、微小酸
素を含む°窒素雰囲気またに、酸素雰囲気にひきつづき
窒素雰囲気でベース層を形成したのち、酸化膜厚差を利
用してエミッタ領域を開口し、エミッタの不純物を導入
することにょ夛、ペースおよびエミッタは自己整合とな
るのでベース幅を小さくでき、高電流増幅率及び高遮断
周数数をもつ横型トランジスタを容易に作ることができ
る。
As explained above, the present invention has a low concentration collector layer t-
After selectively forming the base layer, a base layer is formed in a nitrogen atmosphere containing minute amounts of oxygen, or in an oxygen atmosphere followed by a nitrogen atmosphere, after introducing a pace of impurities, and then an emitter region is opened using the difference in oxide film thickness. By introducing impurities into the emitter, the paste and emitter become self-aligned, so the base width can be reduced, and a lateral transistor with a high current amplification factor and a high cut-off frequency can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第4図に本発明の一実施例を工程順に示す断
面図、第5図に第4図の工程での濃度プロファイルを示
す特性図、第6図に従来例の断面図、第7図に従来例の
濃度プロファイルを示す特性図である。 1・・・P型基板、2・・・マ畑埋込層、3・・・へ型
エピタキシャル層、4・・・vl拡散層、5・・・f型
コレクタ層、6・・・N型ペース層、7・・・r撤エミ
ッタ層、8・・・2撤拡散層、9・・・マ型拡散層、1
0.11・・・酸化膜、12・・・I撤コレクタ層 、′!−・−さ 代理人 弁理士  内 原   晋、4−・。 ゝ、− 第5図
FIGS. 1 to 4 are cross-sectional views showing an embodiment of the present invention in the order of steps, FIG. 5 is a characteristic diagram showing the concentration profile in the process of FIG. 4, and FIG. FIG. 7 is a characteristic diagram showing a concentration profile of a conventional example. DESCRIPTION OF SYMBOLS 1...P-type substrate, 2...Mabata buried layer, 3...H-type epitaxial layer, 4...VL diffusion layer, 5...F-type collector layer, 6...N-type space layer, 7... r emitter layer, 8... 2 removed diffusion layer, 9... ma-shaped diffusion layer, 1
0.11...Oxide film, 12...I removed collector layer,'! −・−Sa’s agent, patent attorney Susumu Uchihara, 4−・.ゝ、- Figure 5

Claims (1)

【特許請求の範囲】[Claims] 一導電型の半導体基板上の絶縁膜の第一の開口部より反
対導電型の不純物を導入しコレクタを形成する工程と、
第二の開口部より一導電型の不純物を導入しベースを形
成する工程と、前記第二の開口部より反対導電型の不純
物を導入しエミッタを形成する工程とを含むことを特徴
とする半導体装置の製造方法。
a step of introducing an impurity of an opposite conductivity type through a first opening of an insulating film on a semiconductor substrate of one conductivity type to form a collector;
A semiconductor characterized by comprising the steps of introducing an impurity of one conductivity type through a second opening to form a base, and forming an emitter by introducing an impurity of an opposite conductivity type through the second opening. Method of manufacturing the device.
JP1758787A 1987-01-27 1987-01-27 Manufacture of semiconductor device Pending JPS63185063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1758787A JPS63185063A (en) 1987-01-27 1987-01-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1758787A JPS63185063A (en) 1987-01-27 1987-01-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63185063A true JPS63185063A (en) 1988-07-30

Family

ID=11948033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1758787A Pending JPS63185063A (en) 1987-01-27 1987-01-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63185063A (en)

Similar Documents

Publication Publication Date Title
US4873200A (en) Method of fabricating a bipolar transistor
US4049476A (en) Method of manufacturing a semiconductor integrated circuit device which includes at least one V-groove jfet and one bipolar transistor
US4030954A (en) Method of manufacturing a semiconductor integrated circuit device
JPS6119171A (en) Vertical npn transistor structure
JPS63185063A (en) Manufacture of semiconductor device
JPH0373541A (en) Manufacture of semiconductor device
JP2797774B2 (en) Semiconductor device and manufacturing method thereof
JPS6319870A (en) Semiconductor integrated circuit
JPH0477459B2 (en)
JP2648027B2 (en) IIL type semiconductor device
JP3226232B2 (en) Semiconductor device and manufacturing method thereof
JPH02152240A (en) Manufacture of semiconductor device
JP3241000B2 (en) Semiconductor device
JPS63164355A (en) Manufacture of semiconductor integrated circuit device
JPH05109748A (en) Semiconductor device and manufacture of the same
JPH0982722A (en) Manufacture of transistor
JPS5950093B2 (en) Manufacturing method of semiconductor device
JPH04309232A (en) Bipolar transistor and its manufacture
JPS62131559A (en) Manufacture of semiconductor device
JPH0355847A (en) Semiconductor device and its manufacture
JPH02148848A (en) Manufacture of semiconductor device
JPS63138764A (en) Semiconductor integrated circuit and manufacture thereof
JPS58220471A (en) Lateral transistor
JPH0684930A (en) Manufacture of bipolar transistor
JPH05102172A (en) Manufacture of semiconductor integrated circuit