JPS6318476B2 - - Google Patents

Info

Publication number
JPS6318476B2
JPS6318476B2 JP58053285A JP5328583A JPS6318476B2 JP S6318476 B2 JPS6318476 B2 JP S6318476B2 JP 58053285 A JP58053285 A JP 58053285A JP 5328583 A JP5328583 A JP 5328583A JP S6318476 B2 JPS6318476 B2 JP S6318476B2
Authority
JP
Japan
Prior art keywords
lipase
anion exchange
reaction
carrier
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58053285A
Other languages
Japanese (ja)
Other versions
JPS59179091A (en
Inventor
Yoshiji Kobayashi
Hideo Suzuki
Akio Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58053285A priority Critical patent/JPS59179091A/en
Publication of JPS59179091A publication Critical patent/JPS59179091A/en
Publication of JPS6318476B2 publication Critical patent/JPS6318476B2/ja
Priority to US07/912,655 priority patent/US5292649A/en
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は固定化リパーゼを用いて反応をおこな
うにあたり、リパーゼを結合させた担体表面に陰
イオン交換基が存在する固定化リパーゼを用いて
脂肪酸の濃度を50〜94%の範囲で反応させること
を特徴とする固定化リパーゼの反応方法に関する
ものである。 リパーゼにより油脂やエステルを加水分解する
とグリセリンやアルコールと脂肪酸,脂肪酸イオ
ン及びプロトンが生ずる。脂肪酸及び脂肪酸イオ
ンは水に難溶性のため生産物障害を起さないが、
グリセリンやアルコール及びプロトンは水に可溶
性のため生産物障害を起す。従来これらの生産物
障害を除くため反応液中の水分含量を多くして、
グリセリンやアルコール及びプロトンを希釈する
方法が取られてきた。(岩井他,J.Gen.Appl.
Microbiol.10,13(1964))しかし反応液中の水分
含量が多いと、反応終了後水層に得られるグリセ
リンやアルコールを回収するエネルギーが多くか
かるため、酵素法による油脂分解を工業的に実施
するための障害になつていた。 本発明者らは、固定化リパーゼを用いて反応を
おこなう方法について鋭意研究を重ねた結果陰イ
オン交換基を導入した担体を用いる場合、陰イオ
ン交換基の静電的な反発により生産物障害を起す
プロトンをリパーゼ分子周辺から排除できる点に
新たに着目し、検討を加えたところ、リパーゼを
結合させた担体表面に陰イオン交換基が多数存在
するように新たな方法で調製した固定化リパーゼ
を用いれば脂肪酸より生成するプロトンが存在す
る反応液中で反応しても充分に活性を発揮させう
ることを見出し、この知見に基づいて本発明をな
すに至つた。 本発明に用いるリパーゼとしては、特に起源は
選ばないが、油脂に対する親和性がよくて反応の
立ち上がりが良く、油脂を高分解率にまで分解す
る酵素が良い。牛脂などの高融点の油脂を分解す
る場合45℃以上で反応する耐熱性リパーゼを利用
することが望ましい。 本発明に用いられる担体は、出来るだけ多くの
陰イオン交換基を結合させた担体で通常は各種の
陰イオン交換樹脂、ガラスビーズやシリカビーズ
にシランカツプカツプリング剤を用いて出来るだ
け多くの陰イオン交換基を導入したもの、金属粉
末に出来るだけ多くの陰イオン交換基を導入した
もの等の疎水性担体が用いられる。親水性のビニ
ルポリマーやセルロースに出来るだけ多くの陰イ
オン交換基を導入したものも用いうるが、疎水性
担体の方が基質に対する親和性が良い上に、生成
した親水性のグリセリンを排除しグリセリンによ
る生産物阻害効果を減少させるため望ましい担体
である。またマクロポーラスな陰イオン交換樹脂
やガラスビーズ、シリカビーズを用いると更に良
好な結果が得られる。即ち通常のリパーゼ分子の
半径は10Å以上なので、これ以上の平均細孔半径
を有する多孔性担体を用いればリパーゼは細孔内
の表面部分にも結合するためリパーゼ及び陰イオ
ン交換基の結合面積が広くとれる。また平均細孔
半径が1000Å以上になると、リパーゼ及び陰イオ
ン交換基の結合する細孔表面積が減少するので10
〜1000Åの平均細孔半径を有する担体を用いる。
マクロポーラス担体はリパーゼ及び陰イオン交換
基の結合する表面積を広くとれるとともに、担体
粒子が微細化することを防げるので圧損失の少な
い固定化酵素カラムが得られることになる。 本発明に用いる陰イオン交換基とは、各種のア
ミン類,アンモニウム類やその誘導体等であり、
溶媒中で解離してプラスに帯電し、陰イオンを吸
着する化学残基をいう。 本発明に用いる担体に結合するリパーゼ量は、
あまり少量であると、固定化酵素活性が低く固定
化リパーゼによる反応の立ち上がりが悪くなる。
また非常に大量のリパーゼを結合させると、固定
化リパーゼによる反応の立ち上がりは良くはなる
が、高脂肪酸濃度の最終分解率は悪くなることが
ある。これは、リパーゼを結合する時、陰イオン
交換基を介して結合する場合が多いので、陰イオ
ン交換基がふさがれてしまい、リパーゼを結合さ
せた担体表面に陰イオン基が存在しなくなるため
である。本発明の効果を得るためには、一般的に
低分子である陰イオン交換基を充分結合させた担
体を用いることと、リパーゼ結合量を調整するこ
とが必要である。 本発明のリパーゼ結合法については、リパーゼ
が通常酸性蛋白であるため、陰イオン交換担体に
はイオン結合で容易に結合する。また陰イオン交
換基を有する疎水性担体を用いた場合には、イオ
ン結合及び疎水性結合で強固に結合する。またイ
オン結合及び疎水結合で結合したものをグルター
ルアルデヒドやカルボジイミドで処理すると更に
強固に結合する。グルタールアルデヒド処理の場
合PHを7以上にすると、グルタールアルデヒドが
反応性を増し、リパーゼを失活させてしまうので
PH4.5〜6.5付近に調整し、温度を25℃以下に保ち
10〜20分程度の短時間に処理した方が良い。また
反応後は亜硫酸水素ナトリウムなどで余分のグル
タールアルデヒドを取り除いておく。以上の操作
はカラムに充填した担体に適当量のリパーゼ溶液
を流しイオン結合及び疎水性結合で吸着させた
後、PH及び温度を調整し適当に希釈したグルター
ルアルデヒド溶液を流し、続いて亜硫酸水素ナト
リウム溶液を流すことにより固定化酵素カラムの
調製が容易であるので工業的に有利な結合法であ
る。上記の如く陰イオン交換基をリパーゼ蛋白を
結合するための官能基とすると、陰イオン交換基
のプロトンを排除してプロトンによる生産物阻害
効果を除く作用を弱めることも考えられるので、
陰イオン交換基を保護して別の官能基を介してリ
パーゼを結合させれば本発明の効果はより一層増
大されるのでそのような結合法をとつてもなんら
さしつかえない。 本発明における脂質の酵素分解における反応条
件のPHや温度については固定化されたリパーゼの
反応に最適なPHや温度付近が用いられる。最適の
PHや温度でなくても目的の分解率が得られるなら
ば、それを用いてもさしつかえない。また必要な
らば、金属イオンや、血清アルブミン等を加えて
もなんらさしつかえない。 本発明に用いる脂質としては、リパーゼの基質
になる各種のグリセライドやエステルなどがあげ
られる。リパーゼが作用するものであれば、いず
れのものを用いてもさしつかえない。 本発明に用いる反応液中のリパーゼの脂肪酸濃
度は、50〜94%が選ばれる。50%以下の脂肪酸濃
度にしても、最終分解率は上がらず、反応槽の規
模を小さくしたり、反応後水層に得られるグリセ
リンやアルコールの回収のエネルギーを少くする
ためには、この濃度以上で反応させる方が有利で
ある。また加水分解反応の化学量論的な水分含量
であるトリグリセライド1分子に対して水3分子
の基質濃度は牛脂などの長鎖のトリグリセライド
の場合94%程度であるが、脂肪酸濃度が94%にな
つても比較的高い分解率を達成することが出来
る。 本発明の脂肪酸濃度とは脂肪酸を含む物質と脂
肪酸を含まない物質の重量和に対する脂肪酸を含
む物質の重量パーセントをいう。工業的に脂肪酸
をつくる場合油脂分解を終つた後に油分と水(グ
リセリンを含む甘水)を分離し、油分は液体脂肪
酸と固定脂肪酸に分けて後の精製に供するが、こ
の液体脂肪酸の中には、オレイン酸やリノール酸
等の他、未分解のトリグリセライドが残つている
ことがある。すなわち粗製脂肪酸中に含まれる8
%程度のグリセライドを分解する時などは粗製脂
肪酸中にわずかに含まれる水分で充分加水分解出
来るので、粗製脂肪酸をそのまま固定化リパーゼ
と反応させれば混在するトリグリセライドを取り
除くことも可能である。 本発明に用いる反応槽としては、固定化リパー
ゼと反応液とを混ぜて混合するバツチ式のものと
固定化リパーゼをカラムにつめた連続式のものと
が考えられる。バツチ式,カラム式ともに、固定
化リパーゼの回収が容易で、生産物の精製段階で
のリパーゼ蛋白の除去の必要がなく、回収した酵
素を反復使用出来る利点を有する。カラム式は更
に反応中に空気に接触することが少ないので不飽
和脂肪酸が空気酸化されないことや、連続化が可
能であるので現在行なわれている高圧連続分解工
程に組み込み易いなどの利点を有する。 本発明によつて反応液中の水分含量が著しく少
ない量で油脂やエステルを高分解率にまで分解す
ることが可能となつた。このことは反応後に得ら
れたグリセリンやアルコールを蒸留により回収す
る際のエネルギーを少なくする他、大量の油脂を
分解する際の反応槽の規模を小さくする等工業的
な油脂分解過程にもたらす効果は大きい。しかも
固定化リパーゼカラムを用いることにより連続反
応が可能になることや不飽和脂肪酸の空気酸化を
防げる等の効果がある。しかも固定化酵素カラム
の調製や再生も容易である等、工業的な油脂の酵
素分解法として優れた方法である。 つぎに実施例によつて、本発明を更に詳細に説
明する。 実施例 1 1gのダウエツクスMWA−1(総交換容量
1.2Meg以上/mlのポリスチレン鎖をジビニルベ
ンゼンで架橋した母体を持つ第三級アミンを交換
基とするマクロポーラスタイプの弱塩基性陰イオ
ン交換樹脂,ダウ・ケミカル社製)を蒸留水及び
M/15のマツクイルベイン緩衝液PH5.0で洗浄後、
50μのリパーゼ液(1450単位)及び1mlのマツ
クイルベイン緩衝液を加え、8℃で1夜振とうし
た。次に1mlのマツクイルベイン緩衝液、80μ
の25%グルタールアルデハイド溶液を加え、8℃
で10分間振とうし、ダウエツクスMWA−1に結
合させた。最後に20%の亜硫酸水素ナトリウムを
0.2ml加え、8℃で10分間振とうし、余分のグル
タールアルデハイドを除いた後、水や緩衝液で良
く洗浄してダウエツクスMWA−1固定化リパー
ゼを得た。ここで用いたリパーゼ量は固定化リパ
ーゼの活性発現に充分な量でしかも高脂肪酸濃度
で最終分解率を悪くしない量である。 1gのダウエツクスWGR(総交換容量1.6Meg/
mlエピクロロヒドリンとアンモニアとの縮合体で
ポリアミンを交換基とするゲルタイプの弱塩基性
陰イオン交換樹脂,ダウ・ケミカル社製)を上記
と同様に処理して、無機イオンを多く通すように
極めて細かな細孔を多数持つように合成されたゲ
ルタイプの陰イオン交換樹脂に固定化したリパー
ゼを得た。 レバチツトCNP80(総交換容量4.7Meg/mlの
アクリルを母体とし、カルボン酸を交換基とする
マクロポーラス型の弱酸性陽イオン交換樹脂,バ
イエル社製)を1g,1−シクロヘキシル−3−
(2−モルホリノエチル)−カルボジイミド・p−
トルエンメトスルホン酸(以下CMCと略す)を
50mg、水10mlを加え、6NHClでPHを4〜5に保
ちながら、室温で反応を続け、PHが安定したとこ
ろで過剰のCMCをよく洗い去る。次に1/15M
マツクイルベイン緩衝液PH4を2ml,50μのリ
パーゼ液(1450単位)を加え、冷室中で一夜反応
させて、レバチツトCNP80固定化リパーゼを得
た。 リパーゼ活性は、3.14gのトリブチリン,35ml
の2%ポリビニールアルコール(倉敷ポバール
117)溶液,40mlの0.1M燐酸緩衝液PH7,12mlの
水を混ぜ10分間超音波処理して調製したトリブチ
リンエマルジヨン9ml,酵素懸濁液1gとを混合
し、60℃,20分間振とうしながら反応させた。メ
タノール・アセトンの1:1混液を入れて反応を
止め、生じた脂肪酸を0.05NNaOHで滴定して活
性を測定した。上記の条件により1分間に1マイ
クロ当量の酸を遊離する量を1単位とした。 リパーゼ標品は、Pseudomonas
Fluorescensbiotypel−No.1021(微工研菌寄第5495
号)の生産するリパーゼを硫安塩析,透析,クロ
ロホルムによる脱脂等を行つた後凍結乾燥したも
のを用いた。 100mlの三角フラスコに、牛脂と0.1M燐酸緩衝
液PH7.0とで、各種の脂肪酸濃度の反応液をつく
り、良く水分を除いた固定化リパーゼを加え、60
℃で毎分178回振とうしながら160〜200時間反応
させた後の分解率(最終分解率)を酸化価とケン
化価の比から求めた。
The present invention proposes that when performing a reaction using immobilized lipase, the immobilized lipase that has an anion exchange group on the surface of the carrier to which the lipase is bound is used to conduct the reaction at a fatty acid concentration in the range of 50 to 94%. The present invention relates to a characteristic reaction method of immobilized lipase. When fats and oils and esters are hydrolyzed by lipase, glycerin, alcohol, fatty acids, fatty acid ions, and protons are generated. Fatty acids and fatty acid ions do not cause product damage because they are poorly soluble in water, but
Glycerin, alcohol and protons are soluble in water and cause product damage. Conventionally, in order to eliminate these product problems, the water content in the reaction solution was increased,
Methods have been used to dilute glycerin, alcohol, and protons. (Iwai et al., J.Gen.Appl.
(Microbiol. 10, 13 (1964)) However, if the water content in the reaction solution is high, it takes a lot of energy to recover the glycerin and alcohol obtained in the aqueous layer after the reaction is completed, so enzymatic fat and oil decomposition is carried out industrially. It had become an obstacle to doing so. The present inventors have conducted intensive research on a method of conducting a reaction using immobilized lipase, and have found that when using a carrier into which anion exchange groups are introduced, product damage may occur due to electrostatic repulsion of anion exchange groups. We newly focused on the fact that the protons generated can be removed from around the lipase molecule, and after further investigation, we found that we could use immobilized lipase prepared using a new method so that there are many anion exchange groups on the surface of the carrier to which lipase is bound. The inventors have found that when used, the activity can be sufficiently exhibited even in a reaction solution in which protons generated from fatty acids are present, and based on this knowledge, the present invention has been accomplished. The origin of the lipase used in the present invention is not particularly limited, but it is preferably an enzyme that has good affinity for fats and oils, has a good reaction start-up, and can decompose fats and oils to a high decomposition rate. When decomposing fats and oils with a high melting point such as beef tallow, it is desirable to use a heat-resistant lipase that reacts at 45°C or higher. The carrier used in the present invention is a carrier to which as many anion exchange groups as possible are bonded, and usually various anion exchange resins, glass beads or silica beads, and a silane cup coupling agent are used to bind as many anion exchange groups as possible. Hydrophobic carriers are used, such as those into which ion exchange groups have been introduced, and those in which as many anion exchange groups as possible have been introduced into metal powder. Hydrophilic vinyl polymers and cellulose with as many anion exchange groups as possible can also be used, but hydrophobic carriers have better affinity for the substrate and can eliminate the generated hydrophilic glycerin. is a desirable carrier because it reduces the product-inhibiting effects of Even better results can be obtained by using macroporous anion exchange resins, glass beads, or silica beads. In other words, since the radius of a normal lipase molecule is 10 Å or more, if a porous carrier with an average pore radius larger than this is used, lipase will also bind to the surface area within the pores, so the bonding area of lipase and anion exchange group will increase. Can be taken widely. Furthermore, when the average pore radius exceeds 1000 Å, the pore surface area to which lipase and anion exchange groups bond decreases.
A support with an average pore radius of ~1000 Å is used.
A macroporous carrier can provide a wide surface area for bonding lipase and anion exchange groups, and can also prevent carrier particles from becoming finer, resulting in an immobilized enzyme column with less pressure loss. The anion exchange group used in the present invention includes various amines, ammoniums, derivatives thereof, etc.
A chemical residue that dissociates in a solvent, becomes positively charged, and adsorbs anions. The amount of lipase bound to the carrier used in the present invention is
If the amount is too small, the activity of the immobilized enzyme will be low and the start-up of the reaction by the immobilized lipase will be slow.
Furthermore, when a very large amount of lipase is bound, although the start-up of the reaction by immobilized lipase is improved, the final decomposition rate of high fatty acid concentration may be deteriorated. This is because when lipase is bound, it is often bound through an anion exchange group, so the anion exchange group is blocked and there are no anion groups on the surface of the carrier to which lipase is bound. be. In order to obtain the effects of the present invention, it is generally necessary to use a carrier sufficiently bound with an anion exchange group, which is a low molecular weight, and to adjust the amount of lipase bound. Regarding the lipase binding method of the present invention, since lipase is usually an acidic protein, it easily binds to an anion exchange carrier through an ionic bond. In addition, when a hydrophobic carrier having an anion exchange group is used, it is strongly bound by ionic bonds and hydrophobic bonds. Furthermore, when those bound by ionic bonds and hydrophobic bonds are treated with glutaraldehyde or carbodiimide, the bonds become even stronger. In the case of glutaraldehyde treatment, if the pH is set to 7 or higher, glutaraldehyde increases reactivity and deactivates lipase.
Adjust the pH to around 4.5 to 6.5 and keep the temperature below 25℃.
It is better to process in a short time, about 10 to 20 minutes. After the reaction, excess glutaraldehyde is removed using sodium bisulfite or the like. The above operation involves pouring an appropriate amount of lipase solution onto the carrier packed in the column and adsorbing it through ionic and hydrophobic bonds. After adjusting the pH and temperature, pouring in an appropriately diluted glutaraldehyde solution, followed by hydrogen sulfite. This is an industrially advantageous binding method because it is easy to prepare an immobilized enzyme column by flowing a sodium solution. If the anion exchange group is used as a functional group for binding lipase protein as described above, it is possible to eliminate the protons of the anion exchange group and weaken the effect of removing the product inhibition effect of protons.
If the anion exchange group is protected and the lipase is bonded via another functional group, the effects of the present invention will be further enhanced, so there is nothing wrong with such a bonding method. Regarding the reaction conditions PH and temperature in the enzymatic decomposition of lipids in the present invention, the pH and temperature that are optimal for the reaction of immobilized lipase are used. optimal
If the desired decomposition rate can be obtained without changing the pH or temperature, there is no problem using it. Furthermore, if necessary, metal ions, serum albumin, etc. may be added. Examples of lipids used in the present invention include various glycerides and esters that serve as substrates for lipase. Any lipase can be used as long as it acts on lipase. The fatty acid concentration of lipase in the reaction solution used in the present invention is selected to be 50 to 94%. Even if the fatty acid concentration is less than 50%, the final decomposition rate will not increase, and in order to reduce the scale of the reaction tank or to reduce the energy required to recover glycerin and alcohol obtained in the aqueous layer after the reaction, it is necessary to increase the concentration above this level. It is more advantageous to react with In addition, the substrate concentration of 3 molecules of water per 1 molecule of triglyceride, which is the stoichiometric water content of the hydrolysis reaction, is about 94% for long-chain triglycerides such as beef tallow, but when the fatty acid concentration is 94%, However, relatively high decomposition rates can be achieved. The fatty acid concentration in the present invention refers to the weight percent of a substance containing fatty acids to the sum of the weights of substances containing fatty acids and substances not containing fatty acids. When producing fatty acids industrially, oil and water (sweet water containing glycerin) are separated after oil and fat decomposition, and the oil is divided into liquid fatty acids and fixed fatty acids for later refining. In addition to oleic acid, linoleic acid, etc., undecomposed triglycerides may remain. In other words, 8 contained in crude fatty acids
% of glyceride, the small amount of water contained in the crude fatty acid can be sufficient for hydrolysis, so if the crude fatty acid is directly reacted with immobilized lipase, it is also possible to remove the triglyceride present. The reaction vessels used in the present invention may be of a batch type in which the immobilized lipase and the reaction solution are mixed together, or of a continuous type in which the immobilized lipase is packed in a column. Both the batch type and column type have the advantage that the immobilized lipase can be easily recovered, there is no need to remove the lipase protein during the product purification stage, and the recovered enzyme can be used repeatedly. The column type has further advantages such as less contact with air during the reaction, so the unsaturated fatty acids are not oxidized by the air, and because it can be continuous, it can be easily incorporated into the currently used high-pressure continuous cracking process. According to the present invention, it has become possible to decompose fats and oils and esters to a high decomposition rate with extremely low water content in the reaction solution. This not only reduces the energy required to recover the glycerin and alcohol obtained after the reaction by distillation, but also reduces the size of the reaction tank when decomposing large amounts of fats and oils, and has other effects on the industrial fats and oils decomposition process. big. Moreover, the use of an immobilized lipase column has the effect of enabling continuous reaction and preventing air oxidation of unsaturated fatty acids. Moreover, it is an excellent method for industrial enzymatic decomposition of fats and oils, as it is easy to prepare and regenerate the immobilized enzyme column. Next, the present invention will be explained in more detail with reference to Examples. Example 1 1g Dowex MWA-1 (total exchange capacity
A macroporous type weakly basic anion exchange resin (manufactured by Dow Chemical Co., Ltd.) whose exchange group is a tertiary amine having a matrix in which polystyrene chains of 1.2 Meg/ml or more are crosslinked with divinylbenzene (manufactured by Dow Chemical Company) was mixed with distilled water and M/M/ml. After washing with pine quilvain buffer PH5.0 of 15.
50 μ of lipase solution (1450 units) and 1 ml of pine quill vain buffer were added, and the mixture was shaken at 8° C. overnight. Next, 1 ml of pine quill vain buffer, 80μ
Add 25% glutaraldehyde solution and heat at 8°C.
The mixture was shaken for 10 minutes and bound to Dowex MWA-1. Finally add 20% sodium bisulfite.
After adding 0.2 ml and shaking at 8°C for 10 minutes to remove excess glutaraldehyde, the mixture was thoroughly washed with water and buffer to obtain Dowex MWA-1 immobilized lipase. The amount of lipase used here is an amount sufficient to express the activity of immobilized lipase, and an amount that does not impair the final decomposition rate at high fatty acid concentrations. 1g Dowex WGR (total exchange capacity 1.6Meg/
A gel-type weakly basic anion exchange resin (manufactured by Dow Chemical Co., which is a condensate of epichlorohydrin and ammonia and uses polyamine as an exchange group) was treated in the same manner as above to allow a large number of inorganic ions to pass through. We obtained lipase immobilized on a gel-type anion exchange resin synthesized to have many extremely fine pores. 1 g of Revachit CNP80 (a macroporous weakly acidic cation exchange resin with a total exchange capacity of 4.7 Meg/ml, acrylic as a base and carboxylic acid as an exchange group, manufactured by Bayer), 1-cyclohexyl-3-
(2-morpholinoethyl)-carbodiimide p-
Toluene methosulfonic acid (hereinafter abbreviated as CMC)
Add 50 mg and 10 ml of water, and continue the reaction at room temperature while keeping the pH at 4 to 5 with 6NHCl. When the pH stabilizes, excess CMC is thoroughly washed away. Next 1/15M
2 ml of pine irvain buffer PH4 and 50 µ of lipase solution (1450 units) were added, and the mixture was allowed to react overnight in a cold room to obtain rebatit CNP80-immobilized lipase. Lipase activity: 3.14g tributyrin, 35ml
2% polyvinyl alcohol (Kurashiki Poval)
117) Mix 40ml of 0.1M phosphate buffer PH7, 9ml of tributyrin emulsion prepared by mixing 12ml of water and sonicating for 10 minutes, and 1g of enzyme suspension, and shake at 60℃ for 20 minutes. I reacted while doing so. The reaction was stopped by adding a 1:1 mixture of methanol and acetone, and the activity was measured by titrating the resulting fatty acid with 0.05N NaOH. The amount of acid released in 1 minute under the above conditions was defined as 1 unit. The lipase preparation is Pseudomonas
Fluorescensbiotype−No.1021
The lipase produced by No. 1) was subjected to ammonium sulfate salting out, dialysis, delipidation with chloroform, etc., and then freeze-dried. In a 100 ml Erlenmeyer flask, prepare reaction solutions with various fatty acid concentrations using beef tallow and 0.1 M phosphate buffer pH 7.0, add well-drained immobilized lipase, and add 60 ml of water.
The decomposition rate (final decomposition rate) after reacting for 160 to 200 hours while shaking 178 times per minute at °C was determined from the ratio of the oxidation value and saponification value.

【表】 第1表は高脂肪酸濃度での油脂の最終分解率
は、リパーゼを結合させた担体表面に第三級アミ
ンやポリアミン等の陰イオン交換基が存在するも
の(ダウエツクスMWA−1やダウエツクス
WGRを固定化担体としたもの)の方が陽イオン
交換基であるカルボン酸が存在するもの(レバチ
ツトCNP80を固定化担体としたもの)より良い
ことが解る。また陰イオン交換基が存在する担体
表面で、リパーゼが結合する箇所が細孔内にまで
及ぶマクロポーラスの陰イオン交換樹脂に固定化
したリパーゼによると高基質濃度での分解率が特
に良いことを示している。 実施例 2 ポーラスグラス(CPG00500,平均細孔半径
515Å,粒子サイズ120−200メツシユ,エレクト
ロヌクレオニクス社製)を500℃で2時間活性化
後、アセトン中に2%のシランカツプリング剤
(3−アミノプロピルトリエトキシシラン)の溶
液中に入れ、逆流冷却管をつけて50℃で20時間お
くと、末端に第1級アミン基を有する陰イオン交
換体を得る。この陰イオン交換体に実施例1のダ
ウエツクスMWA−1で示したと同様の操作でア
ミノアルキルCPG固定化リパーゼを得た。 カルボキシアルキルCPG(平均細孔半径547Å,
粒子サイズ20−80メツシユの末端にカルボキシル
基を有するポーラスグラス エレクトロヌクレオ
ニクス社製)を実施例1のレバチツトCNP80で
示したと同様の操作でカルボキシアルキルCPG
固定化リパーゼを得た。 5gのトヨパールHW60(東洋曹達製,親水性の
ビニルポリマー)を5mlの60%NaOH,12.5mlの
エピクロルヒドリンを加え、50℃で2時間振とう
後、500mlの蒸留水で洗浄し、エポキシトヨパー
ルを得た。エポキシトヨパールに12gのヘキサメ
チレンジアミンを加え、1M苛性ソーダ液2mlと
ともに80℃で2時間振とうし、反応後アセトンで
洗浄して末端基に第1級アミン基を有するアミノ
化トヨパールを得た。アミノアルキルトヨパール
に実施例1のダウエツクスMWA−1で示したと
同様の操作でアミノアルキルトヨパール固定化リ
パーゼを得た。 各固定化リパーゼについて、実施例1で示した
と同様の操作で、最終分解率を求めた。
[Table] Table 1 shows the final decomposition rate of fats and oils at high fatty acid concentrations for carriers with anion exchange groups such as tertiary amines and polyamines on the surface of the carrier to which lipase is bound (Dowex MWA-1 and Dowex MWA-1).
It can be seen that the one using WGR as the immobilization carrier is better than the one containing a carboxylic acid as a cation exchange group (the one using Revachit CNP80 as the immobilization carrier). In addition, lipase immobilized on a macroporous anion exchange resin, which has an anion exchange group on the surface of the carrier and where the lipase binds extends into the pores, has a particularly good decomposition rate at high substrate concentrations. It shows. Example 2 Porous glass (CPG00500, average pore radius
515 Å, particle size 120-200 mesh, Electronucleonics) was activated at 500°C for 2 hours and then placed in a solution of 2% silane coupling agent (3-aminopropyltriethoxysilane) in acetone. By attaching a counterflow condenser and leaving it at 50°C for 20 hours, an anion exchanger having a primary amine group at the end is obtained. Aminoalkyl CPG-immobilized lipase was obtained on this anion exchanger in the same manner as shown for Dowex MWA-1 in Example 1. Carboxyalkyl CPG (average pore radius 547Å,
A porous glass having a carboxyl group at the end of a mesh of particle size 20-80 (manufactured by Electronucleonics) was prepared using the same procedure as described for Rebachito CNP80 in Example 1 to obtain carboxyalkyl CPG.
Immobilized lipase was obtained. Add 5 ml of 60% NaOH and 12.5 ml of epichlorohydrin to 5 g of Toyo Pearl HW60 (manufactured by Toyo Soda, hydrophilic vinyl polymer), shake at 50°C for 2 hours, wash with 500 ml of distilled water, and add epoxy Toyo Pearl. Obtained. 12 g of hexamethylene diamine was added to the epoxy Toyopearl, and the mixture was shaken at 80° C. for 2 hours with 2 ml of 1M sodium hydroxide solution. After the reaction, the mixture was washed with acetone to obtain an aminated Toyopearl having a primary amine group at the terminal group. Aminoalkyl Toyopearl immobilized lipase was obtained in the same manner as shown for Dowex MWA-1 in Example 1. For each immobilized lipase, the final degradation rate was determined in the same manner as shown in Example 1.

【表】 第2表は、高脂肪酸濃度での油脂の最終分解率
はリパーゼを結合させた担体表面にカルボキシル
基が存在するものよりアミノ基が存在するものの
方が良いを示す。また担体表面にアミノ基が存在
し、担体自身が疎水性のものの方が更に良いこと
を示す。 実施例 3 各種のマクロポーラスの陰イオン交換樹脂に実
施例1のダウエツクスMWA−1に示したと同様
の方法で固定化したリパーゼを用いて最終分解率
を比較した。これらの陰イオン交換樹脂はマクロ
ポーラスな細孔表面に多くの陰イオン交換基を有
するものである。
[Table] Table 2 shows that the final decomposition rate of fats and oils at high fatty acid concentrations is better when amino groups are present on the surface of the lipase-bound carrier than when carboxyl groups are present. It is also shown that it is better to have an amino group on the surface of the carrier and to make the carrier itself hydrophobic. Example 3 Using lipase immobilized on various macroporous anion exchange resins in the same manner as shown for Dowex MWA-1 in Example 1, the final decomposition rates were compared. These anion exchange resins have many anion exchange groups on the surface of macroporous pores.

【表】 第3表は、マクロポーラスタイプの各種の陰イ
オン交換体,陰イオン交換タイプのキレート樹脂
(ダイアイオンCR20)に、適当量のリパーゼを結
合させた固定化リパーゼを用いると、リパーゼを
結合させた担体表面に陰イオン交換基が存在する
ので、高脂肪酸濃度での油脂の分解率が良いこと
を示す。 実施例 4 実施例1と同様にして調製したダウエツクス
MWA−1固定化リパーゼを良く乾燥し、牛脂と
0.1M燐酸緩衝液とで各種の脂肪酸濃度をつくり
最終分解率を比較した。対照として固定化する際
に用いた可溶性リパーゼの結果も示す。
[Table] Table 3 shows that when using immobilized lipase with an appropriate amount of lipase bound to various macroporous type anion exchangers or anion exchange type chelate resin (Diaion CR20), lipase can be activated. This indicates that the decomposition rate of fats and oils is good at high fatty acid concentrations due to the presence of anion exchange groups on the surface of the bonded carrier. Example 4 Dowex prepared in the same manner as Example 1
Dry the MWA-1 immobilized lipase thoroughly and mix it with beef tallow.
Various fatty acid concentrations were created with 0.1M phosphate buffer and the final decomposition rates were compared. The results of soluble lipase used in immobilization are also shown as a control.

【表】 第4表は、可溶性リパーゼによると、高脂肪酸
濃度での最終分解率が著しく減少するのに対し、
リパーゼを結合させた担体表面に陰イオン交換基
が存在するように調製した固定化リパーゼを用い
ると、高脂肪酸濃度でも高い分解率が得られるこ
とを示す。
[Table] Table 4 shows that according to soluble lipase, the final decomposition rate at high fatty acid concentrations decreases significantly;
We show that when using an immobilized lipase prepared so that an anion exchange group is present on the surface of the carrier to which the lipase is bound, a high decomposition rate can be obtained even at a high fatty acid concentration.

Claims (1)

【特許請求の範囲】[Claims] 1 固定化リパーゼを用いて反応を行うにあた
り、リパーゼを結合させた担体表面に陰イオン交
換基が存在する固定化リパーゼを用いて脂肪酸濃
度を50〜94%の範囲で、反応させることを特徴と
する固定化リパーゼの反応方法。
1. When conducting a reaction using immobilized lipase, the reaction is carried out at a fatty acid concentration in the range of 50 to 94% using an immobilized lipase that has an anion exchange group on the surface of the carrier to which lipase is bound. A reaction method using immobilized lipase.
JP58053285A 1983-03-29 1983-03-29 Enzymatic hydrolysis of lipid Granted JPS59179091A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58053285A JPS59179091A (en) 1983-03-29 1983-03-29 Enzymatic hydrolysis of lipid
US07/912,655 US5292649A (en) 1983-03-29 1992-07-09 Method for reaction of lipase upon fatty acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58053285A JPS59179091A (en) 1983-03-29 1983-03-29 Enzymatic hydrolysis of lipid

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1054646A Division JPH01273588A (en) 1989-03-07 1989-03-07 Immobilized lipase

Publications (2)

Publication Number Publication Date
JPS59179091A JPS59179091A (en) 1984-10-11
JPS6318476B2 true JPS6318476B2 (en) 1988-04-19

Family

ID=12938453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58053285A Granted JPS59179091A (en) 1983-03-29 1983-03-29 Enzymatic hydrolysis of lipid

Country Status (1)

Country Link
JP (1) JPS59179091A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614864B2 (en) * 1988-09-28 1994-03-02 工業技術院長 Immobilized lipase using fine powder carrier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476892A (en) * 1977-11-29 1979-06-19 Agency Of Ind Science & Technol Immobilization of lipase
JPS5650554A (en) * 1979-10-02 1981-05-07 Mitsubishi Electric Corp Semiconductor memory
JPS5650833A (en) * 1979-10-02 1981-05-08 Kanto Seiki Kk Impact absorbing panel for car and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476892A (en) * 1977-11-29 1979-06-19 Agency Of Ind Science & Technol Immobilization of lipase
JPS5650554A (en) * 1979-10-02 1981-05-07 Mitsubishi Electric Corp Semiconductor memory
JPS5650833A (en) * 1979-10-02 1981-05-08 Kanto Seiki Kk Impact absorbing panel for car and manufacture thereof

Also Published As

Publication number Publication date
JPS59179091A (en) 1984-10-11

Similar Documents

Publication Publication Date Title
Urbano et al. Polymer supports for the removal and degradation of hazardous organic pollutants: an overview
US5292649A (en) Method for reaction of lipase upon fatty acid
JPS6318476B2 (en)
WO2024002326A1 (en) Preparation method for and use of double-enzyme-inorganic hybrid nanoflower microspheres
JPH04507193A (en) Immobilized lipase preparations and their use for ester synthesis
KR20020028796A (en) Use of Monodisperse Ion Exchangers for Arsenic/Antimony Removal
EP1352957A1 (en) Carriers for covalent immobilization of enzymes
JPS59183691A (en) Preparation of immobilized lipase
JPH0342072B2 (en)
WO1998006829A1 (en) Methods for preparing bioreactors
JPS5920357B2 (en) Enzymatic decomposition of lipids
KR20110034116A (en) The improvement method for selectivity and productivity of fatty acid replacement in phospholipids by immobilized phospholipase a2
EP0722361B1 (en) Epoxy derivatives of polyacrylic amides
JP2595004B2 (en) Enzyme-immobilizing carrier, its enzyme-immobilizing method and enzyme desorbing method
JPH0417633B2 (en)
KR20150041627A (en) Enzymes immobilised on styrene-divinyl benzene polymer matrices and the use thereof in industrial productions
JPS63160583A (en) Production of immobilized lipase and hydrolysis of lipid using said immobilized lipase
CN112569910B (en) Preparation method of adsorbent for removing LDL (low density lipoprotein) by blood extracorporeal circulation and perfusion device
JPS62166895A (en) Production of fatty acid ester
JPH03127992A (en) Production of fatty acid ester
JP3505735B2 (en) Decolorization method
US7235180B2 (en) Sulfate-selective anion exchange resins for use in combination with TRSS resins in feed water treatment
CN1126751C (en) Method of reducing color number of benzene anhydride
JPH0412716B2 (en)
CN116262222A (en) Preparation method of diethylaminoethyl natural polysaccharide chromatographic medium