JPS63183352A - Absorption type cooling device - Google Patents

Absorption type cooling device

Info

Publication number
JPS63183352A
JPS63183352A JP1252687A JP1252687A JPS63183352A JP S63183352 A JPS63183352 A JP S63183352A JP 1252687 A JP1252687 A JP 1252687A JP 1252687 A JP1252687 A JP 1252687A JP S63183352 A JPS63183352 A JP S63183352A
Authority
JP
Japan
Prior art keywords
tube group
closed circuit
cooling
regenerator
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1252687A
Other languages
Japanese (ja)
Inventor
高鷹 生男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP1252687A priority Critical patent/JPS63183352A/en
Publication of JPS63183352A publication Critical patent/JPS63183352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は冷却装置に係り、特に冷却システムに熱を供給
する媒体が自然循環するようにした吸収式冷却装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cooling device, and more particularly to an absorption cooling device in which a medium supplying heat to the cooling system is naturally circulated.

なお、本発明の明細書において用いられる「冷却装置」
とは、高温流体の熱エネルギーと冷却媒体の相変化を利
用して、温度の低い流体を得る装置のことをいう。
Note that the "cooling device" used in the specification of the present invention
refers to a device that obtains a low-temperature fluid by using the thermal energy of a high-temperature fluid and the phase change of a cooling medium.

〔従来の技術〕[Conventional technology]

冷却システムの一つとして、冷却媒体蒸発用の熱源とし
て廃熱回収ボイラを使用する冷却システムがある。
One type of cooling system is a cooling system that uses a waste heat recovery boiler as a heat source for cooling medium evaporation.

第4図は熱源として廃熱回収ボイラを使用する冷却シス
テムの従来構成を示す。
FIG. 4 shows a conventional configuration of a cooling system that uses a waste heat recovery boiler as a heat source.

図中符号40は熱供給源としての廃熱回収ボイラを示し
、27は蒸発管群、28は節炭器であり、何れも熱源た
る排ガス1の流路中に配置しである。
In the figure, reference numeral 40 indicates a waste heat recovery boiler as a heat supply source, 27 is a group of evaporation tubes, and 28 is a economizer, both of which are arranged in the flow path of the exhaust gas 1, which is a heat source.

このボイラにおいて給水ポンプ34により供給された補
給水タンク33内の補給水は脱気器31において脱気さ
れ、給水ポンプ32によって節炭器28に供給される。
In this boiler, the make-up water in the make-up water tank 33 supplied by the feed water pump 34 is degassed in the deaerator 31, and then supplied to the energy saver 28 by the water feed pump 32.

この給水に対しては薬液注入ポンプ35により系内の腐
食を防止するための脱酸素剤やpH調節剤等の薬液が注
入され、この薬液が注入された給水が節炭器28を経て
気水分離器29に供給される。また気水分離器29と伝
熱管群27との間では自然循環(図示の場合)や強制循
環により給水が流動している。即ち、伝熱管群27にお
いて昇温した給水は気水分離器29において気水分離さ
れ、分離された蒸気は一部が脱気器31の熱源として利
用され、残りは冷却系の第一再生器7内の凝縮管群4に
おいて熱を放出して凝結しドレンクーラ30を経て前記
脱気器31に戻る。脱気器31において、脱酸素剤やp
H調節剤等の反応によって発生した凝縮液中の不純物の
処理や調整が行われ、更に脱気器31を出た凝縮液は節
炭器28に流入し、廃熱回収ボイラ内を循環流動する。
A chemical solution such as an oxygen scavenger and a pH adjuster to prevent corrosion in the system is injected into this water supply by a chemical injection pump 35. It is supplied to a separator 29. In addition, the water supply flows between the steam separator 29 and the heat exchanger tube group 27 by natural circulation (in the illustrated case) or forced circulation. That is, the feed water heated in the heat transfer tube group 27 is separated into steam and water in the steam separator 29, and part of the separated steam is used as a heat source for the deaerator 31, and the rest is used in the first regenerator of the cooling system. Heat is released in the condensing tube group 4 in the condensing tube group 7, and the condensed water is returned to the deaerator 31 via the drain cooler 30. In the deaerator 31, oxygen scavenger and p
Impurities in the condensate generated by the reaction of the H regulator etc. are treated and adjusted, and the condensate that exits the deaerator 31 flows into the economizer 28 and circulates through the waste heat recovery boiler. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上の従来構成では冷却システムに対する熱供給装置で
ある廃熱回収ボイラの補機が多く、全体として複雑なシ
ステムとなっている。即ち、脱気機31、給水ポンプ3
2、補給水タンク33、補給水ポンプ34、薬注ポンプ
35等廃熱回収ボイラ系をバックアップするための多数
の補機が必要であり、系が複雑且つ裔価なものとなって
いる。
In the conventional configuration described above, there are many auxiliary machines for the waste heat recovery boiler, which is a heat supply device for the cooling system, resulting in a complex system as a whole. That is, the deaerator 31, the water supply pump 3
2. A large number of auxiliary machines are required to back up the waste heat recovery boiler system, such as the make-up water tank 33, the make-up water pump 34, and the chemical injection pump 35, making the system complicated and a sacrifice.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述した問題点に鑑み構成したちであり、熱供
給源側の伝熱管群と、冷却システムの再生器内の伝熱管
(凝縮管)群とを連絡管で接続することにより閉回路を
構成し、この閉回路内の媒体における液体と気体(蒸気
)の相変化により媒体の循環流動を行うよう構成した装
置である。
The present invention has been constructed in view of the above-mentioned problems, and a closed circuit is created by connecting a group of heat transfer tubes on the heat supply source side and a group of heat transfer tubes (condensing tubes) in a regenerator of a cooling system with a connecting tube. This device is configured to circulate and flow the medium through a phase change between liquid and gas (steam) in the medium within this closed circuit.

〔作用〕[Effect]

本発明は以上に示すように熱供給源側の伝熱管群と、冷
却システムの再生器内の伝熱管(凝縮管)群とを連絡管
で接続することにより閉回路を構成し、この閉回路に給
水等の伝熱媒体を封入し、且つ伝熱媒体の相変化により
、気体と液体との比重差を利用して媒体の循環流動を行
うようにする。
As described above, the present invention configures a closed circuit by connecting a group of heat transfer tubes on the heat supply source side and a group of heat transfer tubes (condensing tubes) in a regenerator of a cooling system with a connecting tube. A heat transfer medium such as water is enclosed in the heat transfer medium, and the phase change of the heat transfer medium causes circulation of the medium by utilizing the difference in specific gravity between gas and liquid.

〔実施例〕〔Example〕

以下本発明の実施例を図面を参考に詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図において50は冷却系統に対して熱を供給する熱
供給源たる廃熱回収部である。2は排ガス1の通過する
煙道内に配置した蒸発管群である。
In FIG. 1, 50 is a waste heat recovery section which is a heat supply source that supplies heat to the cooling system. Reference numeral 2 denotes a group of evaporator tubes arranged in the flue through which the exhaust gas 1 passes.

3は蒸発管群2内で蒸発した蒸気を導く蒸気連絡管、4
はこの蒸気連絡管3に接続し且つ冷却系統の第一再生器
7内に配置した放熱部である凝縮管群である。5は更に
この凝縮管群4の出口側に接続する液連絡管であり、廃
熱回収部は結局蒸発管群2、蒸気連絡管3、凝縮管群4
、液連絡管5により閉回路を構成し、この閉回路に封入
された水等の伝熱媒体が循環流動するように構成しであ
る。
3 is a steam communication pipe that guides the steam evaporated in the evaporation tube group 2;
is a group of condensing pipes connected to the steam communication pipe 3 and serving as a heat dissipation section disposed within the first regenerator 7 of the cooling system. 5 is a liquid communication pipe connected to the outlet side of the condensing pipe group 4, and the waste heat recovery section is ultimately connected to the evaporation pipe group 2, the steam communication pipe 3, and the condensing pipe group 4.
A closed circuit is formed by the liquid communication pipe 5, and a heat transfer medium such as water sealed in this closed circuit is configured to circulate and flow.

なお6はこの液連絡管5に設けた伝熱媒体流動制御用の
制御弁である。
Note that 6 is a control valve provided in this liquid communication pipe 5 for controlling the flow of the heat transfer medium.

次に、冷却系統は後述するように廃熱回収部側の伝熱媒
体の循環流動を良好にするため、冷却系統を構成する部
材のうち、少なくとも廃熱回収部側の伝熱媒体の放熱部
である凝縮管群4を有する第一再生器7を廃熱回収部よ
りも高い位置に配置する。
Next, in order to improve the circulation flow of the heat transfer medium on the waste heat recovery section side, as will be described later, the cooling system includes at least the heat dissipation section of the heat transfer medium on the waste heat recovery section side among the members constituting the cooling system. The first regenerator 7 having the condensing tube group 4 is arranged at a higher position than the waste heat recovery section.

以上の構成において、先ず廃熱回収部50側においては
排ガス1の熱により加熱された伝熱媒体である給水は蒸
発し、その蒸気は蒸気連絡管3を経て冷却系統側の凝縮
管群4に至る。ここにおいて放熱して凝縮し、この凝縮
液は液連絡管5を下降し、蒸発管群2に戻る。即ち、廃
熱回収部側の伝熱媒体は蒸気と液体(水)という相変化
による比重差によりこの閉回路を自然循環する。このた
め循環系統に対してポンプ等の強制循環装置を設置する
必要はない。また閉回路であるため基本的には補給水供
給系統は不用であるが、また必要であっても極めて歩容
量のもので充分である。
In the above configuration, first, on the waste heat recovery unit 50 side, the feed water, which is a heat transfer medium heated by the heat of the exhaust gas 1, is evaporated, and the steam passes through the steam communication pipe 3 to the condensing pipe group 4 on the cooling system side. reach. Here, heat is released and condensed, and this condensed liquid descends through the liquid communication pipe 5 and returns to the evaporation tube group 2. That is, the heat transfer medium on the waste heat recovery section side naturally circulates in this closed circuit due to the difference in specific gravity caused by the phase change between vapor and liquid (water). Therefore, there is no need to install a forced circulation device such as a pump in the circulation system. Furthermore, since it is a closed circuit, a make-up water supply system is basically unnecessary, but even if it is necessary, a water supply system of extremely high walking capacity is sufficient.

一方冷却系統側においては、凝縮管群4を介し第一再生
器7内で加熱されたLiBr等の冷却媒体は第二再生・
凝縮器(以下単に「第二再生器」と称する)8、蒸気吸
収器9、ポンプ10.13、熱交換器11.12を循環
流動することにより冷凍サイクルを構成する。また符号
14は冷却水通路であり、冷却された水が出口15を経
て系外に排出され利用される。また同様に入口16から
導入された水は冷却されて出口17を経て外部に排出さ
れる。なおこの場合冷却水使用側の熱的需要を冷却水出
口17に於ける冷却水温度として検出し、廃熱回収部側
の伝熱媒体の循環流量を制御する制御装置18及びこの
装置により作動する流量調節弁6の開度を調節すること
により調節し、この温度に見合う熱量を冷却系統側に供
給するよう制御する。なお以上の構成において廃熱回収
部の伝熱管群はヒートパイプとしてもよい。
On the other hand, on the cooling system side, the cooling medium such as LiBr heated in the first regenerator 7 is transferred to the second regenerator through the condensing tube group 4.
A refrigeration cycle is constructed by circulating fluid through a condenser (hereinafter simply referred to as "second regenerator") 8, a steam absorber 9, a pump 10.13, and a heat exchanger 11.12. Reference numeral 14 is a cooling water passage, through which cooled water is discharged from the system through an outlet 15 and used. Similarly, water introduced from the inlet 16 is cooled and discharged to the outside via the outlet 17. In this case, the thermal demand on the cooling water user side is detected as the cooling water temperature at the cooling water outlet 17, and the control device 18 controls the circulating flow rate of the heat transfer medium on the waste heat recovery section side, and is operated by this device. The temperature is adjusted by adjusting the opening degree of the flow rate control valve 6, and the amount of heat corresponding to this temperature is controlled to be supplied to the cooling system side. Note that in the above configuration, the heat exchanger tube group of the waste heat recovery section may be a heat pipe.

第2図は第2の実施例を示す。FIG. 2 shows a second embodiment.

この実施例では廃熱回収部側の伝熱媒体循環流動用の閉
回路を2つに分けた構成としである。
In this embodiment, the closed circuit for circulating the heat transfer medium on the waste heat recovery section side is divided into two parts.

即ち一つの閉回路は上記実施例と同様、蒸発管群2、蒸
気連絡管3、凝縮管群4、液連絡管5により構成する。
That is, one closed circuit is constituted by the evaporation tube group 2, the vapor communication tube 3, the condensation tube group 4, and the liquid communication tube 5, as in the above embodiment.

他の閉回路は、前記凝縮管群2の排ガス下流側に位置す
る第二蒸発管群19、蒸気連絡管20、冷却系統側に位
置する熱交換器(凝縮器)21、液連絡管22により構
成しである。
The other closed circuit includes a second evaporation tube group 19 located on the exhaust gas downstream side of the condensation tube group 2, a steam communication pipe 20, a heat exchanger (condenser) 21 located on the cooling system side, and a liquid communication pipe 22. It is composed.

以上の構成では、蒸発管群2を通過した排ガスでも未だ
相当の熱量があることに注目し、この部分の排ガスの熱
量を熱交換器21に伝達するようにしである。つまり冷
却系統の熱交換器21において、第一再生器7に戻る冷
却媒体溶液に対して排ガス側の高い熱量を供給し、以て
冷却系統の効率をより高くすることができる。
In the above configuration, attention is paid to the fact that even the exhaust gas that has passed through the evaporator tube group 2 still has a considerable amount of heat, and this portion of the amount of heat of the exhaust gas is transferred to the heat exchanger 21. That is, in the heat exchanger 21 of the cooling system, a high amount of heat on the exhaust gas side can be supplied to the cooling medium solution returning to the first regenerator 7, thereby making it possible to further increase the efficiency of the cooling system.

第3図は第3の実施例を示す。FIG. 3 shows a third embodiment.

本実施例では廃熱回収部に脱硝装置を配置し、冷却系統
側に熱輸送すると共に、煙道内の排ガス温度を脱硝反応
に好適な温度に調節するようにしである。即ち蒸発管群
2内に脱硝装置23を配置し、蒸発管群2のうち少なく
ともこの脱硝装置23に対して直接上流に位置する蒸発
管群2a内の伝熱媒体の流量を調節できるよう流N調節
弁25を設け、脱硝装置23の直前に位置する排ガス温
度制御器26の作動信号によりこの弁25の開度を調節
するよう構成する。これにより蒸発管群2a内を通過す
る伝熱媒体の単位時間当たりの流量を調節することによ
り、この蒸発管群2aの吸熱量を調節し、以て脱硝装置
23を通過する排ガスの温度を脱硝に好適な温度に調節
する。符号24はアンモニア等の脱硝剤を注入するノズ
ルである。
In this embodiment, a denitrification device is disposed in the waste heat recovery section to transport heat to the cooling system and to adjust the temperature of the exhaust gas in the flue to a temperature suitable for the denitrification reaction. That is, the denitrification device 23 is arranged in the evaporator tube group 2, and the flow rate N is adjusted so as to adjust the flow rate of the heat transfer medium in at least the evaporator tube group 2a located directly upstream of the denitrification device 23 in the evaporator tube group 2. A control valve 25 is provided, and the opening degree of the valve 25 is adjusted by an operating signal from an exhaust gas temperature controller 26 located immediately before the denitrification device 23. By adjusting the flow rate per unit time of the heat transfer medium passing through the evaporator tube group 2a, the amount of heat absorbed by the evaporator tube group 2a is adjusted, thereby controlling the temperature of the exhaust gas passing through the denitrification device 23. Adjust the temperature to the appropriate temperature. Reference numeral 24 is a nozzle for injecting a denitration agent such as ammonia.

なおこの実施例では第2の実施例と同様廃熱回収部側の
伝熱媒体流動用の閉回路を2つ設置した構成゛となって
いるが、これに限るものではなく、第1の実施例と同様
に一つの閉回路を構成する凝縮管群に対して脱硝装置を
配置するようにしてもよい。
Note that, like the second embodiment, this embodiment has a configuration in which two closed circuits are installed for the flow of the heat transfer medium on the waste heat recovery section side, but the configuration is not limited to this, and is similar to the first embodiment. As in the example, a denitrification device may be arranged for a group of condensing tubes constituting one closed circuit.

第5図は第4の実施例を示す。FIG. 5 shows a fourth embodiment.

この実施例は第1図に示す構成に基づき更に熱効率を向
上させるように構成しである。即ち、排ガス流中の伝熱
管群を、第1の蒸発管群2、第2の蒸発管群19に加え
て、更にこの第2の蒸発管群19の下流に第3の蒸発管
群51を配置する。
This embodiment is based on the configuration shown in FIG. 1 and is configured to further improve thermal efficiency. That is, in addition to the heat transfer tube group in the exhaust gas flow to the first evaporator tube group 2 and the second evaporator tube group 19, the third evaporator tube group 51 is further downstream of the second evaporator tube group 19. Deploy.

この1発管群51は蒸気連絡管52、第二再生器8内に
配置した凝縮管群53、液連絡管54と共に伝熱媒体が
循環する閉回路を構成する。これにより、第二蒸発管群
19の下流側の排ガスの熱を更に有効利用する。なお第
一再生器7から出た冷却媒体蒸気は媒体連絡管55を経
て第二再生器8内の伝熱管群56に於いて、この第二再
生器8内の冷却媒体に伝熱し、熱効率のより一層の向上
を図っている。なお、第二蒸発管群19を含む閉回路を
循環する伝熱媒体は熱交換器11において、第一再生器
7に戻される冷却媒体に伝熱する。また符号57は第二
再生器8に向かう冷却媒体と、第一再生器7に向かう冷
却媒体との間で熱交換を行う熱交換器である。なお、各
蒸発管群に於ける排ガス温度は例えば次のような値とな
る。即ち、第一の蒸発管群2の下流で約220℃であれ
ば、第二の蒸発管群19の下流では約170℃、第三の
蒸発管群51の下流では約120℃となる。
This one firing tube group 51 constitutes a closed circuit in which a heat transfer medium circulates together with a steam communication tube 52, a condensation tube group 53 arranged in the second regenerator 8, and a liquid communication tube 54. Thereby, the heat of the exhaust gas on the downstream side of the second evaporator tube group 19 can be used more effectively. Note that the cooling medium vapor discharged from the first regenerator 7 passes through the medium communication pipe 55 and is transferred to the cooling medium in the second regenerator 8 in the heat transfer tube group 56 in the second regenerator 8, thereby improving thermal efficiency. We are striving for further improvement. Note that the heat transfer medium circulating in the closed circuit including the second evaporator tube group 19 transfers heat to the cooling medium returned to the first regenerator 7 in the heat exchanger 11 . Further, reference numeral 57 is a heat exchanger that exchanges heat between the cooling medium headed for the second regenerator 8 and the coolant headed for the first regenerator 7. Note that the exhaust gas temperature in each evaporator tube group has, for example, the following values. That is, if the temperature is approximately 220° C. downstream of the first evaporator tube group 2, the temperature is approximately 170° C. downstream of the second evaporator tube group 19, and approximately 120° C. downstream of the third evaporator tube group 51.

第7図は排ガス温度と冷房出力との関係を、冷却装置の
構成の種類毎に示す線図である。なおこの場合、排ガス
量は354ONrrr/hとする。
FIG. 7 is a diagram showing the relationship between exhaust gas temperature and cooling output for each type of cooling device configuration. In this case, the amount of exhaust gas is 354 ONrrr/h.

線図Aは一つの蒸発管群と、一つの再生器とから成る所
謂単効用型の装置の冷房出力を示し、この型の装置は比
較的低い排ガス温度でも作動可能である反面、排ガス温
度に対する冷房出力は低く、熱効率は余り高くない。線
図Bは第5図に示すように、第一再生器(低温再生器)
7と第二再生器(高温再生器)8の両省を含む構成の装
置に於いて、第二再生器8のみを使用した場合の冷房出
力を示す。この場合には、排ガス温度が高温になると急
激に冷房出力が増加するが、全般に前記単効用型に比較
しても冷房出力が低く、熱効率は良くない。これに対し
て線図りはこの第5図の構成に於いて、第二再生器8の
外に熱交換器11.57を併用した場合を示し、これに
より冷房出力は大幅に向上し、高い熱効率が達成されて
いることが分かる。更に線図Cは第二再生器8、熱交換
器11.57に加えて第一再生器7も併用した場合を示
し、この場合が最も高い冷房出力を得ることができ、図
示した構成の装置が高い熱効率を有していることが分か
る。
Diagram A shows the cooling output of a so-called single-effect type device consisting of one evaporator tube group and one regenerator.While this type of device can operate even at a relatively low exhaust gas temperature, the The cooling output is low and the thermal efficiency is not very high. Diagram B is the first regenerator (low temperature regenerator) as shown in Figure 5.
7 and a second regenerator (high temperature regenerator) 8, the cooling output when only the second regenerator 8 is used is shown. In this case, when the exhaust gas temperature becomes high, the cooling output increases rapidly, but the cooling output is generally lower than the single-effect type, and the thermal efficiency is not good. On the other hand, the diagram shows the case where a heat exchanger 11.57 is used in addition to the second regenerator 8 in the configuration shown in Fig. 5, which greatly improves the cooling output and achieves high thermal efficiency. It can be seen that this has been achieved. Furthermore, diagram C shows the case where the first regenerator 7 is also used in addition to the second regenerator 8 and the heat exchanger 11.57, and in this case, the highest cooling output can be obtained, and the device with the configuration shown in the diagram It can be seen that the thermal efficiency is high.

第6図は第5の実施例をしめす。  −この実施例は第
3図に示す構成の変形である。
FIG. 6 shows a fifth embodiment. -This embodiment is a modification of the arrangement shown in FIG.

即ち第一再生器7内に凝縮管群4の外に別の凝縮管群5
8を設置し、この凝縮管群58を蒸気連絡管20、液連
絡管22を介して第2の蒸発管群19に接続することに
より閉回路を構成し、第二の蒸発管群19で回収した熱
も第一再生器7に放出するようにしている。また第三の
蒸発管群51は蒸気連絡管52、液連絡管54により熱
交換器11と接続し、この熱交換器を含めて閉回路を構
成している。尚、蒸気吸収器9に於いて、冷却水使用側
の熱的需要を冷却水出口17に於ける冷却水温度として
検出し、制御装置18を介して制御弁59を調節するこ
とにより第二の蒸発管群19を経由する伝熱媒体の循環
量を制御する。
That is, in the first regenerator 7, in addition to the condensing tube group 4, there is another condensing tube group 5.
A closed circuit is constructed by connecting this condensing tube group 58 to the second evaporation tube group 19 via the vapor communication tube 20 and the liquid communication tube 22, and the second evaporation tube group 19 recovers the The generated heat is also released to the first regenerator 7. Further, the third evaporation tube group 51 is connected to the heat exchanger 11 through a steam communication tube 52 and a liquid communication tube 54, and constitutes a closed circuit including this heat exchanger. In the steam absorber 9, the thermal demand on the cooling water user side is detected as the cooling water temperature at the cooling water outlet 17, and the second The amount of heat transfer medium circulated through the evaporation tube group 19 is controlled.

〔効果〕〔effect〕

本発明は以上にその構成を詳細に説明したように、熱供
給源側の伝熱管群と、冷却システムの再生器内の伝熱管
(凝縮管)群とを連絡管で接続することにより閉回路を
構成し、この閉回路に給水等の伝熱媒体を封入し、且つ
伝熱媒体の相変化により、気体と液体との比重差を利用
して媒体の循環を自然循環方式により行うことが可能と
なったため、強制循環用ポンプ、給水タンク、給水補給
用管路、給水補給用ポンプ、脱気器等の機器が不用とな
り装置全体を簡素化でき且つ価格を低減すことができる
As described above in detail, the present invention provides a closed circuit by connecting a group of heat transfer tubes on the heat supply source side and a group of heat transfer tubes (condensing tubes) in a regenerator of a cooling system with a connecting tube. A heat transfer medium such as water is sealed in this closed circuit, and due to the phase change of the heat transfer medium, it is possible to circulate the medium using a natural circulation method by utilizing the difference in specific gravity between gas and liquid. Therefore, devices such as forced circulation pumps, water tanks, water replenishment pipes, water replenishment pumps, and deaerators are not required, making it possible to simplify the entire device and reduce the cost.

【図面の簡単な説明】 第1図は本発明の第1の実施例を示す廃熱回収型冷却装
置の系統図、第2図は第2の実施例を示す廃熱回収型冷
却装置の系統図、第3図は第3の実施例を示す廃熱回収
型冷却装置に於ける廃熱回収部を中心とした系統図、第
4図は従来構成の廃熱回収型冷却装置の系統図、第5図
は第4の実施例を示す廃熱回収型冷却装置の系統図、第
6図は第5の実施例を示す廃熱回収型冷却装置の系統図
、第7図は排ガス入口温度と冷房能力との関係を示す線
図である。 1・・・排ガス  2.19.51・・・蒸発管群  
3.20.52・・・蒸気連絡管4.53.58・・・
凝縮管群 5.22.54・・・液連絡管 7・・・第一再生器  8・・・第二再生器23・・・
脱硝装置  25.59・・・流量調節弁  50・・
・廃熱回収部 第1図 第3図 第4図 第5図 第6図 第7図
[Brief Description of the Drawings] Fig. 1 is a system diagram of a waste heat recovery type cooling device showing a first embodiment of the present invention, and Fig. 2 is a system diagram of a waste heat recovery type cooling device showing a second embodiment. 3 is a system diagram centered on the waste heat recovery section in a waste heat recovery type cooling device showing the third embodiment, and FIG. 4 is a system diagram of a waste heat recovery type cooling device with a conventional configuration. Fig. 5 is a system diagram of a waste heat recovery type cooling device showing the fourth embodiment, Fig. 6 is a system diagram of a waste heat recovery type cooling device showing the fifth embodiment, and Fig. 7 shows the exhaust gas inlet temperature and FIG. 3 is a diagram showing the relationship with cooling capacity. 1...Exhaust gas 2.19.51...Evaporator tube group
3.20.52...Steam communication pipe 4.53.58...
Condensing tube group 5.22.54...Liquid communication pipe 7...First regenerator 8...Second regenerator 23...
Denitration equipment 25.59...Flow rate control valve 50...
・Waste heat recovery section Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7

Claims (7)

【特許請求の範囲】[Claims] (1)冷却系統と、この冷却系統に対して熱を供給する
系統とからなる冷却装置において、熱供給系統と冷却系
統との間に伝熱媒体が循環流動する閉回路を少なくとも
1つ構成し、伝熱媒体の蒸気と液体との相変化によりこ
の伝熱媒体を閉回路内で自然循環させるよう構成したこ
とを特徴とする冷却装置。
(1) In a cooling device consisting of a cooling system and a system that supplies heat to the cooling system, at least one closed circuit in which a heat transfer medium circulates between the heat supply system and the cooling system is configured. A cooling device characterized in that the heat transfer medium is configured to naturally circulate within a closed circuit by a phase change between vapor and liquid of the heat transfer medium.
(2)前記熱を供給する系統を、蒸発管群が排ガス流中
に位置する廃熱回収部とし、蒸発管群、蒸気連絡管、冷
却系統の第一再生器内の凝縮管群及び液連絡管により伝
熱媒体循環流動用の閉回路を構成したことを特徴とする
特許請求の範囲第(1)項記載の冷却装置。
(2) The system for supplying the heat is a waste heat recovery section in which the evaporator tube group is located in the exhaust gas flow, and the evaporator tube group, the steam communication pipe, the condensation tube group in the first regenerator of the cooling system, and the liquid communication The cooling device according to claim 1, characterized in that a closed circuit for circulating the heat transfer medium is formed of tubes.
(3)蒸発管群内に脱硝装置を配置し、この脱硝装置の
少なくとも直接上流に位置する蒸発管群に対しその内部
を通過する伝熱媒体の流量を調節する手段を設けたこと
を特徴とする特許請求の範囲第(1)項または第(2)
項記載の冷却装置。
(3) A denitrification device is disposed within the evaporator tube group, and means is provided for adjusting the flow rate of the heat transfer medium passing through the evaporator tube group located at least directly upstream of the denitrification device. Claim (1) or (2)
Cooling device as described in section.
(4)蒸発管群を2群に分け、一方の群の蒸発管群は、
蒸気連絡管、冷却系統の第一再生器内の凝縮管群及び液
連絡管により閉回路を形成し、他方の蒸発管群は別の蒸
気連絡管、冷却系統の凝縮器及び液連絡管により別の閉
回路を形成するようにしたことを特徴とする特許請求の
範囲第(1)項記載の冷却装置。
(4) The evaporator tube group is divided into two groups, and one group of evaporator tubes is
The steam communication pipe, the condensation pipe group in the first regenerator of the cooling system, and the liquid communication pipe form a closed circuit, and the other evaporation pipe group is separated by another steam communication pipe, the condenser of the cooling system, and the liquid communication pipe. The cooling device according to claim 1, wherein a closed circuit is formed.
(5)冷却系統のうち、内部に凝縮管群を配置した第一
再生器を少なくとも熱供給系統よりも高い位置に配置し
、閉回路内での伝熱媒体の循環流動の効率を向上させる
よう構成したことを特徴とする特許請求の範囲第(1)
項記載の冷却装置。
(5) In the cooling system, the first regenerator, which has a group of condensing tubes arranged inside, is placed at least at a higher position than the heat supply system to improve the efficiency of circulating flow of the heat transfer medium in the closed circuit. Claim No. (1) characterized in that
Cooling device as described in section.
(6)冷却系統に於いて、第一再生器の下流に高温型の
第二再生器を配置し、一方熱供給系統の蒸発管群は排ガ
ス流の上流から第一蒸発管群、第二蒸発管群及び第三蒸
発管群の順に分割して配置し、第一蒸発管群は第一再生
器の凝縮管群との間に閉回路を形成し、第二蒸発管群は
冷却媒体を加熱する熱交換器との間に閉回路を形成し、
第三蒸発管群は第二再生器内に配置した凝縮管群との間
に閉回路を形成したことを特徴とする特許請求の範囲第
(1)項記載の冷却装置。
(6) In the cooling system, a high-temperature second regenerator is arranged downstream of the first regenerator, while the evaporator tube group of the heat supply system is arranged from the upstream of the exhaust gas flow to the first evaporator tube group, the second evaporator tube group, and the second evaporator tube group. The first evaporation tube group forms a closed circuit with the condensing tube group of the first regenerator, and the second evaporation tube group heats the cooling medium. A closed circuit is formed between the heat exchanger and the
2. The cooling device according to claim 1, wherein the third evaporating tube group forms a closed circuit with a condensing tube group disposed in the second regenerator.
(7)第一蒸発管群の下流に脱硝装置を配置し、この脱
硝装置の下流に第二蒸発管群及び第三蒸発管群を順次配
置し、第一再生器内には第一蒸発管群を含む閉回路の一
部を構成する凝縮管群とは別の凝縮管群を配置し、この
別の凝縮管群と第二蒸発管群との間に閉回路を構成し、
更に第三の蒸発管群は冷却媒体を加熱する熱交換器との
間に閉回路を形成したことを特徴とする特許請求の範囲
第(1)項記載の冷却装置。
(7) A denitration device is arranged downstream of the first evaporation tube group, a second evaporation tube group and a third evaporation tube group are arranged in sequence downstream of this denitration device, and the first evaporation tube group is placed in the first regenerator. arranging a condensing tube group separate from the condensing tube group constituting a part of the closed circuit including the condensing tube group, and configuring a closed circuit between this different condensing tube group and the second evaporation tube group,
The cooling device according to claim 1, further comprising a closed circuit formed between the third evaporation tube group and a heat exchanger that heats the cooling medium.
JP1252687A 1987-01-23 1987-01-23 Absorption type cooling device Pending JPS63183352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1252687A JPS63183352A (en) 1987-01-23 1987-01-23 Absorption type cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1252687A JPS63183352A (en) 1987-01-23 1987-01-23 Absorption type cooling device

Publications (1)

Publication Number Publication Date
JPS63183352A true JPS63183352A (en) 1988-07-28

Family

ID=11807775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1252687A Pending JPS63183352A (en) 1987-01-23 1987-01-23 Absorption type cooling device

Country Status (1)

Country Link
JP (1) JPS63183352A (en)

Similar Documents

Publication Publication Date Title
JPS5818574B2 (en) heat pump
US4183228A (en) Double effect absorption refrigerating system comprising
US4085595A (en) Double effect absorption refrigerating system
WO2002018849A1 (en) Absorption refrigerating machine
JP4287705B2 (en) Single double effect absorption refrigerator and operation control method thereof
US6460338B1 (en) Absorption waste-heat recovery system
US4470269A (en) Absorption refrigeration system utilizing low temperature heat source
JPH0794933B2 (en) Air-cooled absorption air conditioner
JPS63183352A (en) Absorption type cooling device
JP2006207883A (en) Absorption heat pump
JP2000205691A (en) Absorption refrigerating machine
JP3401546B2 (en) Absorption refrigerator
JPS5812507B2 (en) Hybrid type absorption heat pump
JP2002098435A (en) Absorption freezer
JPH0552438A (en) Absorption heat pump
KR0139752B1 (en) 1, 2 type common absorption heat pump
JP2000249423A (en) Absorption refrigerating machine
JP4064199B2 (en) Triple effect absorption refrigerator
JP2787182B2 (en) Single / double absorption chiller / heater
JP4175612B2 (en) Single-effect absorption chiller / heater
JP2000249422A (en) Absorption refrigerating machine
JPS6148064B2 (en)
JP2004011928A (en) Absorption refrigerator
JP2645948B2 (en) Hot water absorption absorption chiller / heater
JPH0545020A (en) Absorption heat pump