JPS63183315A - Combustion method in boiler - Google Patents

Combustion method in boiler

Info

Publication number
JPS63183315A
JPS63183315A JP62015837A JP1583787A JPS63183315A JP S63183315 A JPS63183315 A JP S63183315A JP 62015837 A JP62015837 A JP 62015837A JP 1583787 A JP1583787 A JP 1583787A JP S63183315 A JPS63183315 A JP S63183315A
Authority
JP
Japan
Prior art keywords
combustion
burner
air
burners
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62015837A
Other languages
Japanese (ja)
Inventor
Yatsuhiro Iwanami
岩波 八尋
Tsunehisa Obata
小幡 倫久
Shoji Azuma
東 昌二
Masataka Yokoyama
横山 正孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP62015837A priority Critical patent/JPS63183315A/en
Publication of JPS63183315A publication Critical patent/JPS63183315A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/02Controlling two or more burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE:To prohibit hydrogen sulfuride from being generated during combustion by a method wherein a concentration of hydrogen sulfuride in combustion gas near the extremity end of flame or each of burners or each of groups of burners in a furnace is detected and a flow rate of air in each of the burners or each of groups of burners is adjusted by this sensed value. CONSTITUTION:Combustion gas is collected by combustion gas collecting pipes 19, 19' and 19'' arranged near extremity ends of flames of each of grouts of burners 3, 3' and 3'' and a concentration of hydrogen sulfuride in combustion gas can be detected by an analyzer. As fuel, heavy oil having sulfur of more than 1 wt%, remaining carbon of more than 7 wt% and a kinematic viscosity of 100 cSt or more at 50 deg.C is used, a concentration of hydrogen sulfuride in combustion gas near extremity ends of flames in each of groups of burners during combustion is detected and a flow rate of combustion air is adjusted by a degree of opening of a damper 14 arranged in an air duct 13 of each of burners or groups of burners in such a way as the concentration becomes 20 volumetric ppm or less. Operation is carried out while keeping an air fuel ratio of each of the groups of burners within a desired range and then hydrogen sulfuride is prohibited from being generated during combustion.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はボイラーの燃焼方法の改良に関するものである
。詳しくは本発明は、重油燃料の多様化に伴い、燃焼性
が悪くかつイオウ分が多い重質化した重油を燃料として
用いた場合において、燃焼時における硫化水素の生成を
抑制するのに好適なボイラーの燃焼方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in the combustion method of a boiler. Specifically, with the diversification of heavy oil fuels, the present invention provides a method suitable for suppressing the production of hydrogen sulfide during combustion when heavy fuel oil with poor flammability and high sulfur content is used as a fuel. This relates to the combustion method of boilers.

〔従来の技術〕[Conventional technology]

近年、複数のバーナ群、例えば3段以上のバーナ群を備
えたボイラーにおいては、重油燃料の多様化に伴い、燃
焼性が悪くかつイオウ分の多い重質化した重油を燃料と
して用い、かつ、窒素酸化物の生成抑制、排煙対策及び
省エネルギ一対策等の観点から低酸素燃焼法、RIIち
、燃焼装置出口の燃焼排ガス中の酸素濃度を低くする燃
焼法を採用し、各バーナへの空気の配分を均等とする(
各バーナの空燃比を一定にする)方法、下段から上段へ
向けて増加させる(空燃比を増加させる)方法或いは一
段燃焼法等にょシ運転されている。
In recent years, with the diversification of heavy oil fuels, boilers equipped with multiple burner groups, for example burner groups of three or more stages, are using heavy fuel oil with poor combustibility and high sulfur content as fuel, and From the viewpoint of suppressing the production of nitrogen oxides, controlling smoke emissions, and saving energy, we adopted the low-oxygen combustion method, RII, a combustion method that lowers the oxygen concentration in the combustion exhaust gas at the combustion equipment outlet. Equalize air distribution (
A method of increasing the air-fuel ratio from the lower stage to the upper stage (increasing the air-fuel ratio), a single-stage combustion method, etc. are used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記の低酸素燃焼法においては炉内での
燃焼状態が悪化して燃焼ガス雰囲気が変化し、この影響
によって火炉の蒸発管の特定部分(特に下段バーナの下
部付近の蒸発管)において腐食によると見られる著しい
減肉現象が生起するという問題点があった。
However, in the above-mentioned low-oxygen combustion method, the combustion conditions in the furnace deteriorate and the combustion gas atmosphere changes, which causes corrosion in certain parts of the furnace's evaporator tube (especially the evaporator tube near the bottom of the lower burner). There was a problem in that a significant thinning phenomenon occurred as seen in the above.

上記蒸発管の腐食防止対策として、従来、■ Mg系防
食添加剤を注入する方法、■ Or拡散浸透処理や耐食
性合金の溶射等による表面処理、 等が知られている。
Conventionally known measures to prevent corrosion of the evaporator tube include (1) injection of an Mg-based anticorrosive additive, (2) surface treatment by Or diffusion penetration treatment, thermal spraying of a corrosion-resistant alloy, etc.

しかしながら、上記■の方法では、還元性のH3Sを含
む環境下において、MgS化合物を生成して防食機能を
損失するばかシか、条件によっては腐食を促進させる可
能性があり、また、上記■の方法では高温で長時間使用
した場合に表面剥離を起す恐れがある。
However, in the method (2) above, in an environment containing reducing H3S, MgS compounds may be generated and the anticorrosive function may be lost, or depending on the conditions, corrosion may be accelerated. This method may cause surface peeling if used at high temperatures for long periods of time.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記従来技術の問題点を解決すべくその原
因究明に努めた結果、燃焼時における酸素不足環境(還
元性雰囲気)によって硫化水素が生成し、この硫化水素
が高温下において蒸発管を腐食させていることが判明し
た。
The inventors of the present invention have endeavored to investigate the cause of the above-mentioned problems in the prior art, and have found that hydrogen sulfide is generated due to the oxygen-deficient environment (reducing atmosphere) during combustion, and this hydrogen sulfide is transferred to the evaporator pipe under high temperature. It was found that it was corroding.

上記燃焼時における硫化水素の生成を抑制すべく、上記
した従来法における空気流量の配分割合で炉内出口の排
ガス中の酸素濃度を高くし過剰空気率を高くする運転法
を試みたが、この方法でも、特に下段バーナの火炎先端
部付近の燃焼ガス中の硫化水素濃度を減少させることが
できないことがわかった。
In order to suppress the generation of hydrogen sulfide during the combustion described above, an operating method was attempted in which the air flow distribution ratio used in the conventional method was used to increase the oxygen concentration in the exhaust gas at the furnace outlet and increase the excess air ratio. It was found that this method was also unable to reduce the hydrogen sulfide concentration in the combustion gas, especially near the flame tip of the lower burner.

本発明者らは上記燃焼時における硫化水素の生成を燃焼
改善によって抑制すべく鋭意検討を重ねた結果、炉内の
各バーナまたは各バーナ群の火炎の先端部付近の燃焼ガ
ス中の硫化水素濃度を検出し、この検出値によって各バ
ーナ又は各バーナ群の空気流量を調節することによって
、低酸素燃焼法であっても燃焼時における硫化水素の生
成を著しく抑制することができ、これによシ蒸発管の腐
食を著しく減少させることができ、かつ、燃焼排ガス中
の煤塵量も減少させることができ、さらに驚くべきこと
に窒素酸化物は特に増加しないことを見出して本発明を
完成した。
The present inventors have conducted intensive studies to suppress the generation of hydrogen sulfide during combustion by improving combustion, and as a result, the concentration of hydrogen sulfide in the combustion gas near the tip of the flame of each burner or group of burners in the furnace has been determined. By detecting this value and adjusting the air flow rate of each burner or each burner group based on this detected value, it is possible to significantly suppress the generation of hydrogen sulfide during combustion even in the low-oxygen combustion method. The present invention was completed based on the discovery that corrosion of evaporator tubes can be significantly reduced, and the amount of soot and dust in combustion exhaust gas can also be reduced, and surprisingly, nitrogen oxides do not particularly increase.

即ち、本発明の要旨は、燃焼室に複数のバーナ群を備え
、燃料の供給量を各バーナ群ごとに制御し、かつ燃焼用
空気の供給量を各バーナ群ごとまたは各バーナごとに制
御し得るボイラー燃焼装置において、燃料としてイオウ
分が7重量%以上、残留炭素分が7重量%以上で、かつ
50℃での動粘度が100センチストークス以上である
重質油を使用し、燃焼時に各バーナ群の火炎の先端付近
の燃焼ガス中の硫化水素濃度を検出し、この濃度が20
容量ppm以下となるように、各バーナまたは各バーナ
群の空気ダクトに備えたダンパの開度で燃焼用空気流量
を調節し、各バーナ群の空燃比を所望の範囲に維持しつ
つ運転することを特徴とするボイラーの燃焼方法、に存
する。
That is, the gist of the present invention is to provide a combustion chamber with a plurality of burner groups, to control the amount of fuel supplied to each burner group, and to control the amount of combustion air supplied to each burner group or each burner. In the boiler combustion equipment to obtain the fuel, heavy oil with a sulfur content of 7% by weight or more, a residual carbon content of 7% by weight or more, and a kinematic viscosity of 100 centistokes or more at 50°C is used as fuel, and each The concentration of hydrogen sulfide in the combustion gas near the tip of the flame of the burner group is detected, and this concentration is 20%.
The combustion air flow rate is adjusted by the opening of the damper provided in the air duct of each burner or each burner group so that the air-fuel ratio of each burner group is maintained within the desired range during operation so that the air-fuel ratio of each burner group is maintained within the desired range. A boiler combustion method characterized by:

以下、図面を参照しつつ本発明につき詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第7図は本発明方法で使用されるボイラー燃焼装置の一
例を示す模式的縦@面図である。
FIG. 7 is a schematic vertical view showing an example of a boiler combustion apparatus used in the method of the present invention.

図中、(1)は竪型の燃焼室であり、その壁面は水冷壁
を形成する蒸発管(水管)(2)で構成されており、燃
焼室(])の下部には3段のバーナ群(3)、にツ、(
3′lが設けられている。燃焼室(1)からの燃焼ガス
流路の下流には第1過熱器管群(4)が設けられ、さら
にその下流には第1過熱器管群(4す、節炭器(5)及
び空気予熱器(6)が順次設けられている。
In the figure, (1) is a vertical combustion chamber, whose wall is composed of evaporation tubes (water tubes) (2) that form water-cooled walls, and at the bottom of the combustion chamber (]) there are three stages of burners. Group (3), Nitsu, (
3'l is provided. A first superheater tube group (4) is provided downstream of the combustion gas flow path from the combustion chamber (1), and further downstream thereof a first superheater tube group (4), an economizer (5), and a first superheater tube group (4). An air preheater (6) is sequentially provided.

燃焼ガスはこれらを通り、次いで煙道を経由して煙突(
7)に導かれ、大気中に排出される。燃焼用空気をバー
ナ群(3)、(f)、(勾に供給するために強圧通風機
Dl)、空気ダクト(ロ)、分岐ダクト(ロ)及び空気
流量制御ダンパ(ロ)が設けられている。また各バーナ
群に燃料を供給するために燃料配管(8)、燃料供給分
岐管(9)及び燃料制御弁0すが設置されている。
Combustion gas passes through these and then through the flue to the chimney (
7) and is emitted into the atmosphere. A burner group (3), (f), (high-pressure ventilation fan Dl for supplying combustion air to the slope), an air duct (b), a branch duct (b), and an air flow rate control damper (b) are provided. There is. Further, a fuel pipe (8), a fuel supply branch pipe (9), and a fuel control valve 0 are installed to supply fuel to each burner group.

(19)、(1)、(]ノ、例えば、石英製採取管によ
って燃焼ガスを採取し、分析装置、例えばガスクロマト
グラフによって燃焼ガス中の硫化水素濃度を検出し得る
ようになっている。
(19), (1), (] - For example, the combustion gas is collected using a quartz sampling tube, and the hydrogen sulfide concentration in the combustion gas can be detected using an analytical device such as a gas chromatograph.

本発明方法においては、燃料としてイオウ分が7重量%
以上、好ましくは7〜7重量%、残留炭素分が7重量%
以上、好ましくは7〜25重finで、かつ30℃での
動粘度がiooセンチストークス(cat)以上、好ま
しくは/、00〜λθ、ooocstである重油が用い
られる。特にイオウ分が2〜6重i%、残留炭素分が1
0−25重11チで、かつ50℃での動粘度が300〜
/ 0,000 catである重油を用いた場合には本
発明の効果が著しい。
In the method of the present invention, the sulfur content is 7% by weight as the fuel.
Above, preferably 7 to 7% by weight, residual carbon content is 7% by weight
As mentioned above, a heavy oil is used which preferably has a 7 to 25 heavy fin and a kinematic viscosity at 30° C. of io centistokes (cat) or more, preferably /, 00 to λθ, ooocst. In particular, the sulfur content is 2 to 6% by weight, and the residual carbon content is 1%.
0-25 weight 11 inches and kinematic viscosity at 50℃ 300~
/0,000 cat, the effect of the present invention is remarkable.

本発明方法においては上記のように各バーナ群の火炎の
先端付近の燃焼ガス中の硫化水素濃度を検出し、該硫化
水素濃度に基づいて各バーナの燃焼状態を把掴し、該硫
化水素濃度が20容量ppm以下、好ましくはio容量
ppm以下、さらに好ましくは!容量ppm以下となる
ように、各バーナの空気分岐ダク) 03)に設けられ
たダンパ0荀の開度を調節して燃焼用空気流量を制御す
ることによシ実施される。燃焼ガス中の硫化水素濃度が
一〇容量ppmを越えた場合には、燃焼室壁面の水冷壁
を形成する蒸発管(2)の金属材質を腐食させる恐れが
あり、また燃焼排ガス中の煤塵量が著しく増加する。
In the method of the present invention, as described above, the hydrogen sulfide concentration in the combustion gas near the tip of the flame of each burner group is detected, the combustion state of each burner is grasped based on the hydrogen sulfide concentration, and the hydrogen sulfide concentration is less than 20 ppm by capacity, preferably less than io capacity ppm, more preferably! This is carried out by controlling the combustion air flow rate by adjusting the opening degree of the damper provided in the air branch duct (03) of each burner so that the combustion air flow rate is below the capacity ppm. If the hydrogen sulfide concentration in the combustion gas exceeds 10 ppm by volume, there is a risk that the metal material of the evaporator tube (2) that forms the water-cooled wall on the combustion chamber wall will corrode, and the amount of soot and dust in the combustion exhaust gas will decrease. increases significantly.

本発明方法においては、上記のように硫化水素濃度を指
標としつつ各バーナに供給される燃焼用空気流量を制御
することによって、各バーナの燃焼状態を調整する。
In the method of the present invention, the combustion state of each burner is adjusted by controlling the flow rate of combustion air supplied to each burner while using the hydrogen sulfide concentration as an index as described above.

上記空気流量の制御は見方を変えれば空気流量と燃料流
量との比率、即ち空燃比の制御に相当する。なお本明細
書において1−空燃比」は次のようにして算出される。
From another perspective, the control of the air flow rate described above corresponds to the control of the ratio between the air flow rate and the fuel flow rate, that is, the air-fuel ratio. Note that in this specification, "1-air-fuel ratio" is calculated as follows.

即ち燃料(重油)中の炭素、水素及びイオウの含有量(
Kq/Ktz−燃料)をそれぞれC1H及び日として次
式により理論空気t(wrr?/Kq−燃料)を算出す
る。
In other words, the content of carbon, hydrogen and sulfur in fuel (heavy oil) (
Theoretical air t(wrr?/Kq-fuel) is calculated by the following formula, where Kq/Ktz-fuel) is set to C1H and day, respectively.

理論空気量=ざ、t 9−C+ 2 &、7・H+、?
、、?、?・6次にこれを用いて次式により空燃比を算
出する。
Theoretical air amount = t 9-C+ 2 &, 7・H+,?
,,? ,?・Sixth, use this to calculate the air-fuel ratio using the following formula.

本発明方法の特徴は燃焼時に上記特定の硫化水素濃度を
指標として各バーナに供給される燃焼用空気流量を制御
することにあシ、単に各バーナにおける空燃比を特定の
範囲に制御することを内容とするものではない。ま九各
バーナにおける燃焼状態は空燃比のみで決定されるもの
では々く、燃料の品質や燃料装置の構造にも依存する。
The feature of the method of the present invention is that during combustion, the flow rate of combustion air supplied to each burner is controlled using the above-mentioned specific hydrogen sulfide concentration as an index, and the air-fuel ratio in each burner is simply controlled within a specific range. It is not intended as a content. The combustion state in each burner is not determined solely by the air-fuel ratio, but also depends on the quality of the fuel and the structure of the fuel system.

しかしながら本発明者らの検討によれば、上記空気流量
の制御において燃焼室の複数のバーナ群のうち最下段バ
ーナ群の空燃比を1.23;〜1.ワとし、より上段の
バーナ群の空燃比がより小さくなるようにすると好適な
結果が得られる。より好適には少なくとも3段のバーす
群を備えた燃焼室を使用して、最下段のバーナ群の空燃
比を/、コj〜/、7、好ましくは八3〜/iの範囲、
中段のバーナ群の空燃比をへ〇〜へ−1好ましくは7.
05〜13.2の範囲、最上段のバーナ群の空燃比をO
,7〜7.01好ましくは0.t −0,9!の範囲と
し、かつ全バーナ群における空燃比をへ〇〜へ−の範囲
に論節し、炉出口燃焼排ガス中の酸素製置が0.!; 
−j容量チの範囲内として燃焼を行なわせるのがよい。
However, according to studies by the present inventors, in controlling the air flow rate, the air-fuel ratio of the lowest burner group among the plurality of burner groups in the combustion chamber is set to 1.23; In addition, preferable results can be obtained by making the air-fuel ratio of the burner group in the upper stage smaller. More preferably, a combustion chamber with at least three stages of burners is used, the air-fuel ratio of the lowest burner group being in the range /, ~ /, 7, preferably ~ / /,
The air-fuel ratio of the burner group in the middle stage is set to -1, preferably 7.
In the range of 05 to 13.2, the air-fuel ratio of the top burner group is O.
, 7-7.01 preferably 0. t-0,9! , and the air-fuel ratio in all burner groups is set in the range from 〇 to 〇, and the oxygen concentration in the flue gas at the furnace outlet is set to 0. ! ;
-j It is preferable to carry out combustion within the range of capacity q.

このように最下段バーナ域を完全燃焼域とし、さらに全
燃焼域においても完全燃焼域を形成するような燃焼条件
を採用することは好適な結果を与える。
In this way, preferable results can be obtained by making the lowest stage burner region a complete combustion region, and by adopting combustion conditions that also form a complete combustion region in all combustion regions.

第2図は本発明方法で使用される好適なボイラー燃焼装
置の燃焼室部分の例を示す模式的縦断面図である。同図
に示すものも3段のバーナ群を備えたものであり、各バ
ーナはその上下に設けた空気流量制御ダンパによって空
気流量が調節できるものである。即ち、各バーナ(3)
、(:()、(噂へ燃料供給分岐管(9)、(9)、(
グ)から所定量の燃料を供給し、一方燃焼用空気を空気
ダクト0埠よりそれぞれ分岐ダク)(151,(ロ)を
経て第1ダンパ0→、(財)の開度調節により空気流量
を上下に配分し、さらに各バーナの入口側に設けられた
上側第コダンバ(17) 、(17つ、01つ及び下側
第コダンパ0→、(1ツ、0gつの開度調節によってそ
れぞれの空気流量を調節し、各バーナ(3)、(:()
、(:イウの空燃比を所望の範囲に調節するものである
0 第3図は本発明方法で使用されるより好適なボイラー燃
焼装置の燃焼室部分の例を示す模式的縦断面図である。
FIG. 2 is a schematic longitudinal sectional view showing an example of a combustion chamber portion of a preferred boiler combustion apparatus used in the method of the present invention. The burner shown in the figure also has a three-stage burner group, and the air flow rate of each burner can be adjusted by air flow control dampers provided above and below the burner. That is, each burner (3)
,(:(),(Fuel supply branch pipe to rumor (9),(9),(
A predetermined amount of fuel is supplied from the air duct 0, and the air flow rate is controlled by adjusting the opening of the first damper 0 →, (foundation) through the branch ducts) (151, (b)). The air flow rate can be adjusted by adjusting the opening degrees of the upper and lower codampers (17), (17, 01) and the lower codampers (0→, (1, 0g), which are distributed vertically and provided on the inlet side of each burner. Adjust each burner (3), (:()
, (: The air-fuel ratio of iu is adjusted to a desired range.0 Fig. 3 is a schematic vertical cross-sectional view showing an example of a combustion chamber portion of a more preferable boiler combustion apparatus used in the method of the present invention. .

同図に示すものは各)く−すに供給する燃焼用空気を一
次空気及び二次空気に分けてそれぞれ流量調節ができる
ものである。
The combustion air supplied to each combustion engine is divided into primary air and secondary air, and the flow rates of each can be adjusted.

即ち、各バーナ(3)、(3′)、(3’lへ所定量供
給される燃料に対し、燃焼用空気を空気ダクト(6)よ
り分岐ダクト(ホ)を経て、各バーナの一次空気流路に
設けられたダンパ斡)、(2N5、■つ及び二次空気流
路に設けられた上側ダンパ(4)、(2)、(財)つ及
び下側ダンパ(2)、(6)、Iつのそれぞれの開度を
調節して所望の空燃比となるように各バーナへの一次空
気及び二次空気をそれぞれ調節するものである。
That is, for the fuel supplied in a predetermined amount to each burner (3), (3'), (3'l), combustion air is passed from the air duct (6) to the branch duct (e), and is then supplied to the primary air of each burner. dampers (4), (2), (2) and lower dampers (2), (6) provided in the secondary air flow path. , I to adjust the primary air and secondary air to each burner so as to obtain a desired air-fuel ratio.

各バーナ(3)、(3’)、(ff’lの火炎の先端部
付近には燃焼カス採取管(+91、(1’7) 、(1
fl’) 2>(設けられており、該採取管によって燃
焼ガスを採取し、燃焼ガス中の硫化水素濃度を検出し、
この検出値に基づいて各バーナの一次空気及び二次空気
の流量調節を行なうものである。特に、最下段バーナ側
すについては中段バーナ(3′)及び上段バーナ(3)
K比べて燃焼状態が悪くなシ硫化水素の生成が増加する
恐れがあるので、特に燃焼性の悪い燃料を用いた場合に
は、最下段バーナ(的の下側ダンパ(社)の開度をほぼ
全開にして二次空気量を増加させ、かつ上記のように燃
焼ガスの硫化水素濃度に基づいてダンパ匈りの開度を調
節して好適な空燃比として運転するのが望ましい。
There are combustion scum collection tubes (+91, (1'7), (1
fl') 2> (provided, the combustion gas is sampled by the sampling pipe, the hydrogen sulfide concentration in the combustion gas is detected,
Based on this detected value, the flow rate of primary air and secondary air of each burner is adjusted. In particular, for the bottom burner side, the middle burner (3') and the upper burner (3)
There is a risk of increasing the production of hydrogen sulfide, which has a poor combustion condition compared to K, so when using fuel with particularly poor combustibility, please reduce the opening of the lowest stage burner (lower damper). It is desirable to operate at a suitable air-fuel ratio by opening almost fully to increase the amount of secondary air and adjusting the opening degree of the damper based on the hydrogen sulfide concentration of the combustion gas as described above.

また、燃焼室におけるバーナの配置については、前面燃
焼型、対向燃焼型及び接線燃焼型のいずれでもよいが、
特に接線燃焼型のものは窒素酸化物の生成を著しく抑制
できるので望ましい。第を図は接線燃焼型のバーナ配置
を有する燃焼室のバーナ部の例を示す模式的横断面図で
あり、ここでの接線燃焼は燃焼室の四隅にバーナを配置
し、はぼ中心に向けて燃料を吹出して燃焼させるもので
ある。この場合、各バーナの火炎の先端部付近の燃焼ガ
スの採取位置については燃焼ガス採取位置[19A)、
(19B)、(19C)、() 9D)のいずれの位置
で行なってもよい。
Regarding the burner arrangement in the combustion chamber, any of the front combustion type, facing combustion type, and tangential combustion type may be used.
In particular, a tangential combustion type is desirable because it can significantly suppress the production of nitrogen oxides. Figure 5 is a schematic cross-sectional view showing an example of a burner section of a combustion chamber having a tangential combustion type burner arrangement. The fuel is blown out and combusted. In this case, the combustion gas sampling position near the tip of the flame of each burner is the combustion gas sampling position [19A],
It may be performed at any of the positions (19B), (19C), and (9D).

なおこれまで燃焼室に3段のバーナ群を配置した場合に
ついて具体的に説明したが、本発明はこれに限定される
ものではなく、一段のバーナ群、グ段のバーナ群あるい
はそれ以上のバーナ群を配置した場合であってもよい。
Although the case in which burner groups in three stages are arranged in the combustion chamber has been specifically described, the present invention is not limited to this. It is also possible to arrange a group.

また最上段のバーナ群の上部にさらに2次空気を供給し
てコ段燃焼させる方式をとることもできる。
Alternatively, it is also possible to adopt a method in which secondary air is further supplied to the upper part of the burner group in the uppermost stage to perform combustion in the second stage.

〔実施例〕〔Example〕

次に本発明の具体的態様を実施例によって更に詳細に説
明するが、本発明はその要旨を越えない限り、以下の実
施例によって限定されるものではない。
Next, specific embodiments of the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

なお実施例中の用語の意味は次の通りである。The meanings of terms used in the examples are as follows.

(1)過剰空気率=二//(コ/−A)A:燃焼排ガス
中酸素濃度(%) (11)平均空気i (Nrr?/Kg−燃料)=理論
空気量大過剰空気率 611)全空気量(Nrr?) 一平均空気量×燃料量(Kf) (IV)空気比率(4) (V)  下段バーナの1−:1次空気配分比率」付)
 下段バーナの「2次空気下/2次空気上」比第3図に
示す空気ダンパ構成であるが、ただし参段のバーナ群か
らなり、各バーナ群は第ダ図に示す接線燃焼型のバーナ
配置を有するボイラー燃焼装置を用い、第1懺に示す性
状の重油及び燃焼条件で燃焼を行なわせた。その際、各
バーナ群の火炎の先端部付近の燃焼ガスを、例えば第参
図の19A〜19Dのいずれかの位置でサンプリングし
てガスクロマトグラフにて分析し、該燃焼ガス中の硫化
水素濃度が10容量ppm以下となるように空気量を調
節して行なった0その結果を第1表に示す。
(1) Excess air ratio = 2//(ko/-A) A: Oxygen concentration in combustion exhaust gas (%) (11) Average air i (Nrr?/Kg - fuel) = theoretical air amount large excess air ratio 611) Total air amount (Nrr?) 1 average air amount x fuel amount (Kf) (IV) Air ratio (4) (V) Lower burner 1-: Primary air distribution ratio (included)
The lower stage burner has an air damper configuration shown in Figure 3 with a ratio of "secondary air below/secondary air above"; however, it consists of two stages of burner groups, and each burner group is a tangential combustion type burner as shown in Figure 3. Using a boiler combustion apparatus having the following configuration, combustion was carried out using heavy oil having the properties shown in the first column and under the combustion conditions. At that time, the combustion gas near the tip of the flame of each burner group is sampled, for example, at any of the positions 19A to 19D in Figure 1, and analyzed using a gas chromatograph to determine the hydrogen sulfide concentration in the combustion gas. Table 1 shows the results obtained by adjusting the air amount to 10 ppm or less by volume.

比較例−/〜コ 実施例−/において燃焼条件を第1表に示す条件に変え
て燃焼を行なわせた。その結果を第1表に示す。
In Comparative Example-/ to Example-/, the combustion conditions were changed to those shown in Table 1 and combustion was carried out. The results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば燃焼性の悪い重質油を燃料として用
いた場合でも各バーナの燃焼状態を最適な状態で運転す
ることができ、燃焼時における硫化水素の生成を著しく
減少することができ、これにより蒸発管の腐食を著しく
少なくすることができ、蒸発管の減肉による取替頻度を
著しく減少させることができるので、工業的意義が大き
い。さらに本発明方法では、燃焼排ガス中の煤M量も大
幅に減少式ぜることかできる。
According to the method of the present invention, even when heavy oil with poor combustibility is used as fuel, each burner can be operated in an optimal combustion state, and the generation of hydrogen sulfide during combustion can be significantly reduced. As a result, corrosion of the evaporator tube can be significantly reduced, and the frequency of replacement due to thinning of the evaporator tube can be significantly reduced, which is of great industrial significance. Furthermore, in the method of the present invention, the amount of soot M in the combustion exhaust gas can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法で使用されるボイラー燃焼装置の一
例を示す模式的縦断面図である。第2図は本発明方法で
使用される好適なボイラー燃焼装置の燃焼室部分の例を
示す模式的縦断面図である。第3図は本発明方法で使用
されるより好適なボイラー燃焼装置の燃焼室部分の例を
示す模式的縦断面図である。また第ダ図は接線燃焼型の
バーナ配置を有する燃焼室のバーナ部の例を示す模式的
横断面図でおる。 l:燃焼室、      2:蒸発管、3.3′、3〃
:バーナ群、4:第1過熱器管群、4′:第1過熱器管
群、   5二節炭6.6:空気予熱器、    7:
煙突、 8:燃料配管、    12:空気ダクト、16、】σ
 :第1ダンパ、 17、lτ、1τ;上側第ユダンパ、 ” % ” ’1” ’ 下(IQ ifl’E J 
I’ ンハ、聰 ]9.1グ、】q′:燃メガス採取管、2+、21’、
21″ニ一次空気流路ダンパ、22.2z12γ:二次
空気流路上側ダンパ、23.2π、23”:二次空気流
路下側ダンパ。 特許出願人  三羨化成工莱株式会社 代 理 人 弁理士長谷用  − ほか7名 纂1 図 σ 第2因 第3図 第4伝
FIG. 1 is a schematic vertical sectional view showing an example of a boiler combustion apparatus used in the method of the present invention. FIG. 2 is a schematic longitudinal sectional view showing an example of a combustion chamber portion of a preferred boiler combustion apparatus used in the method of the present invention. FIG. 3 is a schematic vertical cross-sectional view showing an example of a combustion chamber portion of a more preferable boiler combustion apparatus used in the method of the present invention. FIG. 3 is a schematic cross-sectional view showing an example of a burner section of a combustion chamber having a tangential combustion type burner arrangement. l: Combustion chamber, 2: Evaporator tube, 3.3', 3
: Burner group, 4: 1st superheater tube group, 4': 1st superheater tube group, 52-charcoal 6.6: Air preheater, 7:
Chimney, 8: Fuel pipe, 12: Air duct, 16, ]σ
: 1st damper, 17, lτ, 1τ; Upper damper, ``%''``1'' ``Lower (IQ ifl'E J
I' Nha, So] 9.1g, ]q': Fuel gas collection pipe, 2+, 21',
21″2 primary air flow path damper, 22.2z12γ: secondary air flow upper side damper, 23.2π, 23”: secondary air flow path lower damper. Patent Applicant Sankyen Kasei Korai Co., Ltd. Representative Patent Attorney Hase Yo - 7 others Compilation 1 Figure σ 2 Cause 3 Figure 4 Biography

Claims (5)

【特許請求の範囲】[Claims] (1)燃焼室に複数のバーナ群を備え、燃料の供給量を
各バーナ群ごとに制御し、かつ燃焼用空気の供給量を各
バーナ群ごとまたは各バーナごとに制御し得るボイラー
燃焼装置において、燃料としてイオウ分が1重量%以上
、残留炭素分が7重量%以上で、かつ50℃での動粘度
が100センチストークス以上である重油を使用し、燃
焼時に各バーナ群の火炎の先端付近の燃焼ガス中の硫化
水素濃度を検出し、この濃度が20容量ppm以下とな
るように、各バーナまたは各バーナ群の空気ダクトに備
えたダンパの開度で燃焼用空気流量を調節し、各バーナ
群の空燃比を所望の範囲に維持しつつ運転することを特
徴とするボイラーの燃焼方法。
(1) In a boiler combustion device in which a combustion chamber is equipped with a plurality of burner groups, the amount of fuel supplied can be controlled for each burner group, and the amount of combustion air supplied can be controlled for each burner group or for each burner. , heavy oil with a sulfur content of 1% by weight or more, a residual carbon content of 7% by weight or more, and a kinematic viscosity of 100 centistokes or more at 50°C is used as fuel, and during combustion, near the tip of the flame of each burner group. The hydrogen sulfide concentration in the combustion gas of each burner is detected, and the combustion air flow rate is adjusted by the opening degree of the damper provided in the air duct of each burner or each burner group so that this concentration is 20 volume ppm or less. A boiler combustion method characterized by operating a burner group while maintaining an air-fuel ratio within a desired range.
(2)特許請求の範囲第1項に記載のボイラーの燃焼方
法において、燃焼室がその垂直面に少なくとも3段のバ
ーナ群を備えたものであることを特徴とする方法。
(2) The boiler combustion method according to claim 1, characterized in that the combustion chamber is equipped with at least three stages of burner groups on its vertical surface.
(3)特許請求の範囲第1項又は第2項に記載のボイラ
ーの燃焼方法において、各バーナ群の各バーナが燃焼室
の水平断面において接線燃焼型に配置されていることを
特徴とする方法。
(3) A boiler combustion method according to claim 1 or 2, characterized in that each burner in each burner group is arranged in a tangential combustion type in a horizontal section of the combustion chamber. .
(4)特許請求の範囲第1〜3項のいずれか1つに記載
のボイラーの燃焼方法において、重油がイオウ分が2重
量%以上、残留炭素分が 10重量%以上で、かつ50℃での動粘度が300セン
チストークス以上のものであることを特徴とする方法。
(4) In the boiler combustion method according to any one of claims 1 to 3, the heavy oil has a sulfur content of 2% by weight or more, a residual carbon content of 10% by weight or more, and is heated at 50°C. A method characterized in that the kinematic viscosity of is 300 centistokes or more.
(5)特許請求の範囲第1〜4項のいずれか1つに記載
のボイラーの燃焼方法において、最下段バーナ群の火炎
の先端部付近の燃焼ガス中の硫化水素濃度が10容量p
pm以下となるように各バーナまたは各バーナ群の空気
ダクトに備えたダンパの開度で燃焼用空気流量を調節し
、最下段バーナ群の空燃比を1.25〜1.7の範囲に
維持しつつ運転することを特徴とする方法。
(5) In the boiler combustion method according to any one of claims 1 to 4, the hydrogen sulfide concentration in the combustion gas near the tip of the flame of the lowest stage burner group is 10 volume p.
The combustion air flow rate is adjusted by the opening of the damper provided in the air duct of each burner or each burner group so that the air-fuel ratio of the lowest burner group is maintained within the range of 1.25 to 1.7. A method characterized by driving while driving.
JP62015837A 1987-01-26 1987-01-26 Combustion method in boiler Pending JPS63183315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62015837A JPS63183315A (en) 1987-01-26 1987-01-26 Combustion method in boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62015837A JPS63183315A (en) 1987-01-26 1987-01-26 Combustion method in boiler

Publications (1)

Publication Number Publication Date
JPS63183315A true JPS63183315A (en) 1988-07-28

Family

ID=11899949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62015837A Pending JPS63183315A (en) 1987-01-26 1987-01-26 Combustion method in boiler

Country Status (1)

Country Link
JP (1) JPS63183315A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396961B1 (en) * 1998-01-31 2004-01-28 두산중공업 주식회사 Mixed combustion method of hydrogen gas
WO2011040053A1 (en) * 2009-09-29 2011-04-07 三菱重工業株式会社 Combustion control device
JP2015124941A (en) * 2013-12-26 2015-07-06 三菱日立パワーシステムズ株式会社 Heavy oil burning boiler combustion method and heavy oil firing boiler
JP2016176640A (en) * 2015-03-19 2016-10-06 三菱日立パワーシステムズ株式会社 Boiler and method for controlling combustion at boiler
WO2024048029A1 (en) * 2022-08-31 2024-03-07 中外炉工業株式会社 Combustion control method for combustion facility

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396961B1 (en) * 1998-01-31 2004-01-28 두산중공업 주식회사 Mixed combustion method of hydrogen gas
WO2011040053A1 (en) * 2009-09-29 2011-04-07 三菱重工業株式会社 Combustion control device
JP2011075157A (en) * 2009-09-29 2011-04-14 Mitsubishi Heavy Ind Ltd Combustion control device
CN102449401A (en) * 2009-09-29 2012-05-09 三菱重工业株式会社 Combustion control device
US8967996B2 (en) 2009-09-29 2015-03-03 Mitsubishi Heavy Industries, Ltd. Combustion controller
JP2015124941A (en) * 2013-12-26 2015-07-06 三菱日立パワーシステムズ株式会社 Heavy oil burning boiler combustion method and heavy oil firing boiler
JP2016176640A (en) * 2015-03-19 2016-10-06 三菱日立パワーシステムズ株式会社 Boiler and method for controlling combustion at boiler
WO2024048029A1 (en) * 2022-08-31 2024-03-07 中外炉工業株式会社 Combustion control method for combustion facility

Similar Documents

Publication Publication Date Title
CA2537514A1 (en) Process for combusting fuels, in particular waste
JP2001502412A (en) Corrosion protection of utility boiler side walls
CN106322360A (en) Selective non-catalytic reduction (SNCR) and flue gas recirculation coupling denitration system for chain furnace
CN105805730B (en) Realize the circulating fluidized bed boiler systems of low-nitrogen oxide discharging
CN108592015A (en) A kind of boiler smoke recirculating system and its method
CN104613465A (en) Cofiring-type biomass fuel boiler
EP1254696B1 (en) Method for reducing NOx emissions of a steam boiler
JPS63183315A (en) Combustion method in boiler
CN1894541A (en) Staged combustion method with optimised injection of primary oxidant
CN204534547U (en) A kind of mixed combustion type biomass fuel boiler
US5694869A (en) Reducing NOX emissions from a roof-fired furnace using separated parallel flow overfire air
PT683357E (en) METHOD FOR WORKING WITH AN OVEN
CN107559804A (en) A kind of garbage burning boiler superheater system
CN208546969U (en) A kind of chain-grate boiler system of capacity-increasing transformation
CN208457948U (en) A kind of grate firing boiler system of low nitrogen burning
CN208975539U (en) A kind of flue gases of cock oven low temperature SCR denitration and waste heat recycle integrated apparatus
CN1191335C (en) Steam generator for gasifying coal
CN104713064A (en) Combustion adjustment method for supercritical boiler capable of performing blending combustion of coke oven gas
JPWO2020202362A1 (en) Petroleum residue-fired boiler and its combustion method
JP5501198B2 (en) Low NOx / low dust combustion method and boiler combustion chamber
JPS63180004A (en) Combustion method of boiler
CN208635098U (en) A kind of boiler smoke recirculating system
CN113154365A (en) Supercritical CO2Experimental system for coal-fired boiler ultralow emission research
US5546874A (en) Low nox inter-tube burner for roof-fired furnaces
CN112664953A (en) Circulating fluidized bed incineration boiler for burning solid waste