JPS63183204A - Stall prevention structure of axial flow rotary device - Google Patents

Stall prevention structure of axial flow rotary device

Info

Publication number
JPS63183204A
JPS63183204A JP1414187A JP1414187A JPS63183204A JP S63183204 A JPS63183204 A JP S63183204A JP 1414187 A JP1414187 A JP 1414187A JP 1414187 A JP1414187 A JP 1414187A JP S63183204 A JPS63183204 A JP S63183204A
Authority
JP
Japan
Prior art keywords
blade
impeller
passages
stall prevention
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1414187A
Other languages
Japanese (ja)
Inventor
Yuzo Nakano
雄三 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP1414187A priority Critical patent/JPS63183204A/en
Publication of JPS63183204A publication Critical patent/JPS63183204A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To improve stall prevention effect without lowering the efficiency of a device itself by respectively providing inlet passages outlet passages and ring-like hollows which are mutually connected at a stationary wall for stall prevention provided at a part of a casing opposite to an impeller. CONSTITUTION:A stationary wall 9 for stall prevention is fitted to a part of the wall face of a casing 1 opposite to the end of the blade of an impeller 2. In this case, each inlet passage 10 and each outlet passage 11 are respectively provided on the circumference of the inner wall face of the stationary wall 9, and opposite to the end of the blade of the impeller 2. And each inlet passage 10 is arranged at the rear edge 14 side of the blade on the inner wall face provided that the flow direction of fluid is X, and also many passages are bored in a slot-shape to be inclined forward in the rotational direction of the impeller 2 to have nearly 60 deg. of cured angle. The outlet passages 11 are arranged at the front edge 13 sides of the blades and also many passages are bored in a slot-shape to inclined nearly by 60 deg. in the direction reverse to the case of the inlet passages 10. And inside the stationary blade 9, ring-like hollows which are connected to the inlet passages 10 and the outlet passages 11 are provided.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、軸流回転装置の失速防止構造に関し、詳しく
は、ボイラ用または換気用軸流送風機、産業用軸流圧縮
機、ガスタービン、航空機用ジェットエンジンのターボ
ファン、軸流型水ポンプ等の軸流回転装置の失速防止構
造に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a stall prevention structure for an axial flow rotating device, and specifically relates to an axial flow blower for boilers or ventilation, an industrial axial flow compressor, a gas turbine, The present invention relates to a stall prevention structure for axial flow rotating devices such as turbo fans of aircraft jet engines and axial flow water pumps.

(従来の技術) 軸流送風機等において、吐出圧力が許容値を越えたとき
、羽根車の失速により吐出側供給ラインに激しい脈動が
発生し、操業不能に至ることがあり、失速限界の改善が
望まれている。
(Prior art) When the discharge pressure of an axial blower exceeds a permissible value, the stall of the impeller causes severe pulsations in the discharge side supply line, which can lead to inoperability, and it is difficult to improve the stall limit. desired.

第7図は従来の軸流送風機の失速防止構造の縦断面図、
第8図は第7図のF矢視断面図、第9図は第8図の要部
の平面展開図である。
Figure 7 is a vertical cross-sectional view of the stall prevention structure of a conventional axial blower.
FIG. 8 is a sectional view taken along arrow F in FIG. 7, and FIG. 9 is a developed plan view of the main part of FIG.

静止壁aは、軸流送風機のケーシングeの羽根車すの翼
先端に対向する部分に装着されていて、羽根車すの回転
方向を矢印Rとしたとき、スロットCが回転方向にスキ
ュード角θ(図では60°)を持って前傾させるように
静止壁aの内壁面の円周上に多数穿設され、内部に設け
られたリング状の空洞dに連通するよう構成されている
The stationary wall a is attached to a portion of the casing e of the axial blower that faces the blade tip of the impeller, and when the rotation direction of the impeller is indicated by arrow R, the slot C has a skewed angle θ in the rotation direction. A large number of holes are formed on the circumference of the inner wall surface of the stationary wall a so as to tilt it forward at an angle of 60° (60° in the figure), and it is configured to communicate with a ring-shaped cavity d provided inside.

羽根車すの回転により、空気の主流は第7図に示す矢印
X方向に圧送される。そして翼先端においては主流の一
部が1つの穴、つまりスロットCより流入と流出を行う
ようにして失速限界改善を計っている。
As the impeller rotates, the main flow of air is forced in the direction of arrow X shown in FIG. At the tip of the blade, a portion of the main flow flows in and out through one hole, that is, slot C, in order to improve the stall limit.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記従来例にあっては、失速限界改善という
目的からして、失速防止効果はある程度期待できるもの
の、流体の流れから見た究明が十分なされていないため
、この点改善の余地がある。また、一方では失速防止効
果の向上を計れば計る程送風機としての効率低下をもた
らしており未だ実用化に問題を残しているのが現状であ
る。
By the way, in the above conventional example, from the purpose of improving the stall limit, a stall prevention effect can be expected to some extent, but since sufficient investigation from the perspective of fluid flow has not been done, there is room for improvement in this point. On the other hand, the more efforts are made to improve the stall prevention effect, the more the efficiency of the blower decreases, and there are still problems in practical application.

〔発明の目的〕[Purpose of the invention]

本発明は、以上の如き問題点に鑑みてなされたもので、
その目的は流体の流れについて究明し、より失速防止効
果を向上させ、しかも装置自体のもつ効率の低下を最小
に留めた軸流回転装置の失速防止構造を提供することに
ある。
The present invention has been made in view of the above problems.
The objective is to provide a stall prevention structure for an axial flow rotating device that further improves the stall prevention effect by studying fluid flow and minimizes the decrease in efficiency of the device itself.

C問題点を解決するための手段〕 本発明はケーシングの壁面の羽根車の翼先端に対向する
部分に失速防止のための静止壁を装着した軸流回転装置
において、該静止壁の翼先端に対向する内壁面の円周上
に、流入路を内壁面の翼後縁側に該羽根車の回転方向に
前傾するように多数設けると共に、流出路を内壁面の翼
前縁側に該流入路とは逆方向に傾斜させて多数設け、該
静止壁の内部にリング状の空洞を設け、該空洞に該流入
路および該流出路をそれぞれ連通したことを要旨とする
Means for Solving Problem C] The present invention provides an axial flow rotating device in which a stationary wall for stall prevention is attached to a portion of the wall surface of the casing that faces the blade tip of the impeller. On the circumference of the opposing inner wall surfaces, a large number of inflow passages are provided on the blade trailing edge side of the inner wall surface so as to be inclined forward in the rotation direction of the impeller, and an outflow passage is provided on the blade leading edge side of the inner wall surface. The gist is that a plurality of the stationary walls are provided tilted in opposite directions, a ring-shaped cavity is provided inside the stationary wall, and the inflow passage and the outflow passage are communicated with the cavity, respectively.

〔作  用〕[For production]

第1−5図を参照しつつ、以下作用について説明する。 The operation will be explained below with reference to FIGS. 1-5.

静止壁9の内壁面の円周上に流入路10と流出路11を
設けると共に、内部にリング状の空洞12を設けて、流
体の局所的な循環流17を生じさせ、この循環流17の
作用によって羽根車2の失速、すなわち軸流回転装置の
失速を防止する。
An inflow path 10 and an outflow path 11 are provided on the circumference of the inner wall surface of the stationary wall 9, and a ring-shaped cavity 12 is provided inside to generate a local circulation flow 17 of the fluid. This action prevents the impeller 2 from stalling, that is, the axial flow rotating device from stalling.

流入路10を静止壁9の内壁面のII縁14側に配し、
かつ羽根車の回転方向Rに前傾させたことにより、主流
と分岐された流れは、翼後縁14側の圧力面16から静
止壁9内へ円滑に吸い込まれる。
The inflow channel 10 is arranged on the II edge 14 side of the inner wall surface of the stationary wall 9,
In addition, by tilting the impeller forward in the rotational direction R, the flow branched from the main flow is smoothly sucked into the stationary wall 9 from the pressure surface 16 on the blade trailing edge 14 side.

流入路10を通って吸込まれた流れは、空洞12内を循
環する。
The flow sucked in through the inlet channel 10 circulates within the cavity 12 .

流出路11を静止壁9内壁面の流入路10とは逆方向に
傾斜させたことにより、空洞12内を循環する流れは翼
前縁13側の負圧面15に流出し、主流と円滑な合流が
行われるため、流体損失がなく、回転装置自体のもつ効
率低下を最小限に留めることができると共に失速防止の
効果も増大する。
By slanting the outflow path 11 in the opposite direction to the inflow path 10 on the inner wall surface of the stationary wall 9, the flow circulating within the cavity 12 flows out to the negative pressure surface 15 on the blade leading edge 13 side, and smoothly merges with the main flow. Since this is performed, there is no fluid loss, and the reduction in efficiency of the rotating device itself can be minimized, and the effect of stall prevention is also increased.

従って、エネルギレベルの高い翼後縁14側の圧力面1
6の流体の流れが、失速を起し易い男前縁13側の負圧
面15に円滑に導かれることにより、回転機械の効率低
下をもたらすことなく、回転機械の失速を効果的に防止
する。
Therefore, the pressure surface 1 on the blade trailing edge 14 side where the energy level is high
6 is smoothly guided to the negative pressure surface 15 on the side of the male leading edge 13 where stalling is likely to occur, thereby effectively preventing stalling of the rotating machine without reducing the efficiency of the rotating machine.

〔実 施 例〕〔Example〕

以下に、本発明の好適な一実施例を添付図面に基づいて
詳述する。
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明に係るボイラ用軸流送風機の概要説明図
、第2−4図は本発明に係る要部の第1実施例の説明図
、第5図は本発明に係る要部の第2実施例の説明図であ
る。
Fig. 1 is a schematic explanatory diagram of an axial flow blower for a boiler according to the present invention, Figs. 2-4 are explanatory diagrams of a first embodiment of the main parts according to the present invention, and Fig. 5 is an explanatory diagram of the main parts according to the present invention. It is an explanatory view of a second example.

第1図において、円筒上のケーシング1内に回転可能に
納められた羽根車2は回転軸3により駆動される。羽根
車2の回転により、空気は矢印Xで示す如く、上流側に
設けたダクト4から吸入され、出口側ディフューザ5か
ら吐出される。図中、6は案内羽根、1は後置案内羽根
、8は内筒である。なお、以上の構成については公知で
ある。
In FIG. 1, an impeller 2 rotatably housed in a cylindrical casing 1 is driven by a rotating shaft 3. As shown in FIG. As the impeller 2 rotates, air is sucked in from the duct 4 provided on the upstream side, as shown by arrow X, and is discharged from the outlet diffuser 5. In the figure, 6 is a guide vane, 1 is a rear guide vane, and 8 is an inner cylinder. Note that the above configuration is publicly known.

本発明は、ケーシング1に装着した静止壁9の構造にあ
る。すなわち、静止壁9は円周2分割し、一体向な筒状
体に構成したものであり、羽根車2の先端の軸方内申よ
りやや広巾の胴長を有し、その内壁面が羽根車2の先端
に対向するようにケーシング1に嵌合するようにして装
着されている。
The invention resides in the structure of the stationary wall 9 attached to the casing 1. In other words, the stationary wall 9 is divided into two parts around the circumference and formed into an integral cylindrical body, and has a body length that is slightly wider than the axial inner diameter of the tip of the impeller 2, and its inner wall surface is similar to that of the impeller. It is fitted into the casing 1 so as to face the tip of the casing 2 .

次に静止壁9の詳細について説明する。Next, details of the stationary wall 9 will be explained.

第2図は、本発明の第1実施例に係る要部の縦断面模式
図、第3図は第2図のGおよびH矢視断面図で図の中央
左はG矢視、中央布はH矢視断面図、第4図は第3図の
平面展開図である。
FIG. 2 is a schematic vertical cross-sectional view of the main parts according to the first embodiment of the present invention, and FIG. 3 is a cross-sectional view taken along arrows G and H in FIG. A sectional view taken along arrow H, and FIG. 4 is a developed plan view of FIG. 3.

第2〜4図において、ケーシング1に装置された静止壁
9の内壁面円周上に流入路10および流出路11を第2
図に示す如く羽根車2の翼先端に対向する位置に設ける
。流入路10は流体の流れ方向を矢印Xとしたとき、内
壁面の翼後縁14側に配設し、第3図に示す如く、羽根
車2の回転方向を矢印Rとしたとき、回転方向に前傾さ
せてスキュード角約60°を有するように、またスロッ
ト状に多数穿設されている。また、流出路11は翼前縁
13側に配設し、第3図に示す如く上記流入路10と逆
方向に約60°傾斜させスロット状に多数穿設されてい
る。リング状の空洞12が静止壁9の内部に設けられて
おり、流入路10および流出路11がそれぞれ空洞12
に連通されている。
In FIGS. 2 to 4, an inflow passage 10 and an outflow passage 11 are formed on the circumference of the inner wall surface of the stationary wall 9 installed in the casing 1.
As shown in the figure, it is provided at a position opposite to the blade tip of the impeller 2. The inflow passage 10 is arranged on the blade trailing edge 14 side of the inner wall surface when the fluid flow direction is indicated by arrow X, and as shown in FIG. It is tilted forward and has a skewed angle of approximately 60 degrees, and is bored in a number of slot shapes. Further, the outflow passage 11 is disposed on the blade leading edge 13 side, and is inclined at an angle of about 60 degrees in the opposite direction to the inflow passage 10, as shown in FIG. A ring-shaped cavity 12 is provided inside the stationary wall 9, and an inflow passage 10 and an outflow passage 11 are respectively connected to the cavity 12.
is communicated with.

なお、15は負圧面、16は圧力面、17は循環流であ
る。
Note that 15 is a negative pressure surface, 16 is a pressure surface, and 17 is a circulating flow.

第5図により第2実施例について説明する。A second embodiment will be explained with reference to FIG.

第5図は、前述の第1実施例を示す第2図に代る要部の
縦断面模式図であって、静止壁9の内壁面の円周上に設
ける流入路10および流出路11の開口部は出来るだけ
接近させ、反面、空洞12との連通部では出来るだけ離
反するように構成する。その他流入路10と流出路11
にスキュード角を設けること等は前述の第1実施例と同
じであるので説明を省略するが、第2実施例のものは、
第1実施例に比して循環流と主流との分岐および合流に
おける流体力学的特性に優れている。
FIG. 5 is a schematic longitudinal cross-sectional view of a main part of the first embodiment described above, in place of FIG. The openings are arranged as close together as possible, while the communication section with the cavity 12 is arranged as far apart as possible. Other inflow path 10 and outflow path 11
Since the provision of a skewed angle is the same as in the first embodiment described above, the explanation will be omitted, but in the second embodiment,
Compared to the first embodiment, this embodiment has excellent hydrodynamic characteristics in branching and merging the circulating flow and the main stream.

第6図は動翼角度可変軸流送風機の特性曲線図で、横軸
に風量 11f3/min 、縦軸に全圧上昇mmAQ
としたとき、動翼角度を20°から55°まで変えた場
合の失速限界を示し、■は従来の静止壁を設けない場合
、■は第7−9図に示した従来例の場合、■は第2〜4
図に示す本発明の第1実施例であって、スキュード角6
0°とした流入路と流出路をもつ静止壁を用いた場合の
失速限界である。
Figure 6 is a characteristic curve diagram of a variable rotor blade angle axial flow blower, where the horizontal axis shows the air volume of 11 f3/min, and the vertical axis shows the total pressure increase mmAQ.
, the stall limit is shown when the rotor blade angle is changed from 20° to 55°. are 2nd to 4th
A first embodiment of the invention shown in the figure, with a skewed angle of 6
This is the stall limit when using a stationary wall with an inflow path and an outflow path set to 0°.

一般に失速限界の改善は、送風機の特性曲線によって示
されるが、第6図から明らかなように本発明の失速限界
曲線■は従来の1111に比して低風量側に寄り、失速
限界の改善がなされていることがわかる。
Generally, the improvement in the stall limit is shown by the characteristic curve of the blower, but as is clear from Fig. 6, the stall limit curve (■) of the present invention is closer to the lower air volume side than the conventional 1111, and the improvement in the stall limit is shown by the characteristic curve of the blower. I can see what is being done.

なお、上記実施例においては、流入路10のスキュード
角を60°とした場合について示したがこれに限定され
るものではなく、また流出路11についても同様に、流
体の流入、流出を円滑にするように、ある傾斜角を有し
ておればよい。
In the above embodiment, the skewed angle of the inflow passage 10 is set to 60°, but the skewed angle is not limited to this, and the outflow passage 11 is similarly designed to smoothly inflow and outflow the fluid. It suffices to have a certain angle of inclination so that it does.

その他車発明の要旨を逸脱しない範囲内で変更し得るこ
とは勿論である。
Of course, other changes may be made without departing from the gist of the invention.

〔発明の効果〕〔Effect of the invention〕

以上の構成から本発明は次のような優れた効果を発揮す
る。
With the above configuration, the present invention exhibits the following excellent effects.

(1)流入路を翼模縁側に、また流出路を翼前縁側に位
置するようにそれぞれ配設したので、流体は翼の圧力面
から流入して、翼の負圧面に流出し、循環流が自然に生
じ失速限界改善の大巾な向上が計れる。
(1) Since the inflow channel is located on the blade edge side and the outflow channel is located on the blade leading edge side, fluid flows in from the pressure surface of the blade and flows out to the suction surface of the blade, creating a circulating flow. occurs naturally and can significantly improve the stall limit.

(2)流入路および流出路に相互逆方向のスキュード角
をもたせたので、循環流の主流との分岐および合流を流
体力学的に円滑に行え、流体損失がなく、装置自体のも
つ効率の低下を最小限に留め、かつ失速防止の効果も向
上する。
(2) Since the inlet and outlet channels have mutually opposite skewed angles, branching and merging of the circulating flow with the main stream can be done hydrodynamically smoothly, without fluid loss, and reducing the efficiency of the device itself. This also minimizes the impact and improves the effectiveness of stall prevention.

(3)空気、水など全ゆる流体を扱う軸流回転装置に適
用できる。
(3) Applicable to axial flow rotating devices that handle all types of fluids such as air and water.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るボイラ用軸流送J!Inのat要
説明図、第2図は本発明の第1実施例に係る要部の縦断
面模式図、第3図は第2図のGおよびH矢視断面図、第
4図は第3図の、平面展開図、第5図は本発明の第2実
施例に係る要部の縦断面模式図、第6図は動翼角度可変
軸流送風機の特性曲線図、第7図は従来の失速防止構造
の縦新面図、第8図は第7図のF矢視断面図、第9図は
第8図の平面展開図である。 図中、1はケーシング、2は羽根車、3は回転軸、4は
ダクト、5は出口側ディフューザ、6は案内羽根、1は
後置案内羽根、8は内筒、9は静止壁、10は流入路、
11は流出路、12は空洞、13は翼前縁、14は翼後
縁、15は負圧面、16は圧力面、17は循環流、矢印
Rは羽根車の回転方向、矢印Xは流体の流れ方向を示す
。 特許出願人 石川−島1磨重工業株式会社第1図 第2図    第3図 第4図 第5図 第6図 Ill        11
FIG. 1 shows the axial flow J! for boilers according to the present invention. 2 is a vertical cross-sectional schematic diagram of the main part according to the first embodiment of the present invention, FIG. 3 is a sectional view taken along arrows G and H in FIG. 2, and FIG. FIG. 5 is a schematic vertical cross-sectional view of the main parts according to the second embodiment of the present invention, FIG. 6 is a characteristic curve diagram of a variable rotor blade angle axial flow blower, and FIG. 7 is a diagram of a conventional axial blower. FIG. 8 is a sectional view taken along the arrow F in FIG. 7, and FIG. 9 is a developed plan view of FIG. 8. In the figure, 1 is a casing, 2 is an impeller, 3 is a rotating shaft, 4 is a duct, 5 is an outlet side diffuser, 6 is a guide vane, 1 is a rear guide vane, 8 is an inner cylinder, 9 is a stationary wall, 10 is the inflow path,
11 is the outflow path, 12 is the cavity, 13 is the leading edge of the blade, 14 is the trailing edge of the blade, 15 is the negative pressure surface, 16 is the pressure surface, 17 is the circulating flow, arrow R is the rotation direction of the impeller, and arrow X is the fluid flow direction. Indicates flow direction. Patent Applicant: Ishikawa Shima Ichima Heavy Industries Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Ill 11

Claims (1)

【特許請求の範囲】[Claims]  ケーシングの壁面の羽根車の翼先端に対向する部分に
失速防止のための静止壁を装着した軸流回転装置におい
て、該静止壁の翼先端に対向する内壁面の円周上に、流
入路を内壁面の翼後縁側に該羽根車の回転方向に前傾す
るように多数設けると共に、流出路を内壁面の翼前縁側
に該流入路とは逆方向に傾斜させて多数設け、該静止壁
の内部にリング状の空洞を設け、該空洞に該流入路およ
び該流出路をそれぞれ連通したことを特徴とする軸流回
転装置の失速防止構造。
In an axial flow rotating device in which a stationary wall for stall prevention is attached to a portion of the wall surface of the casing facing the blade tip of the impeller, an inflow passage is provided on the circumference of the inner wall surface facing the blade tip of the stationary wall. A large number of outflow passages are provided on the inner wall surface on the blade trailing edge side so as to be inclined forward in the rotation direction of the impeller, and a large number of outflow passages are provided on the inner wall surface on the blade leading edge side so as to be inclined in the opposite direction to the inflow passages, and the stationary wall 1. A stall prevention structure for an axial flow rotating device, characterized in that a ring-shaped cavity is provided inside the cavity, and the inflow passage and the outflow passage are communicated with the cavity, respectively.
JP1414187A 1987-01-26 1987-01-26 Stall prevention structure of axial flow rotary device Pending JPS63183204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1414187A JPS63183204A (en) 1987-01-26 1987-01-26 Stall prevention structure of axial flow rotary device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1414187A JPS63183204A (en) 1987-01-26 1987-01-26 Stall prevention structure of axial flow rotary device

Publications (1)

Publication Number Publication Date
JPS63183204A true JPS63183204A (en) 1988-07-28

Family

ID=11852870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1414187A Pending JPS63183204A (en) 1987-01-26 1987-01-26 Stall prevention structure of axial flow rotary device

Country Status (1)

Country Link
JP (1) JPS63183204A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474417A (en) * 1994-12-29 1995-12-12 United Technologies Corporation Cast casing treatment for compressor blades
US5586859A (en) * 1995-05-31 1996-12-24 United Technologies Corporation Flow aligned plenum endwall treatment for compressor blades
JP2007536459A (en) * 2004-05-07 2007-12-13 プラット アンド ホイットニー カナダ コーポレイション Extraction of shock wave induced boundary layer of transonic gas turbine
JP2009539015A (en) * 2006-06-02 2009-11-12 シーメンス アクチエンゲゼルシヤフト Ring-shaped fluid conduit for fluid machinery in which main flow can flow axially
WO2011045975A1 (en) * 2009-10-16 2011-04-21 三菱重工業株式会社 Compressor for exhaust turbo-charger
EP2818724A1 (en) * 2013-06-27 2014-12-31 MTU Aero Engines GmbH Fluid flow engine, casing treatment and method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474417A (en) * 1994-12-29 1995-12-12 United Technologies Corporation Cast casing treatment for compressor blades
US5586859A (en) * 1995-05-31 1996-12-24 United Technologies Corporation Flow aligned plenum endwall treatment for compressor blades
EP0751280A1 (en) * 1995-05-31 1997-01-02 United Technologies Corporation Flow aligned plenum endwall treatment for compressor blades
JP2007536459A (en) * 2004-05-07 2007-12-13 プラット アンド ホイットニー カナダ コーポレイション Extraction of shock wave induced boundary layer of transonic gas turbine
JP2009539015A (en) * 2006-06-02 2009-11-12 シーメンス アクチエンゲゼルシヤフト Ring-shaped fluid conduit for fluid machinery in which main flow can flow axially
WO2011045975A1 (en) * 2009-10-16 2011-04-21 三菱重工業株式会社 Compressor for exhaust turbo-charger
US8888440B2 (en) 2009-10-16 2014-11-18 Mitsubishi Heavy Industries, Ltd. Compressor of exhaust gas turbocharger
EP2818724A1 (en) * 2013-06-27 2014-12-31 MTU Aero Engines GmbH Fluid flow engine, casing treatment and method
US20150003976A1 (en) * 2013-06-27 2015-01-01 MTU Aero Engines AG Turbomachine, circulation structure and method
US10151206B2 (en) 2013-06-27 2018-12-11 MTU Aero Engines AG Turbomachine, circulation structure and method

Similar Documents

Publication Publication Date Title
US5156522A (en) Deflector means for centrifugal pumps
EP1979623B1 (en) Improved impeller and fan
JP3872966B2 (en) Axial fluid machine
JP6470578B2 (en) Centrifugal compressor
US5549451A (en) Impelling apparatus
JP2005023792A (en) Centrifugal compressor with variable vane
JP2004144029A (en) Centrifugal compressor for turbocharger
JP7005393B2 (en) Diffuser vane and centrifugal compressor
JP2813014B2 (en) Rotary pump inlet speed distribution controller
KR101607502B1 (en) Centrifugal pump
JPS63183204A (en) Stall prevention structure of axial flow rotary device
KR101776883B1 (en) Centrifugal pump having blades for generating pressure
JP6763804B2 (en) Centrifugal compressor
JP2014152637A (en) Centrifugal compressor
JP2001073993A (en) Centrifugal fluid machinery
US4492516A (en) Method and apparatus for controlling recirculation in a centrifugal pump
EP1532367A2 (en) Centrifugal impeller and pump apparatus
KR102515700B1 (en) Air blower
US20220305224A1 (en) Fan unit for a ventilator
CN114233681A (en) Pneumatic device and breathing apparatus
JPS58170890A (en) Liquid sealed pump
JP6839040B2 (en) Centrifugal fluid machine
KR20070095745A (en) Centrifugal compressor
EP0061159A2 (en) Reversible centrifugal pump with identical hydraulic performance either way
EP3193022B1 (en) Centrifugal ventilating fan