JPS63182528A - Ultraviolet-ray illuminance measuring instrument for ultraviolet-ray irradiating device for optical fiber drawing device - Google Patents

Ultraviolet-ray illuminance measuring instrument for ultraviolet-ray irradiating device for optical fiber drawing device

Info

Publication number
JPS63182528A
JPS63182528A JP62015863A JP1586387A JPS63182528A JP S63182528 A JPS63182528 A JP S63182528A JP 62015863 A JP62015863 A JP 62015863A JP 1586387 A JP1586387 A JP 1586387A JP S63182528 A JPS63182528 A JP S63182528A
Authority
JP
Japan
Prior art keywords
ultraviolet
light
main body
measuring device
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62015863A
Other languages
Japanese (ja)
Inventor
Ichiro Yoshimura
一朗 吉村
Katsuji Sakamoto
勝司 坂本
Takashi Ide
井出 貴史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62015863A priority Critical patent/JPS63182528A/en
Publication of JPS63182528A publication Critical patent/JPS63182528A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To project invariably constant UV light by composing a measuring instrument main body of a light guide part which guides collected UV light to perpendicularly right above, a dimming part which transmits only the ultraviolet-ray wavelength component of the guide UV light, and a photodetection part. CONSTITUTION:When the measuring instrument main body 4 is put in a UV furnace 1, the UV light enters the main body 4 from a light collection window 10 and is guided to right perpendicularly above by a prism 6. Further, only UV light which is a constant wavelength component in the ultraviolet-ray is guided to a photodiode 9 constituting a photosensor through a heat-ray absorption filter 7 and a ultraviolet-ray transmission interference filter 8. The electric signal obtained by the photoelectric conversion of this diode 9 is sent out to a signal processor 5 and read out by performing, for exam ple, amplification processing to measure the illuminance of ultraviolet rays quantitative ly in a ultraviolet-ray setting resin coating process in the manufacture running of an optical fiber. Further, the main body 4 is cooled with cooling gas admitted from an opening part provided to a support part 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光ファイバ用母材から光ファイバを紡糸した後
、外周に塗布した被覆用紫外線硬化樹脂を硬化するため
紫外線光(以下UV光という。)を照射する紫外線照射
装置(以下UV炉という。)からのUV光の照度を直接
測定する紫外線照度測定器に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] After spinning an optical fiber from an optical fiber base material, the present invention uses ultraviolet light (hereinafter referred to as UV light) to cure the coating ultraviolet curable resin applied to the outer periphery. This invention relates to an ultraviolet irradiance measuring device that directly measures the illuminance of UV light from an ultraviolet irradiation device (hereinafter referred to as a UV furnace) that irradiates a UV irradiation device (hereinafter referred to as a UV furnace).

〔従来の技術〕[Conventional technology]

従来、光ファイバ線引装置用UV炉の紫外線照度を測定
する方法としては、一部のUV炉において簡便なものが
使用されていたのみにすぎない。
Conventionally, as a method for measuring the ultraviolet irradiance of a UV furnace for an optical fiber drawing device, only a simple method has been used in some UV furnaces.

たとえば、この種のUV炉では、第4図に示すように、
実際に光ファイバが走行する石英管45に照射するtJ
V光でなく、集光ミラ42の採光窓43がら洩れてくる
UVランプ41からのUV光を光電変換器、たとえばフ
ォトレジスタ44に導き、フォトレジスタ44の抵抗値
変化を電圧に変換してUV光強度をモニタしている。
For example, in this type of UV furnace, as shown in Figure 4,
tJ irradiated to the quartz tube 45 where the optical fiber actually runs
Not the V light, but the UV light from the UV lamp 41 leaking through the light window 43 of the condensing mirror 42 is guided to a photoelectric converter, for example, a photoresistor 44, and the change in resistance value of the photoresistor 44 is converted into voltage to generate UV light. Monitoring light intensity.

従来のUV光強度モニタ法では、UV光の長期間におけ
る強度劣化についである程度の指標を得ることはできる
。ただし集光ミラ42や石英管45の汚れによる照度劣
化は解らない。
With conventional UV light intensity monitoring methods, it is possible to obtain some indication of the long-term intensity deterioration of UV light. However, the deterioration of illuminance due to dirt on the condensing mirror 42 and the quartz tube 45 is not known.

従来は、実際に光ファイバに照射される位置でのUV光
の照度を測定し、紫外線硬化樹脂の硬化度を管理する測
定器はなく、製造された光ファイバをサンプリングし、
紫外線硬化樹脂の硬化度を測定し、UV炉の条件にフィ
ードバックさせることにより紫外線照度管理を行ってい
る。
Conventionally, there was no measuring device that measured the illuminance of UV light at the position where it was actually irradiated onto the optical fiber and managed the degree of curing of the UV curing resin.
The UV illuminance is managed by measuring the degree of curing of the UV curing resin and feeding it back to the conditions of the UV oven.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来は、光ファイバに被覆された紫外線硬化樹脂がLJ
 V光を照射される位置での紫外線照度の測定ができな
いことから、UV光の出方照度管理は困難であり、高品
質の光ファイバを得るためには、製造された光ファイバ
の紫外線硬化樹脂の硬化度を常に監視してUV炉の出力
を調整する必要があった。またUV炉の劣下も、紫外線
硬化樹脂の硬化度を通してのみ知ることができるだけで
ある。
Conventionally, the ultraviolet curing resin coated on the optical fiber was
Since it is not possible to measure the UV illuminance at the position where the V light is irradiated, it is difficult to control the UV light output illuminance.In order to obtain high-quality optical fibers, it is necessary to use ultraviolet curing resin for manufactured optical fibers. It was necessary to constantly monitor the degree of curing and adjust the output of the UV oven. Further, the degradation of the UV oven can only be known through the degree of curing of the UV curing resin.

さらに、各種のUV炉の性能、たとえば照射強度を評帆
する意味で、光ファイバの走行位置でのUV光の照度を
測定することは重要であるが、このような各種のUV炉
の性能比較も困難である。
Furthermore, in order to evaluate the performance of various UV furnaces, such as the irradiation intensity, it is important to measure the illuminance of UV light at the position where the optical fiber is running. is also difficult.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の紫外線照度測定器は、従来の問題点を解決する
ため、U■炉内の光ファイバにUV光が照射する位置に
挿入する冷却機構を備えた測定器本体と、測定器本体を
支持する支持部とからなる測定部と、測定部で測定した
UV光の照度を表示処理する処理部とを備えて構成され
、前記測定部の測定器本体は、底部側面に開口した水平
方向からUV光を採光する採光窓、採光窓に対面して採
光したUV光を上方に導く導光部、導光部を通して導か
れたUV光の紫外線域波長成分の光のみ通遇させる、測
定器本体の中心軸に沿って配置した熱線吸収フィルタと
紫外線透過干渉フィルタからなる調光部、および調光部
を通過した紫外線域波長成分の光に分光感度を有する光
検出部とを備えでなり、前記処理部は、測定器本体の光
検出部により検出したtJV光の信号を表示処理する信
号処理器からなることを特徴としている。
In order to solve the problems of the conventional ultraviolet light intensity measuring instrument, the ultraviolet light intensity measuring instrument of the present invention has a measuring instrument body equipped with a cooling mechanism that is inserted into the position where the UV light is irradiated onto the optical fiber in the U furnace, and a measuring instrument body that supports the measuring instrument body. The main body of the measurement unit is configured to include a measurement unit consisting of a support unit that displays the illuminance of the UV light measured by the measurement unit, and a processing unit that displays and processes the illuminance of the UV light measured by the measurement unit. A lighting window that lets in light, a light guide that faces the lighting window and guides the UV light upward, and a main body of the measuring instrument that allows only the ultraviolet wavelength components of the UV light guided through the light guide to pass through. a light control section consisting of a heat ray absorption filter and an ultraviolet transmission interference filter arranged along the central axis; and a photodetection section having spectral sensitivity to light in the ultraviolet region wavelength component that has passed through the light control section; The section is characterized by comprising a signal processor that displays and processes the signal of the tJV light detected by the light detection section of the main body of the measuring instrument.

〔作 用〕[For production]

本発明は、測定器本体を、UV炉内の光ファイバにtJ
V光が照射する位置に挿入し、UV光の照度を直接測定
するものであることから、光ファイバの製造に際し、本
発明の紫外線照度測定器を定期的に用いてUV炉の出力
あるいは光ファイバ線速等の線引条件を調整することに
より、常に一定のtJ V光を光ファイバに被覆した紫
外線硬化樹脂に照射することができ、紫外線硬化樹脂の
硬化度を容易に管理できる。以下図面にもとづき実施例
について説明する。
The present invention connects the main body of the measuring instrument to the optical fiber in the UV furnace.
Since it is inserted at the position where the V light is irradiated and the illuminance of the UV light is directly measured, the UV illuminance meter of the present invention is regularly used to measure the output of the UV furnace or the optical fiber when manufacturing optical fibers. By adjusting the drawing conditions such as the drawing speed, it is possible to always irradiate the ultraviolet curable resin coating the optical fiber with constant tJV light, and the degree of curing of the ultraviolet curable resin can be easily controlled. Examples will be described below based on the drawings.

〔実施例〕〔Example〕

第1図は本発明の一実施例で、冷却ガスによる空冷式の
例の構成概要を示す図である。1はUV炉で、UVラン
プ2から発生したUV光を直接、または図示しない反射
板によって、光ファイバが挿通・走行する石英管3の中
心部に築光する。4は本発明の紫外線測定器の測定器本
体である。測定器本体4の底部側面には、小径のUV光
を採光する採光窓10が設けられており、測定器本体4
の内部には、採光窓10に対面してプリズム6が、採光
窓10から入射するUV光を鉛直上方に全反射させる位
置に配置しである。さらに測定器本体4の中心軸に沿っ
て熱線吸収フィルタ7、紫外′iiA透過干渉フィルタ
8およびフォトダイオード9が配置されている。なお本
実施例におけるフォトダイオード9の代りにフォトレジ
スタを適用してもよい。
FIG. 1 is a diagram showing an outline of the configuration of an air-cooled type using cooling gas, which is an embodiment of the present invention. Reference numeral 1 denotes a UV furnace, which applies UV light generated from a UV lamp 2 directly or by means of a reflection plate (not shown) to the center of a quartz tube 3 through which an optical fiber is inserted and runs. 4 is the main body of the ultraviolet measuring device of the present invention. A lighting window 10 is provided on the bottom side of the measuring device main body 4 to let in small-diameter UV light.
Inside, a prism 6 is placed facing the daylighting window 10 at a position where the UV light incident from the daylighting window 10 is totally reflected vertically upward. Further, a heat ray absorption filter 7, an ultraviolet 'iiA transmission interference filter 8, and a photodiode 9 are arranged along the central axis of the measuring device body 4. Note that a photoresistor may be used instead of the photodiode 9 in this embodiment.

フォトダイオード9で生じた電圧または抵抗変化は信号
処理器5内にmかれ、適宜必要に応じた大きさに増幅さ
れたり、電圧に変換されて読取られる。また測定器本体
4は、たとえば本実施例のように支持部11に設けた開
口部から導入するN2゜八r、He、空気などの冷却ガ
スにより冷却される。
The voltage or resistance change generated by the photodiode 9 is input into the signal processor 5, where it is amplified to an appropriate size or converted into a voltage and read. Further, the measuring instrument main body 4 is cooled by a cooling gas such as N2°, He, air, etc. introduced from an opening provided in the support portion 11 as in the present embodiment.

なお実際の使用に際しては、測定器本体4を図示しない
XYまたはXYZステージに固定して位置の微調整を行
う。またUV光の照度測定は、測定器本体4を、軸中心
に回転可能の状態に固定して行う。
In actual use, the measuring instrument main body 4 is fixed to an XY or XYZ stage (not shown) and its position is finely adjusted. Moreover, the illuminance measurement of UV light is performed by fixing the measuring device main body 4 in a rotatable state around an axis.

次に本実施例による紫外線照度の測定について説明する
。測定器本体4をUV炉l内に挿入すると、採光窓10
からUV光が測定器本体4内に入射し、プリズム6によ
り鉛直上方に導かれる。さらに熱線吸収フィルタ7およ
び紫外線透過干渉フィルタ8により、紫外線域の一定波
長成分のUV光、すなわち通常は紫外線硬化樹脂の硬化
に最も寄与していると考えられている波長365nmの
UV光のみが光センサを構成するフォトダイオード9に
導かれる。フォトダイオード9の光電変換による電気信
号を信号処理器5に送出し、たとえば増幅処理をして、
適切な指示計に指示して読み取ることにより、光ファイ
バの製造走行中における紫外線硬化樹脂被覆工程での紫
外線照度を定量的に測定することができる。
Next, measurement of ultraviolet illuminance according to this embodiment will be explained. When the measuring device main body 4 is inserted into the UV furnace l, the lighting window 10
UV light enters the measuring instrument main body 4 and is guided vertically upward by the prism 6. Furthermore, the heat ray absorption filter 7 and the ultraviolet transmission interference filter 8 allow only UV light with a certain wavelength component in the ultraviolet region, that is, UV light with a wavelength of 365 nm, which is usually thought to contribute most to the curing of ultraviolet curing resin, to be emitted. The light is guided to a photodiode 9 that constitutes a sensor. The electrical signal resulting from the photoelectric conversion of the photodiode 9 is sent to the signal processor 5, where it is subjected to, for example, amplification processing.
By instructing and reading an appropriate indicator, it is possible to quantitatively measure the ultraviolet irradiance in the ultraviolet curable resin coating process during the production run of the optical fiber.

なおUV炉l内の温度は通常300〜500℃となって
いるが、たとえばフォトダイオード9の耐熱温度は60
℃であることから、測定器本体4を冷却する必要がある
。本実施例は冷却ガスによる測定器本体4の冷却構成例
である。さらに、本実施例のガス冷却の場合、フォトダ
イオード9、紫外線透過干渉フィルタ8、熱線吸収フィ
ルタ7などを断熱性材料により高温度となる測定器本体
4と隔離すると、冷却ガスは比較的小流量でも充分な冷
却を行うことができ有効である。
Note that the temperature inside the UV furnace 1 is usually 300 to 500°C, but for example, the heat resistance temperature of the photodiode 9 is 60°C.
℃, it is necessary to cool the measuring instrument main body 4. This embodiment is an example of a cooling configuration of the measuring instrument main body 4 using cooling gas. Furthermore, in the case of gas cooling in this embodiment, if the photodiode 9, the ultraviolet transmission interference filter 8, the heat ray absorption filter 7, etc. are isolated from the measuring instrument main body 4, which is at a high temperature, by a heat insulating material, the cooling gas flows at a relatively small flow rate. However, sufficient cooling can be achieved and it is effective.

また測定器本体4を、たとえば精密なXYステージに固
定して移動することにより、芯ずれによるUV光の照度
低下を容易に評価できる。さらに測定器本体4を周方向
に回転できるように設定すると、方向によるUV光の照
度変化も容易に測定できる。
Further, by fixing the measuring instrument main body 4 to, for example, a precise XY stage and moving it, it is possible to easily evaluate the decrease in illuminance of UV light due to misalignment. Furthermore, if the measuring device main body 4 is set to be rotatable in the circumferential direction, changes in the illuminance of UV light depending on the direction can be easily measured.

第2図は本発明の他の実施例で水冷式の例の構成概要図
である。21は水冷ジャケラ1〜構造の測定器本体で、
底部側面に採光窓22が設けられている。
FIG. 2 is a schematic diagram of a water-cooled system according to another embodiment of the present invention. 21 is the measuring instrument body of water-cooled Jackera 1 ~ structure,
A lighting window 22 is provided on the bottom side.

UV光は採光窓22から入射し、プリズム23により直
角に屈折し鉛直上方に導かれる。UV光はこの熱線吸収
フィルタ24、紫外線透過干渉フィルタ25を透過し、
フォトダイオード26に入射する。フォトダイオード2
6で光電変換により誘起された電流は、信号処理器27
により、たとえば電圧に変換され、適切な照度指示計器
に入力され、読み取られる。
UV light enters through the lighting window 22, is refracted at right angles by the prism 23, and guided vertically upward. The UV light passes through the heat ray absorption filter 24 and the ultraviolet transmission interference filter 25,
The light is incident on the photodiode 26. Photodiode 2
The current induced by photoelectric conversion in step 6 is passed to signal processor 27.
for example, into a voltage and input into a suitable illuminance indicator and read.

実際にUV炉内を走行する光ファイバに照射されるUV
光の照度は、測定器本体21内に配置した光学部品の位
置関係、UV炉の集光方式などを考慮して適宜較正する
ことができる。
UV actually irradiated onto an optical fiber running inside a UV furnace
The illuminance of the light can be calibrated as appropriate by taking into account the positional relationship of the optical components arranged in the measuring instrument main body 21, the light collection method of the UV furnace, and the like.

また測定器本体21は、UV炉内で温度300〜500
℃の高温にさらされるが、フォトダイオード26の耐熱
温度が60℃であることから、測定器本体21は支持部
28と一体化したジャケット構造とし、測定器本体21
に冷却水が流通して、測定器本体21は、測定時は常時
50℃以下の温度に冷却される。
In addition, the measuring device main body 21 is heated to a temperature of 300 to 500 in a UV oven.
Although the photodiode 26 is exposed to high temperatures of 60°C, the measuring device main body 21 has a jacket structure integrated with the support part 28, and the measuring device main body 21
Cooling water flows through the measuring device body 21, so that the measuring device main body 21 is always cooled to a temperature of 50° C. or lower during measurement.

第3図は本発明のさらに他の水冷式の実施例の構成概要
図である。31の測定器本体は熱伝導性のよい部材、た
とえば銅で形成され、測定器本体21と一体化した、U
V炉内に挿入されない支持部40の冷却水30を流通・
貯留する冷却水貯留部により水冷される。UV光の測定
器本体31への導入は、第2図に示した実施例の場合と
ほぼ同様で、採光窓33から採光したUV光はプリズム
32で鉛直上方に導かれ、熱線吸収フィルタ35および
紫外線透過干渉フィルタ36を通過してフォトダイオー
ド37に入射する。フォトダイオード37は、測定器本
体31と同一の熱伝導性部材の一例としての銅で作成さ
れたフォトダイオード支持棒38の一端に固定されてい
る。フォトダイオード支持棒38の他方の端は冷却水貯
留部を内在する支持部40の内壁に接触した状態に固定
されて冷却されており、フォトダイオード37の温度上
昇を抑止している。またフォトダイオード′37は、紫
外線透過干渉フィルタ36.熱線吸収フィルタ35とと
もに測定器本体31の内面との間に断熱材34を介在さ
せて配置することにより、測定器本体31から熱移動す
るのを防止している。
FIG. 3 is a schematic diagram of the configuration of still another water-cooled embodiment of the present invention. The measuring instrument body 31 is made of a material with good thermal conductivity, such as copper, and is integrated with the measuring instrument body 21.
The cooling water 30 of the support part 40 that is not inserted into the V-furnace is circulated and
It is water-cooled by a cooling water storage section. The introduction of UV light into the measuring instrument main body 31 is almost the same as in the embodiment shown in FIG. The ultraviolet light passes through the ultraviolet transmission interference filter 36 and enters the photodiode 37 . The photodiode 37 is fixed to one end of a photodiode support rod 38 made of copper, which is an example of the same thermally conductive material as the measuring device main body 31. The other end of the photodiode support rod 38 is cooled by being fixed in contact with the inner wall of the support section 40 containing the cooling water storage section, thereby suppressing the temperature rise of the photodiode 37. Further, the photodiode '37 is connected to the ultraviolet transmission interference filter 36. Heat transfer from the measuring device main body 31 is prevented by interposing the heat insulating material 34 between the heat ray absorption filter 35 and the inner surface of the measuring device main body 31.

本実施例は、測定器本体31が、U V炉に挿入されな
い支持部30の冷却水貯留部に流通・貯留する冷却水に
よって間接的に冷却され、測定器本体31と調光部を形
成する熱吸収フィルタ35と紫外線透過干渉フィルタ3
6および光検出部を形成するフォトダイオード37との
間は断熱材34によって温度上昇を防止し、さらに耐熱
温度の低いフォトダイオード37をフォトダイオード支
持棒38によって耐熱温度以下に保持する構成となって
いる。なお39は信号処理器を示す。
In this embodiment, the measuring instrument main body 31 is indirectly cooled by the cooling water flowing and stored in the cooling water storage section of the support section 30 that is not inserted into the UV furnace, and forms a light control section with the measuring instrument main body 31. Heat absorption filter 35 and ultraviolet transmission interference filter 3
6 and the photodiode 37 forming the photodetecting section, a temperature rise is prevented by a heat insulating material 34, and the photodiode 37, which has a low heat-resistant temperature, is maintained at a temperature below the heat-resistant temperature by a photodiode support rod 38. There is. Note that 39 indicates a signal processor.

〔発明の効果〕〔Effect of the invention〕

以」−述べたように、本発明の紫外線照度測定器は、U
V光を採光する採光窓に対面して、採光したtJ V光
を鉛直上方に導くたとえばプリズム構成の導光部と、導
光部で導かれたUV光の紫外線域波長成分のみ透過させ
る熱線吸収フィルタおよび紫外線透過干渉フィルタで構
成した調光部と、調光部を通過した紫外線域波長成分の
光にのみ分光感度を有する、たとえばフォトダイオード
またはフォトレジスタで構成した光検出部とからなる測
定器本体を、光ファイバにUV光が照射するUV炉内に
挿入し、UV光の照度を直接測定することにより、光フ
ァイバ線引装置に用いられるUV炉の出力を容易に、か
つ定量的にリアルタイムでコントロールすることができ
る。
- As mentioned above, the ultraviolet light intensity measuring device of the present invention
Facing the daylighting window that lets in the V light, there is a light guide section with a prism configuration, for example, that guides the tJ V light vertically upward, and a heat ray absorber that only transmits the ultraviolet wavelength component of the UV light guided by the light guide section. A measuring device consisting of a light control section composed of a filter and an ultraviolet transmission interference filter, and a photodetection section composed of, for example, a photodiode or photoresistor, which has spectral sensitivity only to light in the ultraviolet wavelength range that has passed through the light control section. By inserting the main body into a UV furnace that irradiates the optical fiber with UV light and directly measuring the illuminance of the UV light, you can easily and quantitatively measure the output of the UV furnace used in optical fiber drawing equipment in real time. can be controlled with.

UV光の照度と紫外線硬化樹脂の硬化度の関係は実験に
より求めることができるので、光ファイバの製造に際し
、紫外線硬化樹脂の被覆工程において、定期的に本発明
の紫外線照度測定器を用いてUV炉の出力を調整すれば
、常に一定のUV光を光ファイバに被覆した紫外線硬化
樹脂に照射することができるもので、紫外線硬化樹脂の
硬化度を容易に管理でき、したがって高品質の紫外線硬
化樹脂被覆光ファイバを容易に、かつ安定に製造できる
The relationship between the illuminance of UV light and the degree of curing of the UV curing resin can be determined through experiments. Therefore, during the manufacturing of optical fibers, the UV illuminance measurement device of the present invention is periodically used to measure UV light during the coating process with the UV curing resin. By adjusting the output of the furnace, it is possible to always irradiate a constant amount of UV light to the UV curing resin coated on the optical fiber, making it possible to easily control the degree of curing of the UV curing resin, thus ensuring high quality UV curing resin. Coated optical fibers can be manufactured easily and stably.

また、本発明の紫外線照度測定器を用いてUV炉の出力
管理を行うことにより、UV炉の劣化は一目瞭然となり
、各種のUV炉の性能も高精度に比較することができ、
利用範囲も広く効果が大きい。
In addition, by managing the output of the UV furnace using the ultraviolet irradiance meter of the present invention, the deterioration of the UV furnace can be seen at a glance, and the performance of various UV furnaces can be compared with high accuracy.
It has a wide range of uses and is highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図はそれぞれ本発明の紫外線
照度測定器の第1.第2および第3の実施例の構成図、
第4図は従来の紫外線照度管理の例を説明する図である
。 1・・・UV炉、2,41・・・UVランプ、3,45
・・・石英管、4,21.31・・・測定器本体、5.
27.39・・・信号処理器、6,23.32・・・プ
リズム、7,24.35・・・熱線吸収フィルタ、8,
25.36・・・紫外線透過干渉フィルタ、9,26.
37・・・フォトダイオード、10,22゜33.43
・・・採光窓、11.28.40・・・支持部、34・
・・断熱材、38・・・フォトダイオード支持棒、42
・・・集光ミラ、44・・・フォトレジスタ
FIGS. 1, 2, and 3 respectively show the first part of the ultraviolet illuminance measuring device of the present invention. Configuration diagrams of the second and third embodiments,
FIG. 4 is a diagram illustrating an example of conventional ultraviolet illuminance management. 1...UV furnace, 2,41...UV lamp, 3,45
...Quartz tube, 4,21.31...Measuring instrument body,5.
27.39... Signal processor, 6, 23.32... Prism, 7, 24.35... Heat ray absorption filter, 8,
25.36... Ultraviolet transmission interference filter, 9,26.
37...Photodiode, 10,22°33.43
...Lighting window, 11.28.40...Support part, 34.
...Insulating material, 38...Photodiode support rod, 42
...Concentrating mirror, 44...Photoresistor

Claims (4)

【特許請求の範囲】[Claims] (1)光ファイバ紡糸後塗布した被覆用紫外線硬化樹脂
を照射して硬化する光ファイバ線引装置用紫外線照射器
内の紫外線照度を測定する紫外線照度測定器であつて、 前記紫外線照射器内の光ファイバに紫外線が照射する位
置に挿入する冷却機構を備えた測定器本体と、 前記測定器本体を支持する支持部と からなる測定部と、 前記測定部で測定した紫外線光の照度を表示処理する処
理部と を備えて構成され、 前記測定部の測定器本体は、 前記測定器本体の低部側面に開口した水平方向から紫外
線光を採光する採光窓と、 前記採光窓に対面して前記採光した紫外線光を鉛直上方
に導く導光部と、 前記導光部を通して導かれた紫外線光の紫外線域波長成
分の光のみ通過させる、前記測定器本体の中心軸に沿つ
て配置した熱線吸収フィルタおよび紫外線透過干渉フィ
ルタからなる調光部と、 前記調光部を通過した紫外線域波長成分の光に分光感度
を有する光検出部と を備えてなり、 前記処理部は、 前記測定器本体の光検出部により検出した紫外線光の信
号を表示処理する信号処理器 からなる ことを特徴とする光ファイバ線引装置用紫外線照射器の
紫外線照度測定器。
(1) An ultraviolet light intensity measuring device for measuring ultraviolet light intensity within an ultraviolet irradiator for an optical fiber drawing device that irradiates and cures a coating ultraviolet curable resin applied after spinning an optical fiber, comprising: A measuring section comprising a measuring device body equipped with a cooling mechanism inserted at a position where an optical fiber is irradiated with ultraviolet rays, a support section supporting the measuring device body, and display processing of the illuminance of the ultraviolet light measured by the measuring section. The measuring device main body of the measuring device includes: a lighting window that is opened on a side surface of a lower part of the measuring device body and receives ultraviolet light from a horizontal direction; and a processing unit that faces the lighting window and a light guide section that guides the collected ultraviolet light vertically upward; and a heat ray absorption filter arranged along the central axis of the measuring instrument body that allows only the ultraviolet wavelength component of the ultraviolet light guided through the light guide section to pass through. and a light control section comprising an ultraviolet transmission interference filter; and a photodetection section having spectral sensitivity to light in the ultraviolet wavelength range that has passed through the light control section; 1. An ultraviolet illuminance measuring device for an ultraviolet irradiator for an optical fiber drawing device, comprising a signal processor that displays and processes ultraviolet light signals detected by a detection section.
(2)前記測定器本体の冷却機構は、 前記支持部に前記測定器本体の内部へ冷却ガスを送入す
る冷却ガス送通口を備えてなることを特徴とする特許請
求の範囲第1項記載の光ファイバ線引装置用紫外線照射
器の紫外線照度測定器。
(2) The cooling mechanism for the measuring device main body is characterized in that the supporting portion is provided with a cooling gas passage port for feeding cooling gas into the inside of the measuring device main body. An ultraviolet illuminance measuring device for the ultraviolet irradiator for optical fiber drawing equipment described above.
(3)前記測定器本体の冷却機構は、 前記測定器本体および支持部が一体化したジャケット構
造からなり、前記支持部に前記ジャケット構造内部へ冷
却水を導入・排出する冷却水導入・排出口を有してなる
ことを特徴とする特許請求の範囲第1項記載の光ファイ
バ線引装置用紫外線照射器の紫外線照度測定器。
(3) The cooling mechanism for the measuring instrument main body is composed of a jacket structure in which the measuring instrument main body and the support part are integrated, and the supporting part has a cooling water inlet/outlet for introducing and discharging cooling water into the inside of the jacket structure. An ultraviolet illuminance measuring instrument for an ultraviolet irradiator for an optical fiber drawing device according to claim 1, characterized in that it comprises:
(4)前記測定器本体の冷却機構は、 前記測定器本体および支持部が一体化した良熱伝導性部
材から構成され、前記支持部は内部に冷却水を流通・貯
留する冷却水貯留部を有し、前記測定器本体に内蔵する
前記光検出部は、良熱伝導性部材からなる、一方の端部
を前記冷却水貯留部内在の支持部内壁に接着した支持棒
の他方の端部に固定し、かつ前記光検出部および調光部
と前記測定器本体の内壁間に断熱材を介在してなること
を特徴とする特許請求の範囲第1項記載の光ファイバ線
引装置用紫外線照射器の紫外線照度測定器。
(4) The cooling mechanism for the measuring device main body is composed of a good thermal conductive member in which the measuring device main body and a supporting portion are integrated, and the supporting portion has a cooling water storage portion inside which circulates and stores cooling water. The photodetecting section built into the measuring instrument main body is attached to the other end of a support rod made of a material with good thermal conductivity, one end of which is adhered to the inner wall of the support inside the cooling water reservoir. The ultraviolet ray irradiation for an optical fiber drawing apparatus according to claim 1, wherein the ultraviolet ray irradiation is fixed, and a heat insulating material is interposed between the photodetecting section, the light control section, and the inner wall of the measuring device main body. Ultraviolet illuminance measuring device.
JP62015863A 1987-01-26 1987-01-26 Ultraviolet-ray illuminance measuring instrument for ultraviolet-ray irradiating device for optical fiber drawing device Pending JPS63182528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62015863A JPS63182528A (en) 1987-01-26 1987-01-26 Ultraviolet-ray illuminance measuring instrument for ultraviolet-ray irradiating device for optical fiber drawing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62015863A JPS63182528A (en) 1987-01-26 1987-01-26 Ultraviolet-ray illuminance measuring instrument for ultraviolet-ray irradiating device for optical fiber drawing device

Publications (1)

Publication Number Publication Date
JPS63182528A true JPS63182528A (en) 1988-07-27

Family

ID=11900637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62015863A Pending JPS63182528A (en) 1987-01-26 1987-01-26 Ultraviolet-ray illuminance measuring instrument for ultraviolet-ray irradiating device for optical fiber drawing device

Country Status (1)

Country Link
JP (1) JPS63182528A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2662250A1 (en) * 1990-05-18 1991-11-22 Landis & Gyr Betriebs Ag DIODE RADIATION SENSOR FOR MONITORING A FLAME.
US8871311B2 (en) 2010-06-03 2014-10-28 Draka Comteq, B.V. Curing method employing UV sources that emit differing ranges of UV radiation
US9067241B2 (en) 2008-12-31 2015-06-30 Draka Comteq, B.V. Method for curing glass-fiber coatings
US9187367B2 (en) 2010-05-20 2015-11-17 Draka Comteq, B.V. Curing apparatus employing angled UVLEDs
US10029942B2 (en) 2010-08-10 2018-07-24 Draka Comteq B.V. Method and apparatus providing increased UVLED intensity and uniform curing of optical-fiber coatings

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2662250A1 (en) * 1990-05-18 1991-11-22 Landis & Gyr Betriebs Ag DIODE RADIATION SENSOR FOR MONITORING A FLAME.
US9067241B2 (en) 2008-12-31 2015-06-30 Draka Comteq, B.V. Method for curing glass-fiber coatings
US9187367B2 (en) 2010-05-20 2015-11-17 Draka Comteq, B.V. Curing apparatus employing angled UVLEDs
US9687875B2 (en) 2010-05-20 2017-06-27 Draka Comteq, B.V. Curing apparatus employing angled UVLEDs
US8871311B2 (en) 2010-06-03 2014-10-28 Draka Comteq, B.V. Curing method employing UV sources that emit differing ranges of UV radiation
US10029942B2 (en) 2010-08-10 2018-07-24 Draka Comteq B.V. Method and apparatus providing increased UVLED intensity and uniform curing of optical-fiber coatings

Similar Documents

Publication Publication Date Title
US5452396A (en) Optical processing furnace with quartz muffle and diffuser plate
JP4226593B2 (en) Infrared pyrometer calibration system for heat treatment system
US4556875A (en) Irradiated power monitoring system for optical fiber
US4510389A (en) Infrared film thickness gage
CN111521297A (en) Spectrum-temperature calibration device and method suitable for phosphorescence ratio light intensity method
JP3760416B2 (en) Method for processing workpiece material sample and light and weather resistance inspection apparatus
JPS63182528A (en) Ultraviolet-ray illuminance measuring instrument for ultraviolet-ray irradiating device for optical fiber drawing device
Massie et al. A high-intensity spectrophotometer interfaced with a computer for food quality measurement
Littlejohn et al. Background emission in carbon furnace atomic-emission spectrometry
JPS63201536A (en) Ultraviolet-ray illuminance measuring instrument of ultraviolet-ray irradiation device for optical fiber drawing device
US3610592A (en) Method and apparatus for estimating errors in pyrometer readings
JPS6186621A (en) Method and apparatus for simultaneously measuring emissivity and temperature
JP2015212688A (en) Light irradiation device and method for measuring light transmission characteristic
US4339201A (en) Temperature control system for an element analyzer
JPH01201124A (en) Illuminance measuring instrument for ultraviolet-ray irradiating device for optical fiber wire drawing device
JPS60133327A (en) Method for measuring temperature in furnace in hot hydrostatic-pressure applying apparatus using closed-end pipe
CN214749784U (en) Absorption spectrum detection device for material micro-area
JPH02170021A (en) Device for measuring illuminance of ultraviolet ray
JPH0216982B2 (en)
JP2802361B2 (en) Dew point measuring device using slab optical waveguide
JPH06308026A (en) Light measuring apparatus and ozone water concentration meter
JPH03236914A (en) Heater
JPS61175534A (en) Emissivity measuring apparatus
JPH09126889A (en) Method and instrument for measuring temperature of semiconductor substrate
JPH02443Y2 (en)