JPS63182033A - Ethanol reforming catalyst - Google Patents

Ethanol reforming catalyst

Info

Publication number
JPS63182033A
JPS63182033A JP1010287A JP1010287A JPS63182033A JP S63182033 A JPS63182033 A JP S63182033A JP 1010287 A JP1010287 A JP 1010287A JP 1010287 A JP1010287 A JP 1010287A JP S63182033 A JPS63182033 A JP S63182033A
Authority
JP
Japan
Prior art keywords
platinum
oxide
palladium
catalyst
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1010287A
Other languages
Japanese (ja)
Inventor
Tetsuya Imai
哲也 今井
Hiroshi Fujioka
藤岡 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1010287A priority Critical patent/JPS63182033A/en
Publication of JPS63182033A publication Critical patent/JPS63182033A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To achieve high activity and high selectivity, by supporting platinum and/or palladium by an alumina carrier containing oxide of a rare earth element. CONSTITUTION:Alumina is coated with oxide of a rare earth element such as lanthanum oxide (La2O3), cerium oxide (CeO2) or neodymium oxide (Nd2O3). Platinum and/or palladium are supported by the carrier thus obtained. The support amount of platinum and/palladium of this catalyst is pref. set to 0.05-5wt.%. Even when platinum and palladium are together used, the total amount of both of them is pref. 0.05-5wt.%. The catalyst thus obtained has excellent selectivity in the reaction reforming ethanol to gas based on hydrogen and shows high activity and high selectivity at low temp. of 300-400 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エタノールを水素を主成分とするガスに改質
するエタノール改質用触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ethanol reforming catalyst for reforming ethanol into a gas containing hydrogen as a main component.

〔従来の技術〕[Conventional technology]

現在、では発電用ボイラ、内燃機関などに用いられる液
体燃料や気体燃料には、原油及びそれから精製された石
油類が使用されているが、最近の原油価格の高騰のため
燃料の多様化が指向されて、天然のバイオマス資源の発
酵反応によυ、また原油以外の化石燃料から合成され得
るエタノールが注目されている。
Currently, crude oil and petroleum products refined from it are used as liquid fuels and gaseous fuels used in power generation boilers, internal combustion engines, etc., but due to the recent rise in crude oil prices, there is a trend toward diversification of fuels. As a result, ethanol, which can be synthesized through fermentation reactions of natural biomass resources or from fossil fuels other than crude oil, is attracting attention.

またエタノールはナフサよシはるかに低温で水素を主成
分とするガスに改質されるので、反応熱のための熱源と
して廃熱の適用が可能であると云う優位性をもっている
Furthermore, since ethanol is reformed into a gas mainly composed of hydrogen at a much lower temperature than naphtha, it has the advantage that waste heat can be used as a heat source for reaction heat.

この際、生成した改質ガスは、改質反応の吸熱量相当分
(約15 KcaA/mob )だけ改質ガスの発熱量
が増加するという利点と、さらに、この生成した改質ガ
スは高オクタン価で高出力設計の内燃機関に適用すると
圧縮比をあげて熱効率を改良することや、エタノール燃
焼時アルデヒド類などの排出もなくクリーン燃焼が可能
などの利点がある。
At this time, the generated reformed gas has the advantage that the calorific value of the reformed gas increases by an amount equivalent to the endothermic amount of the reforming reaction (approximately 15 KcaA/mob), and furthermore, the generated reformed gas has a high octane value. When applied to internal combustion engines designed for high output, it has the advantages of increasing the compression ratio and improving thermal efficiency, and enabling clean combustion with no emissions of aldehydes when ethanol is burned.

内燃機関の排気ガス熱を利用してエタノールの改質反応
を行わす場合、排ガス温度は周知のごとく室温から80
0℃程度の温度まで変化するため、幅広い温度範囲にわ
たって内燃機関に搭載できる程度の少量ですみ、かつ、
例えば、上記の800℃程度の高温下におかれていても
、改質性能が劣化しない安定した触媒が要望されている
When carrying out the reforming reaction of ethanol using exhaust gas heat from an internal combustion engine, the exhaust gas temperature ranges from room temperature to 80°C.
Since the temperature changes down to around 0℃, only a small amount is required to be installed in an internal combustion engine over a wide temperature range, and
For example, there is a demand for a stable catalyst that does not deteriorate its reforming performance even when placed at high temperatures of about 800°C.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、エタノールを改質する触媒としては、アルミナ(
以下A403と記す)などの担体に、白金などの白金属
元素、又は銅、ニッケル、クロム、亜鉛などの卑金属元
素及びその酸化物などを担持した触媒が提案されている
が、これらの触媒は低温活性に乏しく、また耐熱性がな
いなど、現在までのところ多くの問題点を残している。
Conventionally, alumina (
Catalysts have been proposed in which platinum metal elements such as platinum, or base metal elements such as copper, nickel, chromium, and zinc and their oxides are supported on a carrier such as A403 (hereinafter referred to as A403). To date, many problems remain, such as poor activity and lack of heat resistance.

例えばr−A40gに白金を担持した触媒については、
下記に示す目的の反応■が選択良く起こラス、エチレン
、エーテル、アルデヒド等の生成する副反応■が起こシ
やずいという問題がある。
For example, for a catalyst in which platinum is supported on 40 g of r-A,
There is a problem in that although the desired reaction (2) shown below occurs selectively, side reactions (2), which produce ethylene, ether, aldehyde, etc., occur.

上記反応のうち、反応■は本発明でいうエタノール改質
反応の主反応でアシ、この反応で生成した改質ガスは、
改質反応の吸熱量相当分だけ改質ガスの発熱量が増加す
るという利点があシ熱効率改善につながる。
Among the above reactions, reaction (1) is the main reaction of the ethanol reforming reaction in the present invention, and the reformed gas produced in this reaction is
This has the advantage that the calorific value of the reformed gas increases by an amount equivalent to the endothermic amount of the reforming reaction, which leads to improved thermal efficiency.

しかし、副反応■のような反応が起きると、この反応は
いずれも発熱反応であるため熱効率の面からはむしろ損
失となる。さらKこの改質ガスを各種プロセスの水素源
などに利用する場合副反応■によって副生ずるエーテル
、アルデヒド類などは分離精製を困難にする要因となる
However, if a reaction such as side reaction (2) occurs, this reaction is an exothermic reaction, and therefore results in a loss in terms of thermal efficiency. Furthermore, when this reformed gas is used as a hydrogen source in various processes, ethers, aldehydes, etc. produced as by-products due to side reaction (2) become a factor that makes separation and purification difficult.

また副反応■のうち、カーボン生成反応は、触媒の劣化
あるいは、リアクタの閉塞などをきたし、長期安定操業
の妨げとなる。
Among the side reactions (2), the carbon production reaction causes deterioration of the catalyst or blockage of the reactor, which impedes long-term stable operation.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記の問題点を解決すべく研究を重ねた
結果、アルミナと活性金属との間に第三物質を介在させ
ることによって、即ちアルミナにあらかじめ希土類元素
の酸化物を担持し、通常酸性触媒として作用するγ−A
/40.を塩基性に変換することによシ脱水反応などの
副反応が抑制されることに着目し、種々の実験検討を重
ねた結果、アルミナをあらかじめ副反応を抑制する効果
のある希土類元素の酸化物で被覆した担体上に白金及び
/又はパラジウムなどの貴金属を担持させた触媒が、エ
タノール改質反応において活性、選択性とも非常に優れ
ていることを見いだし、本発明を完成するに至った。
As a result of repeated research to solve the above problems, the present inventors have found that by interposing a third substance between alumina and the active metal, that is, by supporting a rare earth element oxide on alumina in advance, γ-A, which usually acts as an acidic catalyst
/40. Focusing on the fact that side reactions such as dehydration reactions can be suppressed by converting alumina to basicity, we have conducted various experiments and have developed rare earth element oxides that have the effect of suppressing side reactions in advance. The present inventors have discovered that a catalyst in which noble metals such as platinum and/or palladium are supported on a carrier coated with is extremely superior in both activity and selectivity in the ethanol reforming reaction, leading to the completion of the present invention.

すなわち本発明は希土類元素の酸化物を含有したアルミ
ナ担体上に白金及び/又はパラジウムを担持させてなる
ことを特徴とするエタノール改質用触媒である。
That is, the present invention is an ethanol reforming catalyst characterized by having platinum and/or palladium supported on an alumina carrier containing an oxide of a rare earth element.

ここでアルミナに被覆する希土類元素の酸化物は、11
〜30重量%(以下、担体全貴簡ベースで表示)であり
、希土類元素の酸化物としては、周期律表11a族の希
土類元素の酸化物であシ、例えば酸化ランタン(LガO
s)、酸化セリウム(CeOl)、酸化ネオジウム(N
ames)又はこれらの混合物などがある。
Here, the rare earth element oxide coated on alumina is 11
~30% by weight (hereinafter expressed based on the entire carrier), and the rare earth element oxide is an oxide of a rare earth element in group 11a of the periodic table, such as lanthanum oxide (LgaO).
s), cerium oxide (CeOl), neodymium oxide (N
ames) or a mixture thereof.

上記の酸化物でアルミナを被覆するには、アルミナを希
土類元素の硝酸塩水溶液に浸漬したのち、乾燥焼成する
ことで容易に得られる。
Coating alumina with the above oxide can be easily obtained by immersing alumina in an aqueous solution of nitrate of a rare earth element, followed by drying and firing.

次にこのようにして得られた担体に上記貴金属を担持さ
せる方法は常法でよく、例えば貴金属の硝酸塩又は塩化
物などの化合物の水溶液に担体を浸漬した後、焼成し、
更にそれを水素還元処理すれば貴金属が担持された触媒
が得られる。上記触媒の白金及び/又はパラジウムの担
持量としては、105〜5重量%が好ましい。
Next, the method of supporting the above-mentioned noble metal on the carrier thus obtained may be any conventional method, for example, immersing the carrier in an aqueous solution of a compound such as a nitrate or chloride of a noble metal, followed by calcination.
Further, by subjecting it to hydrogen reduction treatment, a catalyst on which precious metals are supported can be obtained. The amount of platinum and/or palladium supported in the catalyst is preferably 105 to 5% by weight.

白金とパラジウムを併用する場合も、トータルの量が1
05〜5重量%の範囲であることが好ましい。
Even when platinum and palladium are used together, the total amount is 1
It is preferably in the range of 0.05 to 5% by weight.

以上のようにして得られた触媒は、エタノールを水素を
主成分とするガスに改質する反応に対して、目的の反応
の選択性に優れ、500〜400℃という低温で高活性
、高選択性を示すものである。
The catalyst obtained as described above has excellent selectivity for the desired reaction in the reaction of reforming ethanol into a gas whose main component is hydrogen, and has high activity and high selectivity at low temperatures of 500 to 400°C. It indicates gender.

〔実施例〕〔Example〕

以下、実施例によシ、本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained using examples.

〔突施例1〕 粒径2〜4−のr−A!40mからなるべVットを硝酸
ランタン又は硝酸セリウム水溶液に各々浸漬後乾燥し、
550℃で3時間焼成して酸化ランタン又は酸化セリウ
ムが10重量%被覆された担体1,2をそれぞれ調製し
た。
[Example 1] r-A with particle size 2-4-! A length of 40 m was immersed in lanthanum nitrate or cerium nitrate aqueous solution, and then dried.
Supports 1 and 2 each coated with 10% by weight of lanthanum oxide or cerium oxide were prepared by firing at 550° C. for 3 hours.

このようにして得られた担体1,2を白金の硝酸塩水溶
液に各々浸漬し、400℃で水素還元処理を行い白金が
15重量%になるように担持した触媒1,2及びパラジ
ウムの硝酸塩水溶液に各々浸漬し、400℃で水素還元
処理を行いパラジウムが0.3重量%になるように担持
した触媒3,4をそれぞれ調製した。
The supports 1 and 2 thus obtained were each immersed in an aqueous solution of platinum nitrate, and subjected to hydrogen reduction treatment at 400°C to support catalysts 1 and 2 with a platinum content of 15% by weight, and an aqueous solution of palladium nitrate. Catalysts 3 and 4 were prepared by immersing each catalyst and subjecting it to hydrogen reduction treatment at 400° C. to support palladium in an amount of 0.3% by weight.

また担体1を塩化白金酸水溶液に浸漬し、400℃で焼
成後、水素還元処理を行い、白金がQ、1.(L5重量
%になるように担持した触媒5゜6をそれぞれ調製し喪
Further, the carrier 1 was immersed in a chloroplatinic acid aqueous solution, fired at 400°C, and then subjected to a hydrogen reduction treatment to obtain platinum Q, 1. (Catalysts 5.6 and 5.6 supported at L5% by weight were prepared respectively.

担体1を白金及びパラジウムの硝酸塩水溶液に浸漬し4
00℃で焼成機水素還元処理を行い、白金及びパラジウ
ム濃度がCL3重量%になるように担持した触媒7を調
製した。
The carrier 1 was immersed in an aqueous solution of platinum and palladium nitrates.
Catalyst 7 was prepared by carrying out hydrogen reduction treatment in a calciner at 00° C. and supporting platinum and palladium at a concentration of 3% by weight of CL.

比較触媒として従来のアルミナ担体を白金の硝酸塩水#
液に浸漬し、400℃で焼成機水素還元処理を行い、白
金が133重量になるように担持した触媒を調製した。
Platinum nitrate water with conventional alumina support as a comparison catalyst
The catalyst was immersed in a liquid and subjected to calciner hydrogen reduction treatment at 400° C. to prepare a catalyst supporting platinum to a weight of 133 weight.

これらの触媒の活性評価を表1に示す条件で行い、その
結果を表2に示した。
The activity of these catalysts was evaluated under the conditions shown in Table 1, and the results are shown in Table 2.

反応温度を700℃に変えた以外は、表1と同じ条件で
活性評価試験を行った結果、エタノール転化率は初期及
び1000時間後でも100%であった。
An activity evaluation test was carried out under the same conditions as in Table 1 except that the reaction temperature was changed to 700° C. As a result, the ethanol conversion rate was 100% both at the initial stage and after 1000 hours.

表1 表2 〔突流例2〕 粒径2〜4■のr−A140mからなるべVットを硝酸
ランタンと硝酸セリウムの混合水溶液又は硝酸ネオジウ
ムの水溶液に各々、浸漬後乾燥し550℃で5時間焼成
して酸化ランタン2重量%、酸化セリウム2重量%被覆
された担体3を、また酸化ネオジウム1重量%被覆され
た担体4をそれぞれ調製した。
Table 1 Table 2 [Bust flow example 2] A Vt made of 140m r-A with a particle size of 2 to 4 cm was immersed in a mixed aqueous solution of lanthanum nitrate and cerium nitrate or an aqueous solution of neodymium nitrate, and then dried at 550°C for 50 minutes. A carrier 3 coated with 2% by weight of lanthanum oxide and 2% by weight of cerium oxide and a carrier 4 coated with 1% by weight of neodymium oxide were prepared by firing for a time.

このようにして得られた担体3,4を白金の硝酸塩水溶
液に各々浸漬し、乾燥焼成後水素還元処理を行い、白金
濃度が15重量%になるように担持した触[8、9をそ
れぞれ調製した。
The carriers 3 and 4 thus obtained were each immersed in an aqueous solution of platinum nitrate, dried and fired, and then subjected to hydrogen reduction treatment to prepare carriers [8 and 9] with a platinum concentration of 15% by weight. did.

触媒1及び8.9の活性評価を表5に示す条件で行い、
その結果を表4に示した。
Activity evaluation of catalysts 1 and 8.9 was performed under the conditions shown in Table 5,
The results are shown in Table 4.

表5 表4 〔発明の効果〕 以上*m例及び比較例の結果から明らかなごとく、本発
明のエタノール改質用触媒は、エタノール又はエタノー
ルと水の混合液を原料として水素を主成分とするガスを
製造する反応において、低温で高活性、高選択性かつ長
寿命の非常に優れた触媒であシ、高温下でも安定な 諜
である。
Table 5 Table 4 [Effects of the invention] As is clear from the results of the *m examples and comparative examples above, the ethanol reforming catalyst of the present invention uses ethanol or a mixture of ethanol and water as a raw material and has hydrogen as its main component. In reactions that produce gas, it is an excellent catalyst with high activity, high selectivity, and long life at low temperatures, and is stable even at high temperatures.

Claims (1)

【特許請求の範囲】[Claims] 希土類元素の酸化物を含有したアルミナ担体上に白金及
び/又はパラジウムを担持させてなることを特徴とする
エタノール改質用触媒。
An ethanol reforming catalyst comprising platinum and/or palladium supported on an alumina carrier containing an oxide of a rare earth element.
JP1010287A 1987-01-21 1987-01-21 Ethanol reforming catalyst Pending JPS63182033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1010287A JPS63182033A (en) 1987-01-21 1987-01-21 Ethanol reforming catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1010287A JPS63182033A (en) 1987-01-21 1987-01-21 Ethanol reforming catalyst

Publications (1)

Publication Number Publication Date
JPS63182033A true JPS63182033A (en) 1988-07-27

Family

ID=11740954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1010287A Pending JPS63182033A (en) 1987-01-21 1987-01-21 Ethanol reforming catalyst

Country Status (1)

Country Link
JP (1) JPS63182033A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082996A (en) * 2004-09-15 2006-03-30 Haldor Topsoe As Ethanol reforming method
CN100395174C (en) * 2006-01-12 2008-06-18 天津大学 Process for reforming mfg. hydrogen by ethyl alcohol vapour
JP2010047436A (en) * 2008-08-20 2010-03-04 Nissan Motor Co Ltd Hydrogen producing method and hydrogen producing apparatus
JP2011521900A (en) * 2008-04-22 2011-07-28 ビーエーエスエフ ソシエタス・ヨーロピア Method for pre-reforming ethanol

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867344A (en) * 1981-10-16 1983-04-21 Nissan Motor Co Ltd Catalyst for reforming of methanol
JPS59189935A (en) * 1983-04-14 1984-10-27 Mitsubishi Heavy Ind Ltd Ethanol reforming catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867344A (en) * 1981-10-16 1983-04-21 Nissan Motor Co Ltd Catalyst for reforming of methanol
JPS59189935A (en) * 1983-04-14 1984-10-27 Mitsubishi Heavy Ind Ltd Ethanol reforming catalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082996A (en) * 2004-09-15 2006-03-30 Haldor Topsoe As Ethanol reforming method
JP4594011B2 (en) * 2004-09-15 2010-12-08 ハルドール・トプサー・アクチエゼルスカベット Ethanol reforming method
CN100395174C (en) * 2006-01-12 2008-06-18 天津大学 Process for reforming mfg. hydrogen by ethyl alcohol vapour
JP2011521900A (en) * 2008-04-22 2011-07-28 ビーエーエスエフ ソシエタス・ヨーロピア Method for pre-reforming ethanol
JP2010047436A (en) * 2008-08-20 2010-03-04 Nissan Motor Co Ltd Hydrogen producing method and hydrogen producing apparatus

Similar Documents

Publication Publication Date Title
US4780300A (en) Process for reforming methanol
JPS6256301A (en) Apparatus for post-treating liquid comprising methanol mainly and catalytic cracking thereof or steam modification
CN113198459A (en) Catalyst for low-temperature catalytic combustion and preparation method and application thereof
CN109847747B (en) Low-temperature water-vapor shift catalyst and preparation method thereof
JPS63182033A (en) Ethanol reforming catalyst
JPS58193736A (en) Catalyst for production of gas enriched with hydrogen
JPS6234417B2 (en)
JPS6241063B2 (en)
JPS58193738A (en) Catalyst for production of gas enriched with hydrogen
JP2000342968A (en) Catalyst and producing method
JPS63182034A (en) Ethanol reforming catalyst
JPH0352642A (en) Production of catalyst for combustion
JPH0419901B2 (en)
JPS59189935A (en) Ethanol reforming catalyst
JPS59112835A (en) Catalyst for reforming methanol
JPS6082136A (en) Reforming catalyst of methanol
KR101438885B1 (en) Catalyst for conversion nitrogen oxides into ammonia and manufacturing method for the same
JPH0211302B2 (en)
JPS58193737A (en) Catalyst for production of gas enriched with hydrogen
JPS6235814B2 (en)
JPH0425064B2 (en)
JPS6247578B2 (en)
CN112916031B (en) Pt/alpha-MoC1-xMolybdenum net catalyst, preparation method and application thereof
JPH0312302A (en) Methanol reformer
JP2001232198A (en) Catalyst and manufacturing method of catalyst