JPS63181015A - Control system for maximum output of photovoltaic power generator - Google Patents

Control system for maximum output of photovoltaic power generator

Info

Publication number
JPS63181015A
JPS63181015A JP62013807A JP1380787A JPS63181015A JP S63181015 A JPS63181015 A JP S63181015A JP 62013807 A JP62013807 A JP 62013807A JP 1380787 A JP1380787 A JP 1380787A JP S63181015 A JPS63181015 A JP S63181015A
Authority
JP
Japan
Prior art keywords
output
solar
solar cell
maximum output
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62013807A
Other languages
Japanese (ja)
Inventor
Tetsuo Yoshimi
吉見 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP62013807A priority Critical patent/JPS63181015A/en
Publication of JPS63181015A publication Critical patent/JPS63181015A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To track the maximum output of a solar battery in a real time, by providing a pair of solar battery device for detecting a short-circuit current and solar battery for detecting a release voltage, and a control means. CONSTITUTION:A CPU19-2 receives an open-circuit voltage value Vo from the solar battery device 16, and retrieves an open-circuit voltage-device temperature conversion table storage area 19-3a, and detects a device temperature (t) at that time. Next, the CPU19-2 receives the short-circuit current Isc(t) from the solar battery device 15, and performs the arithmetic calculation of the short-circuit current Isc from a short-circuit current storage area 19-3c and the device temperature, and finds a quantity of solar radiation L. Next, the CPU19-2 retrieves a quantity of solar radiation-maximum output table storage area 19-3b from the quantity of solar radiation L, and finds a current value Imax and a voltage value Vmax at the maximum output point in the quantity of solar radiation L. And it sends a control signal to a DC/AC converter 13 via an input/output part 19-1 so as to set the output current and the output voltage of the solar battery 11 at the current value Imax and the voltage value Vmax.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、太陽電池の出力が常に最大になるように制御
する太陽光発電装置の最大出力制御方式%式% 太陽電池はその温度により、その出力特性が第5図に示
すように変化する。素子温度が低い時の出力特性はT1
のようになり、素子温度が高い時はT、のようになる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a maximum output control method for a solar power generation device that controls the output of a solar cell to always be at its maximum. The output characteristics change as shown in FIG. The output characteristic when the element temperature is low is T1
When the element temperature is high, it becomes T.

即ち、出力電流I=Oの時の電圧(開放重圧■。)が素
子温度が低い時は高く、素子温度が高い時は低くなる。
That is, the voltage when the output current I=O (open-circuit pressure ■) is high when the element temperature is low, and low when the element temperature is high.

また、太陽電池は日射量により、その出力特性は第6図
に示すように変化する。即ち日射量が犬の時の出力特性
はり、のようになるが、日射量の小さい時はり、のよう
になる。
Furthermore, the output characteristics of the solar cell change depending on the amount of solar radiation, as shown in FIG. 6. In other words, when the amount of solar radiation is a dog, the output characteristics are as shown below, but when the amount of solar radiation is small, the output characteristics are as shown below.

なお、第5図及び第6図において、縦軸は出力電流を示
し、横軸は出力電圧を示す。また、Pmaxは最大出力
点を示す。
Note that in FIGS. 5 and 6, the vertical axis shows the output current, and the horizontal axis shows the output voltage. Further, Pmax indicates the maximum output point.

上記の如く太陽電池21は素子温度及び日射量によりそ
の出力特性が変化するから、もし太陽電池を固定した電
圧で使用すると、日射量及び気温の変化により出力特性
が変化し、最大出力を利用できず効率が悪いという問題
がある・そこで・太陽電池を常に最大電力点で使用する
ようにする最大電力点追尾制御装置が開発されている。
As mentioned above, the output characteristics of the solar cell 21 change depending on the element temperature and the amount of solar radiation, so if the solar cell is used at a fixed voltage, the output characteristics will change due to changes in the amount of solar radiation and temperature, making it impossible to utilize the maximum output. Therefore, a maximum power point tracking control device has been developed that always uses the solar cell at its maximum power point.

従来、太陽光発電装置において、太陽電池の出力が常に
最大出力になるように制御する所謂最大電力点追尾制御
装置としては、常に出力電圧を微小変化させ、変化前の
出力電力と変化後の出力電力を比較し、後者が低い場合
は反対方向に電圧を変化許せ、常に最大出力点を求める
方法がある。
Conventionally, in solar power generation equipment, the so-called maximum power point tracking control device that controls the output of the solar cell so that it always reaches the maximum output constantly changes the output voltage slightly, and calculates the output power before the change and the output after the change. There is a method of comparing the power, and if the latter is lower, allowing the voltage to change in the opposite direction, always finding the maximum output point.

また、他の最大電力点追尾制御装置としては、例えば特
開昭58−69469号公報に開示されたものがある。
Further, as another maximum power point tracking control device, there is one disclosed, for example, in Japanese Patent Laid-Open No. 58-69469.

第3図は該最大電力点追尾制御装置の構成を示すブロッ
ク図である。同図において、21は太陽電池、22は主
インバータ、23は負荷、24は補助インバータ、25
は制御回路である。制御回路25は、太陽電池21の出
力電力P−出出力電流時特性第4図に示すようになって
いることから太陽電池21の出力電圧Vと出力電流Iと
を検出してその時の出力電力P=VX Iを演算すると
共に、負荷電流を微小変化移せた時の電力Pの変化が正
であるか負であるかにより、太陽電池21の出力点が最
大電力出力点Pmaxのどちら側にあるかを判別し、太
陽電池の出力点を最大電力出力点Pmaxに近づく向き
に主インバータ22の出力を制御するように構成してい
る。
FIG. 3 is a block diagram showing the configuration of the maximum power point tracking control device. In the figure, 21 is a solar cell, 22 is a main inverter, 23 is a load, 24 is an auxiliary inverter, 25
is the control circuit. The control circuit 25 detects the output voltage V and the output current I of the solar cell 21 and determines the output power at that time since the output power P-output current characteristic of the solar cell 21 is shown in FIG. In addition to calculating P = V The output point of the main inverter 22 is controlled in such a way that the output point of the solar cell approaches the maximum power output point Pmax.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように、太陽電池の出力特性を無視し固定電圧で
運転する方法は最初から効率が悪いことを承知で使用し
ているから設置した太陽電池を活用しきれないという所
謂設備利用率が悪いという欠点がある。
As mentioned above, the method of ignoring the output characteristics of solar cells and operating at a fixed voltage is used knowing that it is inefficient from the beginning, so the installed solar cells are not fully utilized, which is the so-called poor equipment utilization rate. There is a drawback.

また、出力電圧を微小変化移せ、最大出力点を見つけ出
す方法は制御装置が高価となると共に、制御遅れの拡大
によりハンチングを起こすという問題点がある。また、
第3図に示す制御回路25による太陽電池21の負荷電
流を微小変化させた時の出力電力P=VXIを演算して
、変化前の電力Pと変化後ろ電力Pを比較することによ
り最大電力点Pmaxを追尾する方法も、瞬時に最大電
力点を判定できず制御遅れとなり同様にハンチングを起
こすという問題点がある。
Further, the method of detecting the maximum output point by making small changes in the output voltage has the problem that the control device becomes expensive and that hunting occurs due to an increase in control delay. Also,
By calculating the output power P=VXI when the load current of the solar cell 21 is slightly changed by the control circuit 25 shown in FIG. 3 and comparing the power P before the change and the power P after the change, the maximum power point is determined. The method of tracking Pmax also has the problem that the maximum power point cannot be determined instantaneously, resulting in control delay and hunting.

本発明は上述の点に鑑みてなされたもので、簡単な構成
で、応答速度が速く常に100%に近い最大出力点追尾
制御が可能な太陽光発電装置の最大出力制御方式を提供
することにある。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a maximum output control method for a solar power generation device that has a simple configuration, has a fast response speed, and can perform maximum output point tracking control that is always close to 100%. be.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するため本発明は、太陽電池、該太陽
電池の直流電力を交流電力に変換するD C/A Cコ
ンバータ及び該D C/A Cコンバータを制御する制
御手段を具備し、該制御手段によすD C/A Cのコ
ンバータの出力を制御して太陽電池の出力が最大出力に
なるように制御する太陽光発電装置の最大出力制御方式
において、一対の太陽電池素子を設け、該太陽電池素子
の一方を短絡電流検出用センサとして用いると共に他方
を開放電圧検出用センサとして用い、これらセンサから
の短絡電流及び開放電圧から演算処理により当時点の日
射量を求め、該日射量より太陽電池の出力が最大出力に
なるようにD C/A Cコンバータを制御するように
太陽光発電装置の愚夫出力制御方式を構成した。
In order to solve the above problems, the present invention includes a solar cell, a DC/AC converter that converts the DC power of the solar cell into AC power, and a control means that controls the DC/AC converter. In a maximum output control method for a solar power generation device in which the output of a DC/A C converter is controlled by a control means so that the output of a solar cell becomes the maximum output, a pair of solar cell elements are provided, One of the solar cell elements is used as a sensor for detecting short-circuit current, and the other is used as a sensor for detecting open-circuit voltage, and the amount of solar radiation at that point is determined by calculation processing from the short-circuit current and open-circuit voltage from these sensors, and from the amount of solar radiation. The output control method of the solar power generation device was configured to control the DC/AC converter so that the output of the solar cell reached the maximum output.

〔作用〕[Effect]

太陽光発電装置の最大出力制御方式を上記の如く構成す
ることにより、一対の太陽電池素子の出力を演算処理す
ることにより、常に太陽電池に照射される日射量が検出
できるから、日射量に応じて太陽電池の出力をリアルタ
イムで最大出力点に維持させることが可能となる。
By configuring the maximum output control method of the solar power generation device as described above, the amount of solar radiation irradiating the solar cells can be detected at all times by calculating the output of a pair of solar cell elements. This makes it possible to maintain the output of the solar cell at the maximum output point in real time.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は本発明に係る最大出力制御方式を適用する太陽
光発電装置の構成を示すブロック図である。
FIG. 1 is a block diagram showing the configuration of a solar power generation device to which the maximum output control method according to the present invention is applied.

太陽光発電装置は、負荷に電力を供給するための太陽電
池11、逆流阻止ダイオード12、DC/ACコンバー
タ13、負荷14等からなる。19は太陽電池11が最
大出力点で運転きれるように前記D C/A Cコンバ
ータ13に制御信号を送る演算制御装置である。該演算
制御装置19には逆流阻止ダイオード17及び18を介
して短絡電流検出用の太陽電池素子15と開放電圧検出
用の太陽電池素子16の出力が接続されている。
The solar power generation device includes a solar cell 11, a backflow blocking diode 12, a DC/AC converter 13, a load 14, etc. for supplying power to a load. 19 is an arithmetic and control device that sends a control signal to the DC/AC converter 13 so that the solar cell 11 can operate at its maximum output point. The outputs of the solar cell element 15 for short-circuit current detection and the solar cell element 16 for open-circuit voltage detection are connected to the arithmetic and control unit 19 via backflow blocking diodes 17 and 18.

該演算制御装置19は、後述のように短絡電流検出用の
太陽電池素子15の出力と、開放電圧検出用の太陽電池
素子16の出力とから日射量りを検出し、太陽電池11
の出力が最大出力点PmaXになるように制御する。
The arithmetic and control unit 19 detects the amount of solar radiation from the output of the solar cell element 15 for short-circuit current detection and the output of the solar cell element 16 for open-circuit voltage detection, as will be described later.
The output is controlled so that it reaches the maximum output point PmaX.

次に、該演算制御装置19が日射量りを検出する作用に
ついて説明する。太陽電池素子15の標準状態における
短絡電流工scと、素子温度t′Cにおける短絡電流工
5c(1)の関係は、l5c= 100X l5ct+
)(1−β(t−25))/L となる。
Next, the operation of the arithmetic and control unit 19 to detect the amount of solar radiation will be explained. The relationship between the short-circuit current factor sc in the standard state of the solar cell element 15 and the short-circuit current factor 5c (1) at the element temperature t'C is l5c = 100X l5ct+
)(1-β(t-25))/L.

ここで、β:短絡電流の温度係数、 L:日射量 である。Here, β: temperature coefficient of short circuit current, L: Solar radiation amount It is.

また、素子温度tは第5図に示すように、太陽電池素子
16の開放電圧■。の値から検出できるから、前もって
太陽電池素子15の標準状態における短絡電流I、cと
短絡電流の温度係数βが分かっていれば、日射量りは L=(100X Isc<1)(1−β(t−25))
)/IsC となる。
Further, the element temperature t is equal to the open circuit voltage (2) of the solar cell element 16, as shown in FIG. Since it can be detected from the value of , if the short-circuit current I, c and the temperature coefficient β of the short-circuit current in the standard state of the solar cell element 15 are known in advance, the amount of solar radiation can be calculated as follows: L=(100X Isc<1)(1-β( t-25))
)/IsC.

該演算制御装置19は、上記演算により日射量りを求め
、第6図に示すように日射量により変化する太陽電池1
1の出力の最大出力点Pmax時の出力電流1 m a
 x及び出力電圧Vmaxを求め、太陽電池11の出力
電流及び出力電圧がそれぞれImax、Vmaxになる
ようにD C/A Cコンバータ13の出力を制御する
The arithmetic and control unit 19 calculates the amount of solar radiation by the above calculation, and calculates the solar cell 1 which changes depending on the amount of solar radiation as shown in FIG.
Output current 1 m a at maximum output point Pmax of output 1
x and output voltage Vmax are determined, and the output of the DC/AC converter 13 is controlled so that the output current and output voltage of the solar cell 11 become Imax and Vmax, respectively.

なお、上記構成の太陽光発電装置において、太陽電池1
1、太陽電池素子15及び太陽電池素子16は同じ特性
を有、するものを用い、同じ日射条件の例えば同じ架台
上に配備する。
In addition, in the solar power generation device with the above configuration, the solar cell 1
1. The solar cell element 15 and the solar cell element 16 have the same characteristics and are placed under the same solar radiation conditions, for example, on the same pedestal.

第2図は演算制御装置19の一構成例を示す図である。FIG. 2 is a diagram showing an example of the configuration of the arithmetic and control unit 19.

演算制御装置19は入出力(Ilo)部19−1、中央
処理装置(CPU)19−2及び記憶部19−3等を具
備する。
The arithmetic and control unit 19 includes an input/output (Ilo) section 19-1, a central processing unit (CPU) 19-2, a storage section 19-3, and the like.

入出力(Ilo)部19−1には太陽電池素子15及び
太陽電池素子16の出力が入力されると共に、入出力(
Ilo)部19−1からD C/ACコンバータ13に
制御信号が出力きれる。
The outputs of the solar cell elements 15 and 16 are input to the input/output (Ilo) section 19-1, and the input/output (Ilo)
A control signal can be output from the section 19-1 to the DC/AC converter 13.

また、記憶部19−3には第5図に示すような太陽電池
素子16の素子温度に対する出力特性から、開放電圧v
0に対する素子温度tが予めテーブル化きれて記憶され
ている開放電圧−素子温度変換テーブル格納エリア19
−3aが設けられ、更に第6図に示すように日射量に対
する太陽電池特性から、最大出力点Pmaxの電流Im
ax及び電圧Vmaxがテーブル化されて記憶されてい
る日射量−最大出力テーブル格納エリア19−3b、及
び標準状態における短絡電流Isc値を格納する短絡電
流格納エリア19−3c等が設けられている。
The storage unit 19-3 also stores the open voltage v
An open circuit voltage-element temperature conversion table storage area 19 in which the element temperature t relative to 0 is stored in advance as a table.
-3a is provided, and as shown in FIG. 6, from the solar cell characteristics with respect to the amount of solar radiation, the current Im at the maximum output point
A solar radiation-maximum output table storage area 19-3b in which ax and voltage Vmax are stored as a table, and a short-circuit current storage area 19-3c in which short-circuit current Isc values in a standard state are stored are provided.

中央処理装置(CPU)19−2は太陽電池素子16か
らの開放電圧v0値を受け、開放電圧−素子温度変換テ
ーブル格納エリア19−3aを検索し、その時点の素子
温度tを検出する。次に中央処理装置(CPU)19−
2は太陽電池素子15からの短絡寛流工gc(、)を受
け、短絡電流格納エリア19−3cからの短絡電流Is
cと前記素子温度から上記演算処理を行ない、日射量り
を求める。次に中央処理装置(CPU)19−2は、該
日射量りから日射量−最大出力テーブル格納エリア19
−3bを検索し、当該日射量りにおける最大出力点Pm
axの電流値Imaxと電圧値Vmaxを求め、太陽電
池11の出力電流及び出力電圧がこの電流値Imaxと
電圧値Vmaxになるように入出力(Ilo)部19−
1を介してDC/ACフンバータ13に制御信号を送る
The central processing unit (CPU) 19-2 receives the open-circuit voltage v0 value from the solar cell element 16, searches the open-circuit voltage-element temperature conversion table storage area 19-3a, and detects the element temperature t at that time. Next, the central processing unit (CPU) 19-
2 receives the short circuit current Is from the short circuit current storage area 19-3c and receives the short circuit current Is from the solar cell element 15.
The above arithmetic processing is performed from c and the element temperature to determine the amount of solar radiation. Next, the central processing unit (CPU) 19-2 selects the solar radiation amount-maximum output table storage area 19 from the solar radiation amount.
-3b, and the maximum output point Pm at the relevant solar radiation level.
Find the current value Imax and voltage value Vmax of ax, and input/output (Ilo) section 19- so that the output current and output voltage of the solar cell 11 become the current value Imax and voltage value Vmax.
A control signal is sent to the DC/AC humbator 13 via 1.

上記演算制御装置19は、簡単なマイクロコンピュータ
で実現することは容易である。
The arithmetic and control unit 19 can be easily realized with a simple microcomputer.

なお上記実施例では太陽電池素子15.16を用いた例
で説明したが、本発明は複数の太陽電池素子を素子群と
したも゛のを対として用いることもできる。
Although the above embodiments have been explained using solar cell elements 15 and 16, the present invention can also be used as a pair of a plurality of solar cell elements as an element group.

なお、第2図の演算制御装置19の構成例はほんの一例
であり、これに限定されるものでないことは当然であり
、要は太陽電池素子15からの短絡電流及び太陽電池素
子16からの開放電圧から太陽電池11の日射量りを検
出し、該日射量に応じて太陽電池11が最大出力点Pm
axで運転されるようにD C/A Cコンバータ13
の出力を制御できるものであれば、どのような構成のも
のであってもよい。
Note that the configuration example of the arithmetic and control device 19 shown in FIG. 2 is just one example, and is not limited to this. The amount of solar radiation of the solar cell 11 is detected from the voltage, and the solar cell 11 is set to the maximum output point Pm according to the amount of solar radiation.
DC/AC converter 13 to be operated with ax
Any configuration may be used as long as the output can be controlled.

太陽光発電装置を上記の如く構成することにより、高価
な専用センサを用いることなく、一対の太陽電池素子1
5及び太陽電池素子16を設け、太陽電池素子15を短
絡電流検出用センサとして使用し、太陽電池素子16を
開放電圧(即ち素子温度)検出用センサとして使用する
ことにより、簡単な演算で日射量をリアルタイムで検出
できるから、従来のように制御遅れによるハンチング等
がなく、常に100%近い最大電力点追尾制御が可能と
なる。
By configuring the solar power generation device as described above, a pair of solar cell elements 1 can be connected without using an expensive dedicated sensor.
5 and a solar cell element 16, the solar cell element 15 is used as a sensor for detecting short circuit current, and the solar cell element 16 is used as a sensor for detecting open circuit voltage (i.e., element temperature), so that the amount of solar radiation can be determined by simple calculation. can be detected in real time, there is no hunting caused by control delay as in the conventional case, and maximum power point tracking control of nearly 100% is always possible.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、一対の短絡電流検
出用の太陽電池素子と開放電圧検出用の太陽電池素子を
設けると共に簡単な演算処理ができる制御手段を設Cす
ることにより、常に当該時点の太陽電池に照射される日
射量を検出でき、リアルタイムで太陽電池の最大出力点
を追尾できる最大電力点追尾制御を安価に提供できると
いう優れた効果が得られる。
As explained above, according to the present invention, by providing a pair of solar cell elements for short-circuit current detection and a solar cell element for open-circuit voltage detection, and by providing a control means that can perform simple arithmetic processing, The excellent effect of being able to provide inexpensive maximum power point tracking control that can detect the amount of solar radiation irradiating the solar cell at a given time and track the maximum output point of the solar cell in real time is achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る最大出力制御方式を適用する太陽
光発電装置の構成を示すブロック図、第2図は演算制御
装置の一構成例を示すブロック図、第3図は従来の最大
電力点追尾制御装置の構成を示すブロック図、第4図は
太陽電池の出力電流と出力電力の関係を示す図、第5図
は太陽電池の素子温度と出力との関係を示す図、第6図
は太陽電池の日射量と出力との関係を示す図である。 図中、11・・・・太陽電池、12・・・・逆流阻止ダ
イオード、13・・・・D C/A Cコンバータ、1
4・・・・負荷、15.16・・・・太陽電池素子、1
9・・・・演算制御装置。
FIG. 1 is a block diagram showing the configuration of a solar power generation device to which the maximum output control method according to the present invention is applied, FIG. 2 is a block diagram showing an example of the configuration of an arithmetic and control device, and FIG. A block diagram showing the configuration of the point tracking control device, FIG. 4 is a diagram showing the relationship between the output current and output power of the solar cell, FIG. 5 is a diagram showing the relationship between the element temperature of the solar cell and the output, and FIG. is a diagram showing the relationship between solar radiation amount and output of a solar cell. In the figure, 11...Solar cell, 12...Reverse current blocking diode, 13...D C/A C converter, 1
4...Load, 15.16...Solar cell element, 1
9... Arithmetic control device.

Claims (1)

【特許請求の範囲】[Claims] 太陽電池、該太陽電池の直流電力を交流電力に変換する
DC/ACコンバータ及び該DC/ACコンバータを制
御する制御手段を具備し、該制御手段により該DC/A
Cコンバータを制御して太陽電池の出力が最大出力にな
るように制御する太陽光発電装置の最大出力制御方式に
おいて、一対の太陽電池を設け、該太陽電池の一方を短
絡電流検出用センサとして用いると共に他方を開放電圧
検出用センサとして用い、これらセンサからの短絡電流
及び開放電圧から演算処理により当該時点の日射量を求
め、該日射量より太陽電池の出力が最大出力になるよう
にDC/ACコンバータを制御することを特徴とする太
陽光発電装置の最大出力制御方式。
A solar cell, a DC/AC converter for converting DC power of the solar cell into AC power, and a control means for controlling the DC/AC converter, the control means controlling the DC/A
In a maximum output control method for a solar power generation device that controls a C converter so that the output of a solar cell reaches its maximum output, a pair of solar cells is provided, and one of the solar cells is used as a short-circuit current detection sensor. and the other as a sensor for detecting open circuit voltage, calculate the amount of solar radiation at that point in time from the short circuit current and open circuit voltage from these sensors, and adjust the DC/AC so that the output of the solar cell becomes the maximum output based on the amount of solar radiation. A maximum output control method for a solar power generation device characterized by controlling a converter.
JP62013807A 1987-01-23 1987-01-23 Control system for maximum output of photovoltaic power generator Pending JPS63181015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62013807A JPS63181015A (en) 1987-01-23 1987-01-23 Control system for maximum output of photovoltaic power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62013807A JPS63181015A (en) 1987-01-23 1987-01-23 Control system for maximum output of photovoltaic power generator

Publications (1)

Publication Number Publication Date
JPS63181015A true JPS63181015A (en) 1988-07-26

Family

ID=11843540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62013807A Pending JPS63181015A (en) 1987-01-23 1987-01-23 Control system for maximum output of photovoltaic power generator

Country Status (1)

Country Link
JP (1) JPS63181015A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109863A (en) * 1990-08-27 1992-04-10 Sanyo Electric Co Ltd Composite input inverter
JP2010117744A (en) * 2008-11-11 2010-05-27 Sharp Corp Solar photovoltaic power generator and solar photovoltaic power generation system
CN102621989A (en) * 2011-01-30 2012-08-01 中央大学 Sun tracking method and sun tacking system device
CN102622034A (en) * 2012-03-14 2012-08-01 浙江大学 Maximum power point tracking (MPPT) controller for solar photovoltaic system and control method of MPPT controller
US9182471B2 (en) 2011-01-27 2015-11-10 National Central University Sun tracking method and sun tracking system
US9246434B2 (en) 2011-09-26 2016-01-26 First Solar, Inc System and method for estimating the short circuit current of a solar device
WO2018066044A1 (en) * 2016-10-03 2018-04-12 株式会社アイケイエス Power control device and control method employed therein
JP2019012578A (en) * 2016-10-03 2019-01-24 株式会社アイケイエス Power controller and method of controlling the same
CN111752330A (en) * 2020-06-30 2020-10-09 珠海格力电器股份有限公司 Photovoltaic maximum power tracking control device and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281316A (en) * 1985-05-17 1986-12-11 Sanyo Electric Co Ltd Photovoltaic power generating set

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281316A (en) * 1985-05-17 1986-12-11 Sanyo Electric Co Ltd Photovoltaic power generating set

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109863A (en) * 1990-08-27 1992-04-10 Sanyo Electric Co Ltd Composite input inverter
JP2010117744A (en) * 2008-11-11 2010-05-27 Sharp Corp Solar photovoltaic power generator and solar photovoltaic power generation system
US9182471B2 (en) 2011-01-27 2015-11-10 National Central University Sun tracking method and sun tracking system
CN102621989A (en) * 2011-01-30 2012-08-01 中央大学 Sun tracking method and sun tacking system device
US9246434B2 (en) 2011-09-26 2016-01-26 First Solar, Inc System and method for estimating the short circuit current of a solar device
CN102622034A (en) * 2012-03-14 2012-08-01 浙江大学 Maximum power point tracking (MPPT) controller for solar photovoltaic system and control method of MPPT controller
WO2018066044A1 (en) * 2016-10-03 2018-04-12 株式会社アイケイエス Power control device and control method employed therein
JPWO2018066044A1 (en) * 2016-10-03 2018-10-04 株式会社アイケイエス Power control apparatus and control method thereof
JP2019012578A (en) * 2016-10-03 2019-01-24 株式会社アイケイエス Power controller and method of controlling the same
CN109791418A (en) * 2016-10-03 2019-05-21 株式会社Iks Power control unit and its control method
US11249502B2 (en) 2016-10-03 2022-02-15 Iks Co., Ltd. Power control device and control method employed therein
CN111752330A (en) * 2020-06-30 2020-10-09 珠海格力电器股份有限公司 Photovoltaic maximum power tracking control device and method

Similar Documents

Publication Publication Date Title
US20170279279A1 (en) Power converter
US7994768B2 (en) Control apparatus and method of senseless MPPT control for photovoltaic power generation system
JP2005235082A (en) Method for tracking and controlling maximum power, and power converting device
US6130486A (en) Engine operated generator
US20080278983A1 (en) Controlling Apparatus of a Power Converter of Single-Phase Current For Photovoltaic Generation System
US20070040540A1 (en) Method and apparatus for controlling power drawn from an energy converter
JPS60238918A (en) Control device of variable speed motor
JP2000020150A (en) Solar power generation inverter device
WO2022087955A1 (en) Bus voltage control method and apparatus for photovoltaic system
JPH08123563A (en) Photovoltaic power generation system, device and method for controlling power for the same
JPS63181015A (en) Control system for maximum output of photovoltaic power generator
JPH07325635A (en) Output controller for inverter
JP3493644B2 (en) Maximum power tracking method for photovoltaic system
WO2022267409A1 (en) Photovoltaic power generation system control method and apparatus, power optimizer, and storage medium
JP3343711B2 (en) Static var compensator
JPH0318911A (en) Output controller for power generating system of solar battery
JP3484506B2 (en) Power control device and power generation system using the same
CN108923520B (en) Light storage integrated power supply capable of realizing independent load distribution in series and parallel operation
JPH10207560A (en) Solar light power generation system
JP2001218368A (en) Power converter and photovoltaic generation system
JP3439806B2 (en) Solar power system
JPH0534199Y2 (en)
JPS6197721A (en) Control method of solar power generator
JP2524135B2 (en) Inverter control system driven by solar cell
JP3439813B2 (en) Solar power generator